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Abstract

In this paper, we propose a level set approach to decompose
the image plane into segments with consistent apparent mo-
tion and recover parametric models that best describe such
a motion. The number of motion planes and initial motion
parameters are obtained by robust block-wise optical flow
estimation, followed by non-parametric clustering in the
motion parameter space. Implicit representations are used
to further improve the estimation and to segment the image
plane according to consistent motion. Our approach inte-
grates a smoothness constraint, a spatial-temporal motion
constraint and a color-driven segmentation module within
the multiphase level set framework. Therefore, our method
is able to recover the different topology of the motion lay-
ers and provide smooth motion segmentation that is consis-
tent with the geometry of the scene. Experimental results
on both natural and synthetic image sequences demonstrate
the potential of the proposed technique.

1. Introduction

The segmentation of an image sequence into regions with
homogeneous motion is a challenging task in video pro-
cessing [2, 4, 22]. The motion segmentation results can be
used for various purposes such as video-based surveillance
and action recognition. In addition, it can be considered
for video compression [2] since the motion model and the
corresponding supporting layers provide a compact repre-
sentation of the scene.

Motion/displacement is a well-defined measurement in
the real world. On the other hand, one can claim that re-
covering the corresponding quantity in the image plane is
a difficult task. Optical flow calculation [9] is equivalent
with the estimation of a motion displacement vector for
each pixel of the image plane that satisfies the visual con-
stancy constraint. Such a task refers to an ill-posed problem
where the number of unknown variables exceeds the num-
ber of constraints. The use of smoothness constraints [20]

and other sophisticated techniques were considered to ad-
dress such an issue.

Parametric motion models are an alternative to dense op-
tical flow estimation [14]. The basic assumption of such a
technique is that for an image block, the 2D motion in the
image plane can be modeled using a parametric transforma-
tion. Such assumption is valid when the block refers to a
projection of 3D patch with a constant depth from the cam-
era position.

The objective of the this work is to recover different pla-
nar surfaces, or motion layers, and the motion parameters
describing their apparent displacements. In the literature,
a K-mean clustering algorithm [22] on the motion esti-
mates, or a minimum description length (MDL) [2] were
considered to determine the number of motion planes. In
the later case, the extraction is done according to a maxi-
mum likelihood criterion, followed by optimization by the
Expectation-Maximization algorithm [8, 2].

In this paper we consider a level set formulation [15] for
motion estimation grouping into multiple layers of scenes
observed by moving camera. To this end, first a block-based
robust parametric motion estimation is considered. Such es-
timates define a multi-cluster probability density function in
the space of motion parameters. The number of motion lay-
ers is obtained using a non-parametric clustering technique
[5]. Then, a variational level set formulation [16] is con-
sidered [21] to recover the motion layers and the optimal
estimates of their parameters. The objective function con-
sists of a smoothness term, an optical flow component and a
visual grouping term [17]. The use of calculus of variations
with a gradient descent method is used to recover the lowest
potential of the cost function.

The remainder of this paper is organized as follows. In
section 2 we present details on the estimation of the number
of layers. Decomposition of the image into motion layers
and estimation of the corresponding motion parameters are
presented in section 3. Discussion and comparison with ex-
isting techniques are presented in section 4.



2. Initial Conditions
Rigid, similarity, affine, projective and quadratic motion
models were considered for parametric motion estimation.
Among these methods, affine motion models [14] are quite
popular in motion analysis since they refer to a compromise
between low complexity and fair performance. Such mod-
els refer to six degrees of freedom:

A(x, y) =

[
Ax(x, y)
Ay(x, y)

]

=

[
a11 a12

a21 a22

] [
x
y

]

+

[
a13

a23

]

.

(1)
Within our approach, we assume that the motion of each
layer can be described using such a model. Under this an
assumption, motion reconstruction is equivalent to recover-
ing the number of layers, the corresponding motion param-
eters, and the spatial support for each layer. The number of
motion planes is a critical parameter since it constrains the
solution space significantly.

One can consider optimizing an objective function that
consists of all terms. Such a selection might refer to a con-
siderable complexity and uncertain stability with respect to
the initial conditions. In order to cope with such constraint,
and to reduce the complexity of the problem, we determined
the number of motion layers and the motion planes along
with the optimal motion parameters in two steps.

First, robust estimation of affine motion models over im-
age blocks is performed. Towards determining the number
of motion planes, non-parametric clustering in the space of
the affine model parameters is considered. The centers of
the motion clusters are also used to provide an initial esti-
mation on the motion parameters of each layer.

