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David Tschumperlé Rachid Deriche

INRIA Sophia-Antipolis, Odyssée Lab
2004 Rte des Lucioles, BP93, 06902 Sophia-Antipolis, France
e-mail: {David.Tschumperle,Rachid.Deriche}@sophia.inria.fr

Abstract
We propose a PDE-based method to create textured rep-

resentations of dense tensor-valued fields, for visualization
purposes. Within the framework of anisotropic diffusion
PDE’s, we focus on the general trace-based expressions
(that we previously investigated in [39]) that are particularly
well adapted to control the local smoothing performed by the
regularization processes. Using this formalism, we propose
then a new PDE which uses the spectral informations of a
tensor field T : Ω → Pn to a create texture view of T, start-
ing from an image of pure noise. We show moreover how our
method can be practically applied, using a precise numerical
scheme based on local filtering considerations. The equation
is then considered to deal specifically with DT-MRI datasets
(Diffusion Tensor-MRI), offering an alternative solution to
parametric methods for the visualization of fibers bundles
in the biological tissues. Application results are finally pro-
posed with the visualization of fibers within the white matter
of the brain.

1 Introduction
Since the pioneering work of Perona-Malik [23], anisotropic
regularization PDE’s raised a strong interest in the field of
image processing. The benefit of PDE-based regularization
methods lies in the ability to smooth data in a nonlinear way,
allowing the preservation of important image features (con-
tours, corners or other discontinuities). Thus, many regu-
larization schemes have been presented so far in the liter-
ature, particularly for the problem of scalar image restora-
tion ([3, 12, 10, 12, 22, 26, 27, 44] and references therein).
Recent extensions of these schemes to vector-valued images
I : Ω → R

n have been also considered, leading to diffusion
PDE’s with additional coupling terms between image chan-
nels ([7, 16, 28, 31, 35, 37, 39, 41, 44]).

Despite this wide range of existing regularization PDE
formalisms, the methods have something in common : The
idea is to locally smooth the image data along one or two
particular directions that are different for each image point
(typically, the principal smoothing direction is orthogonal to
the image discontinuities). It results then in an anisotropic

smoothing process. The way this local diffusion behavior
is defined is not unique and different formalisms have been
already considered in the literature for that purpose.

Basically, one wants to separate the diffusion process it-
self and its underlying diffusion structure, i.e the geometry of
the local smoothing performed by the PDE, that is the def-
inition of smoothing directions and intensities on each im-
age point. Methods to do that were proposed for instance in
[42, 44], with a diffusion equation such as ∂I

∂t = div (D∇I)
(where the tensor field D : Ω → Pn represents the de-
sired local regularization behavior), and more recently in
[39, 34], where we rather proposed to use a trace-based PDE
∂I
∂t = trace (DH) to perform such local smoothing.

In this paper, we propose to extend our last work [39] for
the particular problem of tensor field visualization, and we
design a specific diffusion PDE that creates a textured image
from a general tensor field T : Ω → Pn (denominated as a
flow, n = 2 or 3), starting from a noisy image I(t=0). The
visualization of vector fields u : Ω → R

n will be also con-
sidered, as a particular case of tensor field visualization, with
T = uu

T (illustration on Fig.1).

PDE
=⇒

(a) Image I(t=0) at t = 0 (b) Image I(t) at t = α > 0

Figure 1: Creation of a textured Image from a Flow T : Ω → P2.

A similar formalism has been proposed in [5, 25] for 2D
vector field visualization, based on a divergence equation
such as ∂I

∂t = div (D∇I), where D is constructed from the
vector field.

Our method is somehow different. By reviewing the wide
range of existing PDE-based regularization formalisms, we
first show that divergence-based equations are not always
adapted to define precisely the local smoothing structure of



a regularization process. We rather focus on an alternative
formulation expressed through a trace-based PDE that has
a simple interpretation in terms of local filtering, done with
adjusting gaussian kernels (section 2). Then, we investigate
this formalism and extend it to deal with the visualization of
2D or 3D orientation or tensor fields. Differences with the
approach proposed in [5, 25] will be discussed.

The particular interest of this new formalism is the use
of a specific numerical scheme that is naturally associated
with the proposed trace-based PDE, and which can be imple-
mented with local convolution operators. In one hand, this
makes a link between a general class of PDE expressions
and existing adaptive filtering techniques such as Bilateral
Filtering [4, 33] and more recently Short Time Kernel [30].
In the other hand, this new numerical scheme improves the
obtained visualization results since it avoids the computation
of second order derivatives that are needed for classical reg-
ularization schemes.

