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Abstract

Accurate and robust measurements of the moving/deforming
geometry and kinematics of the heart from cine tomographic
medical image sequences are of great technical challenges
and significant clinical values. Traditionally, the bound-
ary or volumetric segmentation and motion estimation prob-
lems are treated as two sequential steps, even though the
order of the processes can be different. In this paper, we
present an integrated, active region model based analysis
scheme for the joint recovery of these two ill-posed prob-
lems at the same time. The framework performs simultane-
ous multiframe boundary segmentation and volumetric mo-
tion/deformation estimation of the entire myocardium, in-
cluding the endocardial, epicardial, and mid-wall tissues of
the left and right ventricles. The spatiotemporal active re-
gion model is built upon an elastic solid that evolves to reach
the equilibrium between the internal elastic stress and the ex-
ternal data-driven and model-constrained forces. The main
novelty of the technique is that the external driving forces
are individually constructed for each nodal point through
the integration of the data-driven edginess measures, the
prior spatial distributions of the myocardial tissues, the tem-
poral coherence of the image-derived salient features, the
imaging/image-derived Eulerian velocity information, and
the cyclic motion model of the myocardial behavior. The
finite element method provides the representation and com-
putation platform for our effort, and iterative procedures are
used to solve the governing equations. We demonstrate the
robustness and accuracy of the strategy with very promising
application results from canine magnetic resonance phase
contrast image sequence. The results are further validated
against histo-chemical staining of the post mortem myocar-
dial tissues, the current gold standard.

1 Introduction

Ischemic cardiomyopathy remains the leading fatal disease
in the world, with a still low 50-60% five-year survival rate

[13]. The abnormalities of the ventricular morphology and
wall kinematics during the cardiac cycle reveal critical in-
formation for the diagnosis and treatment of coronary heart
diseases, as well as supplies general insights into the physio-
logical functioning of the heart. Thus, noninvasive cine med-
ical imaging techniques such as magnetic resonance imag-
ing (MRI) and echocardiography are of significant clinical
values to provide shape and motion information of the my-
ocardium. However, reliable and automated detection and
characterization of the myocardial tissue elements from im-
age sequences have been so far proven technically difficult.

From computer vision and medical image analysis point
of view, we are presented with very challenging problems of
nonrigid shape and motion recovery of the heart from peri-
odic image sequences. In the past decade, there are abundant
image analysis efforts devoted to the boundary segmentation
and motion tracking of the left ventricle (LV) [6], while the
right ventricle (RV) and the whole heart is studied in a much
lesser degree until recently [9, 20]. In the segmentation ef-
forts, the endocardial and epicardial boundaries are delin-
eated using a variety of strategies, notably the physically-
motivated deformable models [4, 11, 16], the geometric level
set methods [14, 23, 29], and the statistical active appearance
models [7, 18]. Works on cardiac motion analysis include
those exploit the frame-to-frame landmark correspondences
between distinct image-derived boundary [10, 15] and mid-
wall [1, 25] features, and those incorporate explicit multi-
frame and cyclic constraints such as the Kalman filtering to
enhance spatiotemporal motion coherence [12, 15, 17, 27].

Most of the existing efforts, including those aforemen-
tioned, do not attempt to tackle the segmentation and motion
problems in a joint or simultaneous fashion, but rather as two
sequential processes. Since these two problems are not inde-
pendent from each other, however, it has been shown in other
applications that more consistent and probably more appro-
priate results can be achieved by treating the spatial bound-
ary finding and the spatiotemporal motion tracking problems
as a coherent and unified process [2, 24]. This way, the in-
formation provided by the image sequences can be used in
a more complete manner, and the analysis results are poten-



tially more robust by reducing the possibility of error prop-
agation from one step to another. Following this spirit, sev-
eral variational formulations have been recently proposed to
integrate segmentation and registration through active con-
tours [33], to combine optical flow and shape regularization
for motion-aided segmentation [5], and to assemble various
data- and model- driven constraints for a unified spatiotem-
poral curve evolution framework that performs simultane-
ous boundary shape and motion recovery [30] and LV region
analysis [31].

