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Abstract

An new paradignfor computingintrinsic distanceunctions
andgeodesicon sub-manifoldof IR? givenby pointclouds
is introducedin this paper The basicideais that,asshovn
here, intrinsic distancefunctionsand geodesicon general
co-dimensionsub-manifoldsof R¢ can be accuratelyap-
proximatedby extrinsic Euclideanonescomputedinside a
thin offsetbandsurroundinghe manifold. This permitsthe
use of computationallyoptimal algorithmsfor computing
distancefunctionsin Cartesiangrids. We usethesealgo-
rithms, modified to deal with spaceswith boundariesand
obtain also for the caseof intrinsic distancefunctions on
sub-manifoldsof IR?, a computationallyoptimal approach.
For point clouds,the offsetbandis constructedvithout the
needto explicitly find theunderlyingmanifold,therebycom-
puting intrinsic distancefunctions and geodesicon point
cloudswhile skippingthe manifoldreconstructiorstep.The
caseof point cloudsrepresentinghoisy samplesof a sub-
manifold of Euclideanspaceis studiedaswell. All theun-
derlying theoreticalresultsare presentedalong with exper
imental examplesfor diverseapplicationsand comparisons
to graph-basedistancealgorithms.

1 Introduction

Oneof themostpopularsource®f pointcloudsare3D shape
acquisitiondevices,suchaslaserrangescannersyith appli-

cationsin geoscienceart(e.g.,archial), medicine(e.g.,pro-

hestetics)manufcturing(from carsto clothes),and secu-
rity (e.g.,recognition) amongotherdisciplines.Thesescan-
nersprovide in generalraw datain the form of (noisy) un-

organizedpoint cloudsrepresentingurfacesamples.With

theincreasingpopularityandvery broadapplicationof this

sourceof data, it is naturalandimportantto work directly

with thisrepresentationyithouthaving to goto theinterme-
diatestepof fitting a surfaceto it (stepthatcanaddcompu-
tationalcompleity andintroduceerrors). Seefor example
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[3,7,9, 13 20, 25, 26] for a few of the recentworks with
this type of data.Notethatpoint cloudscanalsobe usedas
primitivesfor visualization,e.g.,[4, 13, 27], aswell asfor
editing[36].

Anotherimportantfield wherepoint cloudsare found is
in therepresentatioof high-dimensionamanifoldsby sam-
ples (seefor example [15, 19, 32]). This type of high-
dimensionaland generalco-dimensiondataappearsn al-
mostall disciplines,from computationabiology to image
analysisto financialdata.Dueto the extremelyhigh dimen-
sionsin thiscaseijt is impossibleto performmanifoldrecon-
struction,andthework needgo be performedirectly onthe
raw data,meaningthe point cloud.

This paperaddressesne of the mostfundamentabper
ationsin the study and processingf sub-manifoldsof Eu-
clideanspace: the computationof intrinsic distancefunc-
tionsandgeodesicsWe show thatthis canbedoneby work-
ing directly with the point cloud,without the needfor recon-
structingthe underlyingmanifold. The resultsarevalid for
generaldimensionsand co-dimensionsand for manifolds
with or withoutboundary Theseresultsincludethe analysis
of noisy point cloudsobtainedfrom samplingthe manifold.

A numberof key building blocks are part of the frame-
work hereintroduced. The first one is basedon the fact
that distancefunctionsintrinsic to a given sub-manifoldof
IR? canbe accuratelyapproximatedy Euclideandistance
functionscomputedn athin offsetbandthat surroundshis
manifold. This conceptwasfirst introducedin [22], where
corvergenceresultswere given for co-dimensionone sub-
manifoldsof IR? (hypersurfaces)without boundary This
resultis reviewedin §2. In this paper we first extendthese
resultsto generalco-dimensiorandto dealwith manifolds
with or withoutboundary§3. We alsoshav thattheapprox-
imation is true not only for the intrinsic distancefunction
but alsofor the intrinsic geodesic. This is not a straight-
forwardcorollary, sincegeodesicarebasedon the gradient
of the distancefunction, which containssingularitiesat the
cutlocus[35, 28]. The approximationof intrinsic distance
functions(and geodesicspy extrinsic Euclideanonesper
mits to computethem using computationallyoptimal algo-
rithms in Cartesiangrids (aslong asthe discretizationop-
erationis permitted,memorywise, see§7 and§8). These