Our PDE approach can be used for the visualization of
any tensor or vector field. Thus, we specialize it for the
particular case of DT-MRI fiber visualization (section 3).
Diffusion-Tensor MRI is a recent and non-invasive 3D med-
ical modality that measures the motion of water molecules
within biological tissue fibers. This is particularly helpful
to retrieve fiber bundles and study the connectivity of the
neurons through the white matter of the brain. We illustrate
how our proposed flow visualization algorithm can be suc-
cessfully used to create dense representations of these fibers
networks from DT-MRI dataset of the brain (section 4).

2 A Local Analysis of Regularization
PDE’s

2.1 Existing regularization formalisms

In this section, we do a brief summary of our recent state-
ments proposed in [39, 34], about classical regularization
formalisms based on PDE’s and variational tools, applying
for 2D scalar images I : Ω → R (extensions to 3D vol-
umes are generally straightforward). We particularly empha-
size the behaviors of the equations in terms of local smooth-
ing. Despite the huge literature on regularization PDE’s
([3, 7, 10, 12, 16, 22, 31, 28, 27, 29, 32, 35, 38, 37, 39, 41, 44]
among others), proposed regularization schemes are gener-
ally complying with one of these standpoints :

(1) Functional minimization : Regularizing an image I
may be seen as the minimization of a functional E(I) mea-
suring a global image variation :

minI:Ω→Rn E(I) =
∫

Ω φ(‖∇I‖) dΩ (1)

where φ : R → R is an increasing function and the gra-

dient norm ‖∇I‖ =
√

I2
x + I2

y is directly related to the lo-

cal variations of the image I [12]. The computation of
the Euler-Lagrange equations of (1) gives the corresponding

divergence-based PDE that minimizes E(I) :

∂I
∂t = div (D∇I) with D = φ

′

(‖∇I‖)
‖∇I‖ Id (2)

where Id denotes the identity matrix.
Despite the global formulation of these regularization

functionals (1), one can easily found the corresponding PDE
(2) that is representative of the local smoothing performed
by the minimization process, in the form of a divergence ex-
pression. These equations fit then the following framework.

(2) Divergence expressions : Some authors also proposed
to design regularization PDE’s directly from a local view-
point, as the diffusion of pixel values,viewed as chemical
concentrations [15, 44] and driven by a field of diffusion ten-
sors D : Ω → P2 (symmetric and positive matrices) :

∂I
∂t = div (D∇I) where ∀(x, y) ∈ Ω, (3)

D(x,y) = λ1(x,y)
u(x,y)u

T
(x,y) + λ2(x,y)

v(x,y)v
T
(x,y)

In [15, 44], it has been assumed that the orthogonal eigen-
vectors u,v and the positive eigenvalues λ1,λ2 of D give
the two weights and directions of the local smoothing si-
multaneously performed by the PDE (3). D is then usually
designed from the spectral elements of the gaussian blurred
structure tensor Jσ = (

∑

i ∇I∇IT )∗Gσ [14, 19, 43], in or-
der to smooth I anisotropically, while respecting its discon-
tinuities. Anyway, this interpretation of D as tensors giving
the local smoothing geometry of (3) should not be system-
atic :

Indeed, the fact that the divergence div (..) is a differen-
tial operator necessary introduces the notion of a variation
∂D of the diffusion tensor field D. Then, one cannot ne-
glect the influence of the spatial variations ∂D

∂x and ∂D

∂y of
D, for understanding the effective smoothing performed by
the diffusion PDE (3). It particularly means that if the cho-
sen tensor field D has high variations (which is usual since
D is generally constructed for preserving image discontinu-
ities), nothing prevents the diffusion process (3) to smooth
locally the image I with directions and intensities that are
different than those given pointwise by the spectral elements
of the tensor D(x, y). It can be more precisely understood
as follows. The PDE (3) can be decomposed as :

div (D∇I) = trace (DH) + ∇I . ~div(D) (4)

where H =

(

∂2I
∂x2

∂2I
∂x∂y

∂2I
∂x∂y

∂2I
∂y2

)

is the Hessian matrix of I ,

and ~div stands for the following differential operator, acting
on matrices and returning vectors :

if D = (dij), ~div (D) =

(

div
(

(d11 d12)
T
)

div
(

(d21 d22)
T
)

)

The decomposition (4) simply separates the original diver-
gence equation div (D∇I) into two items :



• A regularization term trace (DH) that does not depend
on the variation of the tensor field D (since trace (..) is not
a differential operator). We will point out the fact that this
trace-based equation is the one that smoothes effectively I
using the geometric structure of the tensor D(x,y) for each
point (x, y) ∈ Ω of the image I .
• An additional term ∇I . ~div(D) that depends on the ten-
sor field variation. This additional term may be disregarded
on regions of Ω where the variations of the tensor field D are
low (since then ~div(D) ' 0), but not in the general case.