In this paper, we present a unified volumetric shape and
motion recovery paradigm for the analysis of the entire re-
gion of the object. Specifically for the cardiac images, we
are interested in the analysis domain of both the left and the
right ventricles (LV and RV), including the endocardial, epi-
cardial, and mid-wall myocardium. This way, the estimation
results would give complete descriptions of the cardiac ge-
ometry and kinematics, essential for clinical assessment of
the cardiac state of health. Our variational strategy is based
on a physically motivated active region model (ARM) whose
each node spatiotemporally evolves under the influences of
the node-dependent imaging data, the temporal consistency
models of the tissue geometry and kinematics, and the sta-
tistical priors of the myocardium spatial distributions. With
roots in the classic active contour models for image segmen-
tation in terms of the internal and external constraints [4, 11],
the most unique feature of the ARM is that the external driv-
ing forces at each ARM node are individually constructed,
incorporating many of the motion correspondence and tem-
poral modeling criteria, in addition to the spatial segmen-
tation requirements. We formulate the approach as an en-
ergy minimization problem for each image frame, which is
then solved with finite element representation and iterative
procedures. Experiments are conducted with canine MRI
phase contrast image sequence with robust and physiolog-
ically sensible results, as confirmed by histo-chemical stain-
ing of the post-mortem myocardial tissues.

2 Methodology

2.1 Active Region Model

The active region model behaves as an elastic object under
the influence of the data and prior model constraints, and it
has three integral components: 1) a topological and geomet-
ric representation of the object; 2) a material constitutive law
which defines the intrinsic dynamic behavior of the object;
and 3) the external driving forces which move and deform
the object towards equilibrium. In our two-dimensional car-
diac application, the mid-ventricle heart slice is represented
by a triangular meshed linear solid continuum, bounded by
two endocardial (LV and RV) and one epicardial (overall)
boundaries (Figure 1). Imaging data and model constraints,
including both segmentation cues such as edginess and mo-
tion features such as salient point correspondence, are inte-
grated to form the driving force at each ARM node.

Figure 1: Triangular mesh representation of an mid-
ventricular slice.

The unified segmentation and motion analysis framework
is posed as an energy minimization problem:

Û = arg min
U

∫
Ω

(Einternal(U) + Eexternal(U)) dΩ (1)

where:

• U is the displacement field defined over the region of
interest Ω;

• the external energy Eexternal consists of both segmen-
tation cues and motion tracking terms needed to deform
the current object configuration towards the new equi-
librium state;

• the internal energy function Einternal imposes regular-
ity constraints on the solution, and is solely defined by
the deformation of the object and its intrinsic material
properties.

Using the Galerkin’s principles within the finite element
analysis, energy functional is formulated in terms of the
nodal displacements U , and the resulting set of differential
governing equations is expressed in matrix form as:

KU = F (2)

where K is the assembled global stiffness matrix describing
the material elasticity of the elements, and F is the exter-
nal driving force which tries to deform the ARM to adhere
to the image data and the prior information. This equation
can be interpreted as that the ARM model spatiotemporally
evolves towards equilibrium state, under the internal spatial
constraints of K which provides the relationship between
ARM nodes, and the space-time dependent external forces



Figure 2: Matching magnetic resonance phase contrast im-
age sequence: magnitude (left), x-velocity (middle), and y-
velocity (right) for frames #1, #5, #9, and #13 out of sixteen
frames throughout the cardiac cycle.

F . By taking finite differences in time domain similar to the
strategy in [4], with time step τ , we integrate equation (2)
through time using an explicit Euler time-integration proce-
dure. Specifically, the Lagrangian evolution of the ARM can
be presented as:

(I + τK)U t = (U t−1 + τF t−1) (3)

and therefore,

U t = (I + τK)−1(U t−1 + τF t−1) (4)

where I is an identity matrix, U t and U t−1 are the displace-
ment at iteration steps t and t−1 respectively, and F t−1 is the
external force vector at step t − 1. The evolution is stopped
when the external force F diminishes and/or when the dis-
placement difference between iterations, ‖U t − U t−1‖, is
below certain threshold.

2.2 Continuum Mechanics Models: Intrinsic
Material Constraints

We have adopted the physically more meaningful mechani-
cal models, which are defined in terms of strain energy func-
tions that describe the states of the materials, as our intrinsic
constraints on the ARM [30, 31]. In our current work, the

velocity vector field TTC tissue staining

Figure 3: Vector plots of the phase contrast velocity images
(left), and the TTC-stained post mortem left ventricular my-
ocardium with infarcted zone highlighted (right).

myocardium is modeled as a linear isotropic elastic material,
which provides a reasonable framework to aid the recovery
of shape and motion and has been used in our earlier efforts
[22, 28]. Under two dimensional Cartesian coordinate sys-
tem, this is defined in terms of the linear isotropic constitu-
tive law:

[σ] = [D] [ε] (5)

where [σ] is the stress vector and [D] is the stress-strain, or
the so-called material, matrix. Assuming the displacement
along the x− and y−axis to be u(x, y) and v(x, y) respec-
tively, the infinitesimal strain tensor [ε] is defined as:

[ε] =




∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x


 =


 ∂/∂x 0

0 ∂/∂y
∂/∂y ∂/∂x




[
u
v

]

= B′u (6)

and under plane strain situations, the material matrix [D] is:

[D] =
E

(1 + ν)(1 − 2ν)


 1 − ν ν 0

ν 1 − ν 0
0 0 1−2ν

2


 (7)

Here, E is the Young’s modulus that is the measure of the
stiffness of the material, and the Poisson’s ratio ν is the mea-
sure of the material compressibility. While this simple mate-
rial model has been adequate for the 2D cases reported here,
for three-dimensional cases, more realistic materials such as
the transversely isotropic/anisotropic models [8] should be
used, along with the myofiber structure information avail-
able from mathematical models [21] or diffusion tensor MR
imaging (DTMRI) [26].

With the use of the finite element representation and anal-
ysis, an isoparametric formulation defined in a natural co-
ordinate system is used, in which the interpolations of the
element coordinates and the element displacements use the
same basis functions. In general, the displacement field ue

within the tri-nodal element e is related to its nodal values
Ue by the interpolating functions Ne such that the ue is ex-
pressed as [3]:

ue = NeUe (8)



We can then calculate the corresponding element strain ten-
sor as expressed in equation (6):

[ε]e = B′
eue = B′

eNeUe = BeUe (9)

where matrix Be = B′
eNe is the local element strain-

displacement matrix. The global stiffness matrix K can then
be assembled from the local element stiffness Ke:

K =
∑

Ke =
∑ ∫

Ωe

BT
e [D]Be dΩe (10)

where Ωe is the domain of an arbitrary element e.

2.3 Image-Driven and Prior Model-Derived
Measures: External Force Fields

The external driving force term F of the system governing
equation (2) incorporates both imaging data information and
prior modeling constraints needed for the simultaneous re-
covery of the heart shape and motion. In our current imple-
mentation and experiments, given the position vector x, F
has four primary components: 1) the data-driven edginess
measures Fedginess(x) of myocardial boundaries, 2) the sta-
tistical prior distributions of the myocardial tissue locations
Fprior(x), 3) the temporal shape coherence measures on the
image-derived salient features Fshape(x), and 4) the motion
constraints on the myocardial behavior Ftemporal(x), in-
cluding the prior cyclic heart dynamics and the data-derived
Eulerican velocity information. The proper construction of
these node-dependent forces is the most fundamental con-
tribution of our algorithm. Please note that since in our
formulation the force F diminishes when the ARM reaches
equilibrium, smaller value of the force actually means more
likely resulting positions.

For ARM nodes which are on the endocardial/epicardial
boundaries (and on the mid-wall tag lines if we are using
MR tagging images [31]), the force field has contributions
from all four components:

Fline(x) = Fedginess(x) [α(x)Fprior(x)
+ β(x)Ftemporal(x) + γ(x)Fshape(x)](11)

Here, the algorithm favors locations which are likely edge
points while maintains the balance between the prior posi-
tional information, the temporal filtering/prediction results,
and the salient shape coherence measures between frames.
For all non-boundary (or non-tag) ARM nodes, there are no
constraints on them being edge points or preserving shape
coherence between image frames. Hence, the force term is
simplified to

Fother(x) = α(x)Fprior(x) + β(x)Ftemporal(x) (12)

All these four types of force components, Fedginess(x),
Fprior(x), Ftemporal(x), and Fshape(x), are normalized to
the range of [0, 1], and the weighting constants α(x), β(x),
and γ(x) are selected to reflect the varying data and model

edginess shape temporal

Figure 4: Force components for the yellow node, computed
for one phase contrast image: edginess, shape coherence,
and temporal filtering/prediction. Darker regions are poten-
tially better matches for the node.

conditions at different parts of the heart at different time
frames. While currently these coefficients are empirically
selected through try-and-error, efforts are underway to adopt
optimal estimation strategies for these parameters [27]. Fig-
ure 4 shows examples of the edginess, the shape coherence,
and the temporal filtering/prediction force components for
an arbitrary boundary point in the phase contrast image se-
quence.

2.3.1 Boundary Edginess Measures

To achieve geometry recovery, the resulting ARM bound-
ary nodes (and some internal nodes for MRI tagging data)
should locate at likely LV boundary (tagging line) locations.
Earlier works have shown that it is difficult to achieve good
segmentation results solely from gradient information since
portions of the heart boundary may have confusing gradient
information caused by partial volume effect and interference
from neighboring organs [29]. Further, as suggested by [32],
the diffusion of the gradient magnitude field generates more
robust gradient vector flow (GVF) with low GVF magnitude
near the object boundary. Hence, we construct our edginess
measure to enforce high gradient values and low GVF val-
ues:

Fedginess(x) =
|GV F (x)|

1 + |Grad(x)| (13)

where |Grad| is image gradient magnitude and |GV F | is the
GVF magnitude.