algorithmsare basedon the fact that the distancefunction
satisfiesa Hamilton-Jacobpartial differentialequation(see
§2), for which consisteneandfastalgorithmshave beende-
velopedin Cartesiargrids[14, 30, 31, 34]* (see[16] for ex-

tensionsto triangularmeshesand [33] for other Hamilton-
Jacobiequations).Thatis, dueto theseresults,we canuse
computationallyoptimalalgorithmsin Cartesiargrids (with

boundaries)lso to computedistancefunctions, and from

themgeodesicsintrinsic to a given manifold,andin a com-
putationallyoptimalfashion.

Oncethesebasicresultsareavailable we canthenproceed
andwork with point clouds. The basicideahereis to con-
structthe offsetbanddirectly from the point cloud andwith-
outtheintermediatestepof manifoldreconstructionThisis
addresseth §4 andg5 for noise-fregpointswhich areman-
ifold samples;andin §6 for points consideredo be noisy
samplesof the manifold. For this (random)caseswe ex-
plicitly computethe probability that the constructedffset
bandcontainsthe underlyingmanifold. In the experimental
section,§7, we presenta numberof importantapplications.
Theseapplicationsaregivento shav the importanceof this
novel computationaframewnork, and are by no meansex-
haustve. Concludingremarksare providedin §8 wherewe
alsoreportthedirectionsour researclis taking.

We shouldnotethatto thebestof our knowledge theonly
additionalwork explicitly addressinghecomputatiorof dis-
tancefunctionsandgeodesic$or point cloudsis the onere-
portedin [2, 32].2 Thecomparisorof performancesn pres-
enceof noisebetweenour framewvork andthis oneis given
in [23], wherewe prove the advantage®f our theory®

2 Preliminary Results

We first introduce some basic notation that will be used
throughoutthe article. For a compactand connectedset
Q € IR? dq(-,-) denotesthe intrinsic distancebetween
ary two points of 2, measuredy pathsconstrainedo be
in Q. We will alsoassumehe corventionthatif A ¢ R?
is compactandz,y arenotbothin A thenda(z,y) = D,
for someconstantD > max, ycada(z,y). Givena k-
dimensionalsub-manifoldM of R?, Q% denotesthe set
{z € R?: d(M,z) < h} (herethedistanced(-,-) is the
Euclideanone). This is basicallyan h-offsetof M. To state
thatthe sequencef functions{ f,.(-) } ,cz+ uniformly con-

1Tsitsiklis first describedan optimal-controltype of approactto solve
the Hamilton-Jacobiequation,while independentlySethianand Helmsen
bothdevelopedtechniquedasedn upwindnumericalschemes.

2|n additionto studyingthe computatiorof distancefunctionson point
clouds,[2, 32] addresgheimportantcombinationof this with multidimen-
sional scalingfor manifold analysis. Prior work on using geodesicsaand
multidimensionakcalingcanbefoundin [29].

3While concludinghis paperwe learnedf arecentextensionto Isomap
reportedin [12]. This paperis alsomeshbasedandfollows the geodesics
approachin Isomapwith a novel neighborhood/conneetty approachand
anumberof interestingheoreticaresultsandnovel dimensionalityestima-
tion contritutions. Furtheranalysioof Isomap asadimensionalityreduction
techniguecanbefoundin [8].

vergesto f(-) asn 1 oo, we frequentlywrite f,, ;; f. For
agivenevent€, P (&) standdor its probability of occurring.
For a randomvariable(R.V. from now on) X, its expected
valueis denotedby E (X). We denoteby X ~ U[A] thatthe
R.V. X is uniformlydistributedin the set A. For a function
f:Q — IR, andasubsetd of €, f |4 : A — IR denoteghe
restrictionof f to A. Givenapointz onthecompletemani-
fold 8, Bs(z,r) will denotehe(intrinsic)openball of radius
r > 0 centerecht z, and B(y, r) will denotethe Euclidean
ball centeredaty of radiusr.