2.1. Block-wise Motion Parameter Estimation
Visual consistency [9] is a constraint for the recovery of
the apparent motion, or optical flow. Let us consider an
image sequence I(s; t) [s = (x, y)] and in particular two
consecutive frames, I(s; τ) and I(s; τ + 1). Assume pixel
s at time τ move to position s + (u, v) at time τ + 1, visual
consistency is to assume its color does not change during
this movement1, i.e.,

I(s; τ) = I(s + (u, v); τ + 1). (2)

One can use a first-order Taylor expansion to obtain the
following term known as the optical flow constraint (OFC)

It(s) + uIx(s) + vIy(s) = 0, (3)

where time has been omitted, and It, Ix, Iy are the time,
x−, y− derivatives, respectively. When a parametric mo-
tion approach is considered, the above OFC can be re-
written as

It(s) + Ax(s)Ix(s) + Ay(s)Iy(s) = 0. (4)
1Under certain assumption for the reflections properties of the scene.

Such condition is not sufficient to recover the motion pa-
rameters. Assuming same parametric motion models are
valid over a large image window, one can turn this prob-
lem into a over constraint one. Such models are valid for
image blocks that correspond to 3D surfaces at a constant
depth from the camera position. Particular handling is re-
quired for discontinuous image locations due to violation of
the considered hypothesis.

The assumption of the parametric motion model A
within a patch W can lead to the following condition:

(u, v) = A(s); s ∈ W . (5)

Obviously, recovering the motion model A is not trivial due
to the absence of a unique solution. Therefore, we con-
sider a variational framework where the above conditions
are translated to an objective function to be minimized. The
least square estimator (LSE) is a well known, simple but
efficient technique to define such a function:

E(A) =

∫∫

W

(It(s)+Ax(s)Ix(s)+Ay(s)Iy(s))2ds (6)

The best motion model A is the one minimizing E(A),
which can be obtained using a gradient descent method.
However, LSE are sensitive to the presence of outliers or
discontinuities. Robust estimators [10] are an alternative
technique to recover A while accounting for the presence of
outliers. To this end, the error-two norm in LSE is replaced
with the error metric ρ that has bounded behavior, contin-
uous first order derivatives and certain other characteristics
[13]:

E(A) =

∫∫

W

ρ (It + AxIx + AyIy) dW , (7)

where s has been omitted to simplify the notation.
Particular attention has to be paid when selecting the

form of the ρ function. Inspired by [2], we consider the
following error function:

ρ(r) =
1

√

|σ|

(
r2

r2 + σ2
− 1

)

, (8)

where
r = It + AxIx + AyIy , (9)

is the residual error, and a robust estimate (see [2] for de-
tails) of σ is given by

σ = 1.4826 median {|rj |} . (10)

The error function is a modified Geman-McClure function
as in [2]. Such modification does not affect the affine mo-
tion parameter estimation. However, small σ will result in
small values when the residue is close to zero as shown in
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Figure 1: ρ function with different σ. Left: modified
Geman-McClure function. Right: Geman-McClure func-
tion

[Figure (1)], which is necessary in the region competition
part.

One can consider a variational formulation of such cost
function, seeking to estimate the improvement ∆A such
that

E(∆A) =
∫∫

W

ρ (It(A + ∆A) + [A + ∆A]xIx + [A + ∆A]yIy) dW

(11)

reaches its lowest potential. The calculus of variations with
respect to ∆A can lead to a flow according to the gradient
descent method.

We adopt a sliding window technique to obtain a set
of motion parameter estimations over the image patches 2.
Such estimates define a six-dimensional space consisting of
several clusters. Under the assumption of consistent motion
parameters within each motion layers, each cluster corre-
sponds to one layer. A small number of outliers will be
present due to discontinuities or image patches consisting
multiple motion hypotheses.

2.2. Motion Models and Clustering
Clustering in high-dimensional spaces is a well studied
problem in statistics. Parametric and non-parametric tech-
niques can be used to solve the problem efficiently. Quite
often in parametric techniques, the assumptions made on
the form of distribution of the different clusters are unrealis-
tic. This can be dealt with using non-parametric techniques
such as k-means algorithm or the mean shift [5]. The lat-
ter is better suited, within our application, to automatically
determine the number of clusters.

One can consider the estimates of affine motion parame-
ters to be random samples drawn independently from a dis-
tribution with density f(A). Such distribution is defined

2The parametric motion estimation of the optical flow is not important
for our algorithm to this point. It is mainly used to recover the number of
motion layers. Motion estimates are refined within the motion reconstruc-
tion process.