2.3.2 Prior Spatial Distributions of Tissue Elements

In order to achieve more robust estimation results against
imaging noises and defects, constraining spatial ranges are
imposed on the positions of the tissue elements. While cur-
rently these constraints are only enforced on the starting
ARM boundary (and tag-line) nodes at each image frame,
there is little difference if we are considering the other
nodes in the same fashion. The spatial prior ranges of the
ARM nodes are constructed as 2D Gaussian distributions
N(x(k − 1), σ), where σ is the variances, and the mean
x(k − 1) is the ARM nodal point at the starting position of



Figure 5: Segmented mesh representations of the left and
right ventricles: frames #2, #4, #6, #8, #10, #12, #14, and
#16.

the current image frame (the result of the last image frame).
Hence, the derived prior force component becomes:

Fprior(x) = 1 − N(x(k − 1), σ) (14)

Obviously, we are in favor of the situation where the node
does not move away from its starting position. While this has
produced reasonable results in our experiments, other types
of biases can be used as long as they are meaningful to the
specific cases.

2.3.3 Shape Coherence Measures

Earlier efforts have demonstrated and validated the effec-
tiveness of tracking LV boundary motion using geometrical
shape cues [10, 15]. Following this strategy, we propose to
use the shape coherence of the myocardial salient landmarks,
such as the boundary nodes (and the tag-tag/tag-boundary
crossings), between image frames as an additional guideline
for the construction of the force field. Base on the theorem
of implicit iso-intensity curve representation [19], we can
directly compute the differential curvature values of these
nodes from the images:

κ(x) =
Iyy(x)I2

x(x) − 2Ixy(x)Ix(x)Iy(x) + Ixx(x)I2
y (x)

(I2
x(x) + I2

y (x))3/2

where Ix and Iy are the first derivatives of the image inten-
sity, and Ixx, Iyy and Ixy are the second derivatives.

The basic idea is then to use the minimum bending energy
criterion to guide the ARM boundary (and tag) nodes mov-
ing towards final pixel positions which have as close shape

Figure 6: Estimated frame-to-frame displacement fields: be-
tween frames #1-2, #3-4, #5-6, #7-8, #9-10, #11-12, #13-14,
and #15-16.

properties as these nodes at the previous image frame (the
starting ARM nodal positions for the current image frame).
Hence, we define the shape force term as

Fshape(x) = |κ((x + δx)(k + 1)) − κ((x(k))| (15)

where κ((x+ δx)(k +1)) and κ((x(k)) are the iso-intensity
curvatures at image frames k + 1 and k respectively, and δx
indicates that the search is conducted at a local window near
the original boundary (tag) point x.

2.3.4 Temporal Filtering and Prediction: Eulerian
Kinematics Data and Cyclic Motion Model

As on most other cardiac applications, we assume the mo-
tion of the heart is periodic. The trajectory of each ARM
node can be expanded into sine functions [17]. Due to the
limited available temporal resolution, sixteen frames for the
cardiac cycle from our data, the first two terms of the expan-
sion are retained and a continuous model of the trajectory of
any mesh node is thus given by

x(t) = x̄ + A sin(2πωt + ϕ) (16)

where t is the continuous time index, x is the ARM node
position, x̄ is the mean position over the cardiac period, and
A is the amplitude of the motion. The frequency of the os-
cillator is 2πω = 2π/T where T is the period of the cardiac
cycle, known from the imaging data. The geometric inter-
pretation of this model is that the trajectory of the node is
approximated by a closed ellipse, and this system model is
only valid over a short time interval on a piecewise sense.



The past positions of a given ARM node x up to the
current image frame k and the available imaging/image-
derived Eulerian motion information provide an estimation
of the node x at frame k + 1. Typical Eulerian kinematic
data include the optical flow field calculated from image
frames k and k + 1, the instantaneous velocity provided by
MR phase contrast images, the partial velocity information
from Doppler echocardiography, etc. A standard Kalman fil-
ter/predictor can be used to estimate the state variables (po-
sition, displacement, and velocity) at frame k + 1 through:

ẑ(k + 1 | k) = Cẑ(k | k) (17)

with

C =


 λ µ 0

1 − cos(ω�t) cos(ω�t) 1
ω sin(ω�t)

ω sin(ω�t) −ω sin(ω�t) cos(ω�t)




where z = [x̄,x, ẋ] is the state vector, ẑ(k + 1 | k) is the
Kalman filter estimated state for image frame k +1, ẑ(k | k)
is the estimated state vectors up to frame k, x̄ needs to be up-
dated during each estimation, λ = (n − 1)/n and µ = 1/n
are constants, and n is the number of image frames over the
heart cycle. In our experiments reported here, the velocity
term in Equation 17 adopts the available Eulerian motion
fields from the MR phase contrast velocity images. For the
phase velocity data, vector form regularization on the vector
field is often needed to alleviate the impact of the noises.