2.1 Prelude

In [22], we presentedh new approachfor the computation
of weightedintrinsic distancefunctionson hypersurfaces.
The key startingideais that distancefunctions satisfy the
(intrinsic) Eikonal equation,a particular caseof the gen-
eral classof Hamilton-Jacobpartial differentialequations.
Givenp € § (an hypersurfacein IR?), we wantto com-
puteds(p,-) : § = IR*T U {0}, theintrinsic distancefunc-

tion from every pointon 8 to p. It is well known that the
distancefunction ds(p, -) satisfies,in the viscosity sense
IVsds(p, )] =1Vz €8

dS (P: p) =0 ’

where Vs is the intrinsic differentiation (gradient). In-

steadof solving this intrinsic Eikonal equationon §, we

solve the correspondingxtrinsic onein the offsetband?,

{ IVade (p,2)]| = 1 Yz € Qf

(see[21]), the equation(x) {

don (p,p) =0 , Where dqn (p, ) is the

Euclideandistanceand thereforenow the differentiationis
theusualone.

Theorem 1 ([22]) Let p and ¢ be any two points on the
smoothhypersurfaceS (orientable withoutboundary) then

‘dg(p, q) — dgx(p,q)| < CsVh, for small enoughh,*
wheee Cs is a constandependingn thegeometryof 8.

This simplificationof theintrinsic probleminto anextrin-
sic onepermitsthe useof the computationallyoptimalalgo-
rithmsmentionedn theintroduction.This makescomputing
intrinsic distancesandfrom themgeodesicsassimpleand
computationallyefficient as computingthem in Euclidean
spacesMoreover, asdetailedin [22], the approximatiornof
theintrinsic distanceds by the extrinsic Euclideanoned,.
is never lessaccuratghanthe numericalerrorof thesealgo-
rithms. This wasthe initial motivation for developingthis
approach thereare currently no “f ast marching” methods
that canbe usedto dealwith the discretizationof equation

It is the purposeof the presentwork to extendthis The-
oremto dealwith: (1) sub-manifoldsof IR? of ary codi-
mensionand possiblywith boundary (2) sub-manifoldsof

4“Small enoughh” meanshath < 1/ max; ;(8), wherek;(8) is the
i-th principal cunvatureof 8. This guaranteefaving smoothnesin 6Q’§,
see[22].



IR? representedspointclouds,(3) randomsamplingof sub-
manifoldsof IR¢ in presencef noise,and(4) corvergenceof
geodesicurvesin additionto distanceunctions.We should
note that Theoreml holdseven whenthe metricis not the
oneinheritedfrom IR?, obtainingweighteddistancefunc-
tions, see[22]. Althoughwe will not presenthesenew re-
sultsin suchgeneralitythisis asimpleextensionthatwill be
reportedelsavhere.

3 Sub-Manifolds of IR?

We first extend Theoreml to moregeneralmanifolds(with
boundaryand higher co-dimension)and we deal not only
with distancefunctionsbut alsowith geodesics.The first
extensionis importantfor the learningof high-dimensional
manifoldsfrom samplesandfor scannedpenvolumes.The
extensionto geodesicés importantfor pathplanningon sur
facesandfor finding specialcurvessuchascrestsandval-
leys, see[22]. Theorem2 belon presentauniform corver
genceresultsfor both distancesandgeodesicsn Q%, under
no conditionson 08 exceptsomesmoothness.Theorem3
andCorollary 2 provide very usefulrate of corvergencees-
timates(for the uniform corvergenceof ng towardsdsg),
undercorvexity assumption®n d8.

Theorem 2 ([23]) Let 8 be a compactC? sub-manifoldof
IR? with (possiblyempty)smoothboundaryd$. Letz, y be
anytwopointsin 8. Thenwehave: (1) Uniformcorvemgence

hl0
of distances:dgs |5, s(-,-) = ds(-,-); (2) Convergenceof
geodesics:Let z and y be joined by a unique minimizing
geodesicys : [0,1] — 8§ over§, andlety, : [0,1] — Q& be
hl0
a Qf-minimizinggeodesictheny, = ~s.