(a) (b) (c)

Figure 2: (a,b) Input Sequence, (c) Clustering on the space
of motion parameters leads to four segments (the navy color
region refers to discontinuities).

in the 6-D affine parameter space, which could be approxi-
mated using a kernel-based multi-variant density estimation
according to a kernel K and a bandwidth h:

f̂(A) =
1

n hd

n∑

i=1

K(
A−Aj

h
), (12)

where d is the dimension of the affine transformation vector
and n is the number of image blocks on which motion mod-
els were estimated. The use of the Epanechnikov kernel [5]
KE is an optimal selection according to the mean integrated
square error criterion:

KE(A) =

{
1
2c−1

d (d + 2)(1 − ||A||2) ||A|| ≤ 1
0 otherwise

,

(13)
where cd refers to the volume of the unit d-dimensional
sphere. The estimation of the density gradient is equiva-
lent to estimating the gradient of the kernel, which leads to
the following condition:

∇f̂(A) =
nA

n(hdcd)

d + 2

h2




1

nA

∑

Aj∈Sh(A)

[Aj −A]





(14)
defined in a hyper-sphere Sh(A) centering at A with a vol-
ume of hdcd, where nA is the number of samples within the
hypersphere. Then, the mean shift motion vector is given
by:

M(A) =

∑

Aj∈Sh(A) Aj

nA
−A. (15)

Once the mean shift filtering procedure is applied, the
convergence points are grouped. To cope with outliers in the
motion estimation process, one can eliminate spatial regions
containing a small number of data. The number of different
motion regions and the corresponding affine parameters can
then be obtained. Examples of such pre-processing clus-
tering steps are shown in [Figure (2)]. The next step is to
decompose the image plane into segments with consistent
motion.

3. Reconstruction of Motion Layers
Let us consider a decomposition of the image domain into
N motion regions. Such regions are associated with differ-



ent parametric models Ai describing the observed apparent
motion and can have multiple components. In this section,
we formulate the decomposition task within level set repre-
sentations [16].

3.1. Level Set Formulation

Consider a level set function φ for an evolving contour ∂R
with distance transform as embedding function.

φ(x, y) =







D(s, ∂R) , s ∈ R
0 , s ∈ ∂R

−D(s, ∂R) , s ∈ Ω −R
, (16)

where R is the region enclosed by the contour and Ω − R
the background. Using the Dirac δα(; ) and the Heaviside
distribution Hα(φ) with α span as suggested in [23]:

δα(φ) =

{
0 , |φ| > α
1
2α

(

1 + cos
(

πφ
α

))

, |φ| < α
, (17)

Hα(φ) =







1 , φ > α
0 , φ < −α
1
2

(

1 + φ
α

+ 1
π

sin
(

πφ
α

))

, |φ| < α
,

(18)
a dual image partition can be determined according to
Ha(φ) and 1−Ha(φ). Image partitions with more than two
hypotheses can be handled through the use of more level set
representations φi, one per hypothesis i [23]; however, it is
not efficient from the computational point of view.

In [21] an efficient tool − driven from the formulation
suggested in [23] − was proposed to overcome the above
limitations. Without loss of generality and for clarity pur-
poses, let us consider an image partition that requires four
distinct classes (R1,R2,R3,R4). Such partition can be
obtained using two level set functions, φa and φb, which is
equivalent to propagating two contours, as follows:







R1 : φa > 0 & φb > 0; Hα(φa)Hα(φb)
R2 : φa > 0 & φb < 0; Hα(φa)(1 −Hα(φb))
R3 : φa < 0 & φb > 0; (1 −Hα(φa))Hα(φb)
R4 : φa < 0 & φb < 0; (1 −Hα(φa))(1 −Hα(φb))

where R1 ∪ R2 ∪ R3 ∪ R4 = Ω.
Such formulation can be extended to represent an

image partition with N distinct regions Ri, i =
1, · · · , N , using dlog2 Ne level set representations φk, k =
1, · · · , dlog2 Ne. Each region can be described according
to

Ri :

dlog Ne
∏

k=1

f(Hα(φk), i) (19)

where

f(Hα(φk), i) =






Hα(φk),
⌊
(i − 1)/2dlog2

Ne−k
⌋

mod 2 = 0

1 −Hα(φk),
⌊
(i − 1)/2dlog2

Ne−k
⌋

mod 2 = 1

.

(20)

More details on such formulation can be found in [21].