The temporally predicted possible node position x̂ is
used to constructed a rotated 2D Gaussian distribution
N(x̂, σi, σj , θ(x̂)) as shown in Figure 4, where σi and σj

are the variances in the rotated major directions, and θ is
the angle of the line formed by x(k − 1) and x̂(k) with re-
spect to the x−axis, with k and k−1 indicating image frame
numbers. A temporal filtering/prediction force is then con-
structed as:

Ftemporal(x) = 1 − N(x̂, σi, σj , θ(x̂)) (18)

3 Experiments

A set of canine MR phase contrast image sequence has been
used in our experiment. During the animal experiment,
a proximal segment of the left anterior descending (LAD)
coronary artery of an adult mongrel dog is dissected free to
enable the production of a controlled, graded coronary steno-
sis. Sixteen sets of imaging frames of a mid-ventricle short
axis slice are collected over the cardiac cycle, and examples
of the matching magnitude, x− and y− velocity images and
the associated vector field are shown in Figures 2 and 3 re-
spectively. The histological staining of the post mortem my-
ocardial tissues is shown in Figure 3, with the infarct region
highlighted. It provides the clinical gold standard for the as-
sessment of the image analysis results.

Visually robust and sensible volumetric segmentation re-
sults from the phase contrast data are shown in Figure 5 for

Figure 7: Estimated radial strain maps with respect to end-
diastole: frames #2, #4, #6, #8, #10, #12, #14, and #16.

selected frames. Compared to our other results which are
acquired using boundary analysis alone [30], this active re-
gion model based approach has produced similar endocar-
dial and much better epicardial boundary delineation. The
detected boundary contours have consistent spatial and tem-
poral characteristics, which is much desired for image se-
quence segmentation and for motion analysis.

Further, the recovered motion measures from the im-
age sequence are presented for frame-to-frame displacement
vector fields in Figure 6, and for cardiac-specific radial strain
map (Figure 7, indicator for myocardial contraction), cir-
cumferential strain map (Figure 8, indicator for myocardial
twisting), and shear strain map (Figure 9), all with respec-
tive to the end-diastolic image frame. From the displace-
ment vectors, it can be observed that during the contraction
phase of the cardiac cycle (i.e. frames #1 to #8), there is little
contracting motion at the infarct zone (lower right part) until
frame #6. At the beginning stage of the cardiac expansion
phase (frames #9 to #10), however, the infarcted tissues con-
tinue their contracting motion while the normal tissues start
to expand. The expansion at the infarct zone does not occur
until frame #14. From the strain maps, changes of deforma-
tion parameters (signs and magnitude) can be detected. It is
quite obvious that the infarct region has vastly different char-
acteristics from the normal zones: little deformation in the
radial and circumferential directions, and opposite changes
in the shear strain maps. These signs of dyskinesias (im-
pairment of voluntary movements resulting in fragmented or
jerky motions) and motion reductions at the lower-right part
of the LV become clear indications of the myocardial injury,
and they agree with the histo-chemical result very well.



Figure 8: Estimated circumferential strain maps with respect
to end-diastole: frames #2, #4, #6, #8, #10, #12, #14, and
#16.

4 Conclusion

In this paper, we have presented an integrated framework
for segmenting myocardial boundaries and tracking motion
of the whole heart simultaneously from cardiac image se-
quences. Our approach adopts continuum mechanics models
with constrained node-dependent external forces integrated
from the internal physical model, the image data, the statisti-
cal priors, and the temporal motion model. The model mesh
could be deformed throughout the cardiac cycle, resulting in
accurate and robust segmentation and motion results at the
same time. Analysis and experiment results with MR phase
contrast indicate great promise for the method. Our future
work will concentrated on the application of this model to
simultaneous cardiac image segmentation, kinematics recov-
ery, and material parameters estimation. Three-dimensional
implementation is also under investigation.

This work is supported by the Hong Kong Research Grant
Council under CERG-HKUST6031/01E.
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