We now presenta uniform rate of corvergenceresultfor
thedistancen thebandin thecase?$ = (), andfrom thiswe
deduceCorollary2 belaw, which dealswith thecased§ # 0.
This resultgeneralizeshe one presentedn [22] becauset
allows for any codimension.

Theorem 3 ([23]) Underthe samehypothesesf the Theo-
remabove, with 88 = (§, we havethat for smallenoughh >
0, max(yy)esxs ‘dﬂg lsxs(@,y) — ds(%y)‘ < Csvh,
whee the constantCs does not dependon h. Also,
we have the “r elative” rate of convergencebound, 1 <
dS (wvy)

sup :;5 s W < 1+CS\/E

We immediatelyobtainthe following Corollary which will
beusefulahead.

Corallary 1 Letp € 8, andr < H, thenB(p,r) N8 C
Bs(p,r(1+ Csy/r)).

Corallary 2 (88 # @) Under certain smoothnesscondi-
tions, and assumings to be strongly corvex (see[10]), we
havefor smallenoughh > 0 the sameconclusionsf Theo-
rem3 (rate of corvergence).

In this sectionwe have extendedthe resultsin [22] to
geodesicsand distancefunctions in generalcodimension
manifoldswith or without (smooth)boundarytherebycov-
eringall possiblg(constanto-dimension)nanifoldsin com-
mon shape,graphics, visualization, and learning applica-
tions. We are now readyto extend this to manifoldsrep-
resentecispointclouds.

4 Digtance Functions and Geodesics
on Point Clouds

We arenow interestedn makingdistanceandgeodesicom-
putationson manifoldsrepresentedspointclouds,i.e. sam-
pled manifolds Let P, £ {pi,...,p,} beasetof n dif-
ferentpointssampledrom the compactsub-manifoldS and
defineQt £ UL, B(pi,h).>

Let h and P,, be suchthat8 C Q’;,n. We then have
(8 ©)0% C 0L Wewantto considerdqs (p, g) for ary
pair of pointsp,q € 8 and prove somekind of proxim-
ity to therealdistanceds(p, ¢). The argumentcarriesover
eaSin since ng (pa q) < dQ’g‘,n (pa q) < dS(pa q)' hence

0 S dS(pa q) - dQ';,n (pa Q) S dS(pa q) - ng (pa q)' and
the rightmostquantity canbe boundedby Cs h!/? (see§3)
in the casethat 9S$ is either strongly corvex of void. The
key conditionis 8 C Q», somethinghatcanobviously be
copedwith usingthe compactnessf 8.6 We canthenstate
thefollowing

Theorem 4 ([23]) (Uniform Convergence for Point
Clouds) Let § be a compact smooth submanifold of
IR? possibly with boundary 8. Then 1.  General
Case. Givene > 0, ther exists h. > 0, sud that
V0 < h < h. onecan find finite n(h) and a set of
points Pppy(h) = {p1(h),...,Pnn)(h)} sampledfrom

8 sud that max; 4es (ds(P; Q) —day P Q))
2. 08 is ether void or convex: For every suficiently
smallh > 0 onecan find finite n(h) and a setof points
Prany(h) = {p1(h),...,Pan)(h)} sampledfrom § such
thatmax;,ges (ds (P, @) — dan, oy P CI)) < CsVh.

?’n

<

g,

In practise,one mustworry aboutboth the number(n)
of pointsandthe radii (k) of the balls. Obviously, thereis
a tradeof betweenboth quantities. If we wantto useonly
few points,in orderto cover 8§ with the ballswe have to in-
creasethe value of the radius. Clearly, thereexists a value
H suchthatfor valuesof h smallerthan H we don't change
thetopology see[1, 7, 12]. Thisimpliesthatthe numberof
pointsmustbe largerthata certainlower bound. This result

5Theballsnow usedaredefinedwith respecto the metric of IR?, they
arenotintrinsic.
6By compactnessgiven h > 0 we canfind finite N(k) and points

N(h) But sincefor

P1,P2,--->,PN(r) € 8 suchthat8 = U,_," Bs(p;, h).
p € 8, Bs(p, h) C B(p,h) N8, andwe alsogets C vaz(lh)B(pi,h).



canbegeneralizedo ellipsoidswhichcanbelocally adapted
to thegeometryof thepointcloud[6], or from minimal span-
ning trees.