3.2. Smoothness
Natural scenes observed from a camera exhibit smooth
boundaries. Such assumption is quite common and can be
considered in various forms within the objective function.
The most common term, related to the smoothness condi-
tion, refers to a minimal curve length/surface area for the
propagated contours. Such a constraint can be expressed in
the form as:

Esm(φ1, ..., φdlog
2

Ne) =

dlog
2

Ne
∑

k=1

∫∫

Ω

δα(φk)|∇φk | dΩ

(21)
that aims at minimizing the arc-length of each curve. This
term is not equivalent to the one recovered when each hy-
pothesis is represented using a level set function. However,
it is a reasonable approximation and guarantees a smooth
solution. Calculus of variations can provide a geometric
flow to evolve the various level set representations towards
the lowest potential of the smoothness term:

dφk

dt
= −δα(φk)div

(
∇φk

|∇φk |

)

(22)

Next, we will introduce image-driven forces that account
for smooth visual properties of the scene and explore in-
formation in the temporal domain, using the optical flow
constraint.

3.3. Visual Grouping
Visual grouping according to color similarity is equivalent
to image segmentation. Within our motion reconstruction
example we assume that each motion layer has some con-
sistent intensity/visual properties. Then, introducing a mod-
ule that aims at segmenting according to such properties can
improve the spatial segmentation of these layers.

Regional, and global intensity terms are quite popular in
image segmentation [24]. The central idea is to recover a
metric (region descriptor) that quantifies the fit of a given
intensity with the various hypotheses. Parametric approxi-
mations (mixture of Gaussian) of the empirical distribution
(intensity properties) are not valid for the considered ap-
plication. The image/motion segments correspond to pro-
jections of structures of the real scene with constant depth,



which may contain multiple colors and/or texture struc-
tures. Therefore, assuming continuous distributions over
color space to describe the visual properties of the motion
layers is not applicable.

Non-parametric approximation of the empirical distribu-
tion is a more realistic assumption for each motion plane.
To this end, Parzen windows is a well known technique

pi(I) =
1

n

n∑

j=1

G(I − Ij ; σI ), (23)

where i refers to the motion layer, n is the number of pixels
in the motion layer, Ij is the corresponding intensity, and
G() is a one-dimensional zero-mean differentiable Gaus-
sian kernel. These densities can now be used to impose
additional constraints on the motion segmentation.

Within a level set formulation, the geodesic active region
model [18] is a paradigm for visual grouping. The optimal
segmentation corresponds to a maximum posterior group-
ing probability. Under the assumption that all partitions are
equally probable, such partition can be recovered through
the lowest potential of:

Esg(φ1, ..., φdlog
2

Ne) =

−

N∑

i=1

∫∫

Ω

dlog
2

Ne
∏

k=1

f(Hα(φk), i)log (pi(I)) dΩ,
(24)

where I = I(; τ) and [pi, i = 1, · · · , N ] are the non-
parametric approximations of the intensity distribution of
the different motion layers. Each integral of the above ob-
jective function component measures the quality of fitting
between the actual observations and the expected properties
of each motion layer. Furthermore, we can recover the low-
est potential of objective function with respect to φk using
a gradient descent method:

dφk

dt
=

N∑

i=1

g(H(φk), i)

dlog
2

Ne
∏

j 6=k

f(H(φj), i)log (pi(I)) ,

(25)
where

g(Hα(φk), i) =
df(Hα(φk), i)

dφk

=







δα(φk),
⌊
(i − 1)/2dlog2

(N)e−k
⌋

mod 2 = 0

−δα(φk),
⌊
(i − 1)/2dlog2

(N)e−k
⌋

mod 2 = 1
.

(26)

The interpretation of such a flow is simple. It acts as an
adaptive balloon force based on a relative comparison be-
tween the probabilities of the two conflicting color distri-
bution hypotheses for the given image color. The non-
parametric densities are derived/updated from the latest mo-
tion segmentation. The intensity distribution for the image

regions that correspond to the different motion layers are
updated on-the-fly. The next constraint to be considered is
the visual consistency over time.

3.4. Motion Consistency
To this end, one can consider - given the motion models -
the optical flow constraint. The objective function for visual
consistency for region i with motion parameters Ai can be
formulated as:

E(Ai) =

∫∫

Ω

dlog
2

Ne
∏

k=1

f(Hα(φk), i)

︸ ︷︷ ︸

Ri Hypothesis

ρ(I(; τ) − I(Ai; τ + 1))
︸ ︷︷ ︸

Ri V isual Consistency

dΩ,

(27)

where f and ρ have been defined previously, and s is omit-
ted to simplify the notation. Such term is similar to the one
considered in [17] for determining the motion of moving
objects in sequences with static background.