5 Random Manifold Sampling

In practise we really do not have too muchcontrol over the
way in which points are sampledby the acquisitiondevice
(e.g.scanner)pr givenby thelearnedsampleddata. There-
fore it is morerealisticto make a probabilisticmodelof the
situationandthentry to convenientlyestimatethe probabil-
ity of achieving a prescribedevel of accurag asa function
of thenumberof pointsandtheradii of theballs.

We now presenta simple modelfor the currentsetting,
while resultsfor other modelscan be developedfrom the
derivationsbelon. Herewe assumehatthe pointsin P,, are
independenthyandidentically sampledon the sub-manifold
$ in a uniform fashion! we will write this asp; ~ U[S§].
For simplicity of exposition,we will restrictoursehesto the
casewhen§ hasno boundary? Also, we only dealwith uni-
formi.i.d. sampling,othermodelsfor the samplingwill be
reportedelsavhere.

We have to definethe way in which we aregoingto mea-
sureaccurag. A possibilityfor sucha measuras (for each

e > 0) A 2 P (maxpes (ds(p,0) — doy, (9,0)) >

Thereis a potential problemwith this way of testing ac-
curag/, sincewe are assumingthat when we use the ap-
proximate dlstancedm , we will be evaluating it on
8. This might seema 'bit awkward since we don't ex-
actly know all the surface but just some points on it.
Moreover, a more natural and real-problem-motiated ap-
proachwould be to measurethe discrepang over P, it-
self, over partof this set,or over anothertrial setof points
9,,. However, sincefor ary setof pointsQ,, C 8 we

have that {maxp,qegm (dg(p, q) — dm}n (p, q)) > 5} C

{maxp,qes (ds(p, q) — dgy, (P, q)) > 6}, bounding A.
sufficesfor dealingwith ary of the possibilitiesmentioned
above. Notice thatwe aresomehev consideringlgs  to be

definedfor all pairsof pointsin 8 x 8, evenif it mlghthap-
penthatS N Qh" # 8. In ary casewe extendd% to all of
Q% x Q% by alargeconstansayk - diam (8), k > 1.
Let usdefinetheevents

e. 2 {maxyees (ds(p.) - day,_(,0)) >¢}, and
I 2 {8 C QL L. Now, since€. = (- NJpn) U (EcN
J5, ), usingthe union boundandthenBayesrule we have
P(€) <P(E |Tpm) + P (me). It is clearnow thatwe
mustfind a corvenientlower boundfor the secondtermin
the previous expression,the probability of covering all &

"This meansthat for ary subsetA C 8, andary p; € Pp,
P(p; € 4) = £

8Evenif we elaborateon the modificationsneededn our agumentswe
shouldsaythatthe samecorrespondingonsiderationpresentedn [2] are
still valid in our case.

with the union of balls. The first term can be easily dealt
with usingthe corvergencetheoremsresentedn previous
sectionsWe needa few lemmas.

Lemmal ([23]) Let x € § be a fixed point on § and
k = dim(8). Thenunderthe hypothesesn P,, described
above, there existsa constantwy, > 0 anda functionfs(-)
with limp, o %ﬁ} = 0 sud that for small enoughh > 0,

P({z ¢ s} < (1- M)

u(s)
Lemma 2 ([23]) Under the hypothesesof the previous
Lemma, let 6 € (0,h), then P (Bs(xz,6) € 0} ) <
(1 _ wi (h=0)*+85(h— 5))

u(8)
Now, using compactnes®f § and an estimateof its
coveringnumberwe canprove

h

2

Proposition 1 ([23]) Letthesetof hypothesesustainingall
of the previouslemmashold. Let

(0,1) 3)zp, = w whee w;, and fs are

givenasin the proof of Lemmal. ThenP (8 € Qf ) <
(A—zn)™ 9
Th :

We arenow readyfor thefollowing corvergencetheorem.

Theorem 5 ([23]) Let 8§ be a k-dimensionalsmoothcom-
pact submanifoldof R?. Let®P, = {pi,...,pn} C 8
be a i.i.d. setof pointssut that p; ~ U[8] for 1 <
i1 < n. Thenif h = h, is sud that A, | 0 and
hk > 1“7" holdsasn 1 oo, we havethat for anye > 0,

P (maxpqes (ds(p,q) — doy_(,0)) ><) "5 0

By simple considerations,one can see that the rate
of corvergence can be estimatedby a constanttimes

(52) 4+ 55,

This concludesour study of distancefunctionson point
clouds(sampledmanifolds). We now turn to the evenmore
realscenariovherethe pointsareconsideredo be contami-

natedby noise.

6 Noisy Sampling of Manifolds

We assumethat we have some uncertaintyon the actual
position of the surface, and model this as if each point
in the set of sampledpoints is modified by a (not yet
random)perturbationof magnitudesmallerthan A. More
explicitly, eachp; is givenasp; = p + ¢ x ¥ for some

€ S41, somepin § andA > ¢ > 0. Thenwe can
guarante¢hatthe pointp from which p; comescanbefound
inside B(p;, A) N 8. We areagaininterestedn comparing
dgy, - Q% — RTU{0} withds : § — IRt U{0}, butnow

90necanprove with little extra work thatunderthe sameconditionson
n andh, P (dgc(S, Qgi") > s) — 0, whereds, is theHausdorf distance
betweersets.



thesefunctionshave differentdomainsthereforeve mustbe
carefulin defininga meaningfulway of relatingthem. If we
considerFy £ {fs.t.f: Q5 — 8, f(p) € B(p,A) N8},
we can compare,for some f € SfSA, and1<i,j <n,

erp (pi,p;) with ds(f(ps), f(p;))- Note that as
the magnltude of the perturbation goes to zero,

F2 > f(p) A9 forp € Q&. The next stepis to

wite  maxigijen |[dh, (pirps) = ds(F (), F(2)))|
the biggest error we have for our set of points.
And finally, the next logical step is to look at
the worst possible choice for f: Lgs(Pn;Ah) £

SUp e maxs <o | ds(£(pi), £(py)) — dos, (ispy)|-
We start by presentingdeterministicboundsfor this ex-
pression,and only later will we be more (randomically)
greedy and in the spirit of Theorem5, prove, for ¢ >
0, a result of the form (Ls(Pn;A,h) will be a RV)

P(Ls(Pa; A, B) > ) 15 0.

6.1 Deterministic Setting

The idea is to prove that for some cornvenient func-
tion f € JF£, we can write Ls(Pn;A,h) <

maxi<ij<n |ds(F0), F(0))) = day, (0i,23)| + A, A),

where0 < A(z,y) 225 pA) Thenaturalcandidatdor f isthe
orthogonalprojectiononto 8, IIg : Qf — 8, whoseproper
tiesarediscussedn [23]. Then,we seethatwe canreduce

everything to bounding maxp ges ‘ds(p, q) — th (p, q)‘
This is simple, sinceif P, C QA thenQf  C Q’“LA
andds > don | > donta) ,andfmally from Theorem
3, llds —dgy, |lLe=(s) < Csvh + A.

let S ¢ Q4 , feFg andl < i,j < n. Then,
after using the triangle inequality a number of times we
canwrite the bound, |ds (f (pi), f(p;)) — dan (Pi,p;)| <
2supsega maxpep, ds(f(p), Ms(p)) +

_th (paq) +

maxp qeP, th (p,q) — dm (ITg(p),Us(q))|. The last
term can be boundedby 2A the one in the middle has
already been discussed,hencewe are left with the first
one. Using Corollary 1, we find that since f(p) €
B(IIs(p),2A) N 8 thenin fact f(p) € Bs(Ils(p),2A(1 +
CsVA)), and ds(f(p),Is(p) < 2A(1 + CsvV2VA).
Summing up, under the condition 8§ C Qh", we ob-
tain the desiredresult: Ls(Pn;A,h) < CsvVh+ A +

24 (2+ V2CsVA).

maxp ges ‘ds(p; q)

6.2 Random Setting

Assumethat {p1,...,pn} is a setof i.i.d. randompoints
suchthateachp; ~ U[Q£]. At this time, we wantto es-
timate the probability of having 8 C Q% It is easyto see
thatasa first “reality compliant” condltlononeshouldha/e

thatthe noiselevel is nottoo big with respecto h. We will
imposeh > A for simplicity’s sale.