Given an image partition, the estimation of such motion
model can be obtained efficiently using a number of con-
straints (number of pixels in the Ri region) that is far su-
perior from the number of unknown variables (number of
parameters of the motion model).

Such constraint can be naturally extended to account for
all motion layers:

Emt(A1, ...,AN ) =

N∑

i=1

∫∫

Ω

dlog
2

Ne
∏

k=1

f(Hα(φk), i)ρ(I(; τ) − I(Ai; τ + 1))dΩ,

(28)

leading to robust estimation of the motion parameters
given the image partition. The calculus of variations
and a gradient descent method with respect to [φk, k =
1, ..., dlog2 Ne] and [Ai, i = 1, ..., N ] can provide a series
of equations to update the partition as well as to recover the
optimal motion parameters. The calculus of variations with
respect φk lead to the following flows:

dφk

dt
=

N∑

i=1

g(H(φk), i)

dlog
2

Ne
∏

j 6=k

f(Hα(φj), i)ρ(I(; τ) − I(Ai; τ + 1)),

(29)

where g as defined in [Eq. (26)]. The flows that guide
the estimation of the motion parameters can be derived in
a straightforward manner.



(a) (b) (c)

Figure 3: Evolution of Motion Reconstruction for frames
10, 11 of the Garden Sequence presented in raster-scan for-
mat. (a) frame τ , (b) frame τ + 1, (c) motion segmentation.

3.5. Complete Model
Smoothness constraints, visual grouping components and
motion/optical flow terms can be integrated to couple mo-
tion reconstruction and motion estimation:

E(φ1, ..., φdlog
2

Ne,A1, ...,AN ) = Esm(φ1, ..., φdlog
2

Ne)

+ wvcEvc(φ1, ..., φdlog
2

Ne) + wmtEmt(A1, ...,AN )
.

(30)

where the calculus of variations will provide geometric
flows that consist of the different components as earlier pre-
sented. The resulting equations aim to evolve an initial
partition towards successful separation of the motion layers
while estimating the corresponding motion models.

Towards fast implementation of the proposed frame-
work, one can consider the narrow band method [6, 1]. The
central idea behind this technique is to evolve the level set
representation in the vicinity of the latest position of the
contour. Changes on the evolving contour will happen first
on the zero-level and then being propagated in the inwards
and outwards direction. Some experiment results that do
demonstrate the propagation of such implicit representa-
tions according the obtained flow are shown in [Figure (3)].

4. Discussion
In this paper we have proposed a variational formulation
for the analysis of scenes observed from a moving camera.
The objective of such framework was to separate the image
plane into various planes with consistent motion parame-
ters. To this end, we have proposed a two-stage approach.

In the first step, the number of motion layers and motion
parameters are determined. We adopt a robust technique
to estimate the motion parameters using a sliding window
technique. These motion parameters are clustered to deter-
mine the number of motion layers. Non-parametric clus-
tering − mean shift algorithm − on such high-dimensional
space provides an estimate on the number of motion layers
and the corresponding motion parameters.

Within the second step, smoothness constraints, motion
information and visual grouping modules are integrated to
derive the optimal partition (motion layers) and the corre-
sponding parametric motion models. The optical flow con-
straint in a robust estimation fashion couples the separation
of layers and the estimation of their motion parameters.
Visual grouping term is considered to improve the perfor-
mance on uniform data and discontinuities where motion
estimation is not accurate. Promising experimental results
demonstrate the potentials of the proposed technique [Fig-
ure (4,5,6)].

One can claim that the two-stage approach proposed in
this paper introduces an important bias in the estimation
process. Motion reconstruction will fail to provide opti-
mal results if the number of motion planes is not properly
defined. Therefore, a complete framework that aims to de-
termine the number of motion planes on-the-fly is the main
future direction of our research.

Future directions of our approach involve integration of
information across the temporal domain. The current ap-
proach performs the segmentation based on two consequent
image frames. Longer-term dynamics can be taken into ac-
count for better segmentation when more image frames are
considered at the same time. A more appropriate frame-
work can involve the definition of similar concept in 3D
[12], where hyper-surfaces are considered to recover and
reconstruct the motion layers. Furthermore, proper terms
along the region boundaries may better capture the details
of each layer.
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(a) (b) (c) (d)

Figure 6: Reconstruction for the garden Sequence presented in raster-scan format (Part 1). (a) frame τ , (b) frame τ + 1, (c)
motion segmentation, (d) Optical flow estimation for the Garden sequence in raster-scan format.