Theorem 6 ([23]) Let § be a k-dimensionalsmoothcom-
pact submanifoldof R?. LetP, = {p1,-..,pn} besuh
thatp; ~ U[Q§] for1 <i < n. Thenif h = h,, A = A,
aresuchthatA, < h, andh, | 0andAk > 122 asp 4 oo,

wehavethatfor anye > 0, P (Ls(Pn; A, h) > €) "% 0.

We have now concludedthe analysisof the mostgeneral
casefor noisy samplingof manifolds. Note that although
theresultsin thisandin previoussectionsverepresentedor
Euclidearballs,they caneasilybe extendedo moregeneral
covering shapeqcheckCorollary 1 above), e.g. following
[6, 15], or using minimal spanningtrees,or from the local
directionsof the data[25]. Similarly, the resultscanbe ex-
tendedo othersamplingor noisemodels.

7 Examples

We now present examples of distance functions and
geodesic$or pointclouds,Figurel (first row), andusethese
computationgo find intrinsic Voronoi diagrams,Figure 1
(secondrow), ( seealso[17, 18]).1° We also presentex-
amplesn high dimensionsanduse following andextending
[11], ourresultsto comparenanifoldsgivenby pointclouds.
All theseexercisesveredoneto exemplify theimportanceof
computingdistancdunctionsandgeodesic®n pointclouds,
andareby no meansexhaustve.
Thetheoreticalesultgpresenteth previoussectionshowv
thattheintrinsic distanceandgeodesicsanbeapproximated
by the Euclideanonescomputedn the banddefinedby the
unionof balls centeredat the pointsof the cloud. The prob-
lemis thensimplified to first computingthis band,andthen
usewell known computationallyoptimaltechniqueo com-
pute the distancesand geodesicsnside this band, exactly
asdonein [22] for implicit surfaces. The banditself can
be computedin several ways, andfor the examplesbelow
we have usedconstantradii. Locally adaptve radii canbe
used,basedfor exampleon diametersobtainedfrom min-
imal spanningtrees. Automatic and local estimationof h
defining Q’C},n wasnot pursuedn this paperandis the sub-
jectof currentresearch.
High Dimensional Data: We now presenta simple exam-
ple for high dimensionabdata. We embeddedh circle of ra-
dius15 in IR?, anduseagrid of size34 x 4 x 4 x 4 x 34
(with uniform spacingAz = 1) suchthateachof thesample
pointsis of theform p; = 15 (cos(2%),0,0,0, sin(2%)) +
(17,2,2,2,17),for 1 < i < N. We thenusedour approach
to computethe (approximate}listancdunctiond;, in aband
in IR5, andthen,theerrore;; = |ds(pi,p;) — dn(pi, pj)|
fori,j € {1,...,N}. In our experimentswe usedh =

10All thefiguresin this paperarein color. VRML files correspondingo
theseexamplescanbefoundat mountains.ece.umn.eduguille/pc.him.



Figurel: Firstrow left: Intrinsicdistancdunctionfor apoint

cloud. A pointis selectedn the headof the David, andthe

intrinsic distances computedollowing theframework here
introduced.The point cloudis coloredaccordingto their in-

trinsic distanceto the selectedboint, going from bright red

(close)to darkblue(far). Theoffsetband,givenby theunion

of balls,is shavn next to thedistanceigure. First row right:

Sameasbefore with a geodesicurve betweertwo selected
points. Secondrow: Voronoidiagramfor point clouds.Four

points(left) andtwo points(right) areselectecn the cloud,

andthe point cloud is divided (colored)accordingto their

geodesicdistanceto thesefour points. Note that this is a

surfaceVoronoi,basedn geodesiceomputedwith our pro-

posedframework, not an Euclideanone. (Thisis a color

figure). Datasetsare courtesyof the Digital Michelanglo

Project.

2.5 > Az+/5.11 We randomly sampled500 points from

the N = 1000 pointsusedto constructthe union of balls
to build the 500 x 500 error matrix ((e;;)). We found
mazi;{e;;} = 2.0275, thatis a4.3% Lo-error. In Figure
2 we shaw the histogramof all the (500%) entriesof ((e;;)).

We shouldalsonotethatwhenfollowing the dimensionality
reductionapproachin [32], with the geodesiaistancecom-
putationhereproposedthecorrectdimensionalityof the cir-

cle wasobtained.

Object Recognition: The goal of this applicationis to use
our framework to comparemanifoldsgiven by point clouds.
The comparisoris donein anintrinsic way, thatis, isomet-
rically (bending)invariant. This applicationis motivatedby
[11], wherethey usegeodesiaistancegcomputedusinga
graphbasedpproach}o compare3 D triangulatedsurfaces.
In contrastwith [11], we comparepoint cloudsusing our
frameawork (which, is notonly basedn theoriginal raw data,
but it is also, as shovn in [23], more robustto noisethan
meshapproachessthoseof [11] andvalid in ary dimen-
sions), and use a different procedure/similaritymetric be-

UFor adiscussioron haw to male a preliminaryestimationof the value
of h see[22].

Figure?2: Histogramfor the errorin the caseof acircle em-
beddedn IR5.

| | M2 | M3 | M5 | W2 | W3 |
M2 | x | 0.0514 | 0.0570 | 0.4690 | 0.4853
M3 | =x * 0.0206 | 0.4701 | 0.4859
M5 | x * * 0.4702 | 0.4862
W2 | x * * * 0.2639
W3 * * * * *

Tablel: Crosscomparisongor the point cloudhumanmod-
elsusingtheerrormeasuren [23]. Datasetsare courtesyof
J. Leifman.

tweenthe manifolds(in particular we directly comparethe
distancamatricesobtainedrom thepointclouds,se€23] for

details).As anexample this metricis usedhereto compare,
in a bendinginvariantfashion,5 humanartificial models,3

of themarebendingsof a manand2 bendingsof awoman,
seefigure 3. The resultsof this crosscomparisorwith the
metricsuggesteth [23] arepresentedn Tablel below.

Figure 3: Left: MAN models. From top to bottom (two
views of eachmodel): MAN2 and MAN3. Right: Same
for WOMAN models

8 Concluding Remarks

In this paperwe have shovn how to computedistanceunc-

tions and geodesicsntrinsic to a genericmanifold defined
by a point cloud, without the intermediatestepof manifold
reconstructionThebasicideais to usewell developedcom-
putationalalgorithmsfor computingEuclideandistancesn

anoffsetbandsurroundinghemanifold,andusetheseto ap-
proximatethe intrinsic distance.The underlyingtheoretical
resultswerecomplementedby experimentaillustrations.



As mentionedn theintroduction,analternatve technique
to computegeodesidistancesvasintroducedn [2, 32] (see
also[12]). In contrastwith our work, the effects of noise
were not addressedn [2, 12]. Moreover, asone cansee
from considerationsn [23], our framewnork is morerobust
to noise. We shouldnote thatthe memoryrequirementof
the currentway of implementingour framework are large,
andthis needdo be addressedbr very high dimensions.n
particular we areinterestedn directwaysof computingdis-
tancesinsideregionsdefinedby union of balls, without the
needto usethe Hamilton-Jacobapproach.

We arecurrentlyworking on the useof this framework to
createmultiresolutionrepresentationsf pointclouds(in col-
laborationwith N. Dyn, seealso[3, 7,9, 26]), to furtherper
form objectrecognitionfor largerlibraries,andto compute
basicgeometriccharacteristicef the underlyingmanifold,
all this of coursewithout reconstructinghe manifold (see
[24] for recentresultson normal computationdor 2D and
3D noisy point clouds). Furtherapplicationsof our frame-
work for high dimensionaldataarealsocurrentlybeingad-
dressedbeyondthe preliminary(toy) resultsreportedin §7.
Of particularinterestin this directionis the combinationof
thiswork with theonedevelopedby Coifmanandcolleagues
andtherecentonein [12].
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