The well-known TV -regularization method [26] illustrates
this fact. This widely used anisotropic diffusion PDE comes
from the minimization of the functional :

min
∫

Ω
‖∇I‖ dΩ =⇒ ∂I

∂t = div
(

∇I
‖∇I‖

)

(5)

This is then equivalent to apply a divergence PDE such
as ∂I

∂t = div (D∇I) with isotropic tensors D = 1
‖∇I‖ Id.

These tensors have a double eigenvalue λ± = 1/‖∇I‖ that
is spatially varying over the definition domain Ω. Fortu-
nately, the PDE (5) does not perform locally an isotropic
smoothing despite the isotropic shape of the underlying ten-
sors D. Note that conversely, the first trace-based term acts
indeed as a weighted Laplacian regularization (isotropic)
∂I
∂t = trace (DH) = ∆I/‖∇I‖ (Fig.2).

(a) Original noisy image (b) ∂I
∂t

= div (D∇I). (c) ∂I
∂t

= trace (DH).

Figure 2: Trace-based PDE’s follow exactly the geometry of the
tensors D = Id/‖∇I‖.

The reason is that the second term ∇I . ~div(D) can be
also written as :

∇I . ~div

(

1

‖∇I‖
Id

)

= trace

(

−
∇I∇IT

‖∇I‖3
H

)

which corresponds to an inverse diffusion along the gra-
dient direction (∇I is the main eigenvector of the tensor
−∇I∇IT /‖∇I‖3). As a result the TV equation (5) can be
also written as,

∂I

∂t
= trace (TH) with T =

∇I⊥∇I⊥
T

‖∇I‖3

which means that the effective local smoothing would rather
follow the geometry of a trace tensor T (with T 6= D),
which is clearly anisotropic and always directed along the
image contours ∇I⊥.

(3) Oriented Laplacians : Actually, this concept of trace-
based PDE expression has been already proposed in an-
other form by few authors. Indeed, a trace-based (6) can
be also seen as the juxtaposition of oriented 1D heat flows,
i.e mono-dimensional gaussian smoothing along orthonor-
mal directions u⊥v, with corresponding weights c1 and c2

[17, 18, 28, 35, 37] :

∂I
∂t = c1

∂2I
∂u2 + c2

∂2I
∂v2 = trace (TH) (6)

where H is the Hessian matrix of I , c1,c2 and u,v are re-
spectively the positive eigenvalues and orthogonal eigenvec-
tors of the tensors T = c1uu

T + c2vv
T . This is actually a

good way of designing regularization processes with desired
local smoothing properties. Moreover, we will show now
that this particular form of PDE’s has a simple interpretation
in terms of local filtering.

2.2 Trace-based PDE’s and local convolutions

Let us first consider that the trace tensor T is constant over
the definition domain Ω, in the PDE (6). Then, it can be
shown [34, 39] that the formal solution of the PDE (6) is :

I(t) = I(t=0) ∗ G(T,t) (7)

where ∗ stands for the convolution operator and G(T,t) is
an oriented gaussian kernel, defined by :

G(T,t)(x) = 1
4πt exp

(

−x
T
T

−1
x

4t

)

with x = (x y)T

Note that in this case, the divergence and trace-based expres-
sions are equivalent : div (T∇I) = trace (TH).

When T is not constant (which is generally the case), i.e.
represents a field Ω → P2 of varying diffusion tensors, the
PDE (6) becomes nonlinear and can be viewed as the ap-
plication of spatially varying local masks GT,t(x) over the
image I. This is not the case for divergence-based expres-
sions, since an additional term ∇I . ~div(D) related to the
tensor field variation appears, prohibiting the interpretation
of the tensors as pointwise indicators of the regularization
performed by the PDE process (3). This kind of term could
be rather be seen as a transport term β . ∇I .

This local filtering concept makes the link between a
generic form of trace-based PDE’s (6) and Bilateral filter-
ing techniques [4, 33] or more recently Short Time Kernels
[30], which are both based on local filtering considerations
(with non-gaussian kernels for the STK).

The PDE (6) can be implemented with classical numerical
schemes, based on centered spatial discretizations of the gra-
dients and the Hessians [20]. But it is also possible to use the
local filtering interpretation of the equation with this alterna-
tive approach : As the equation is equivalent to perform local
convolutions with oriented gaussian kernels, the following
scheme applies naturally for the the implementation of (6) :

∀(x, y) ∈ Ω, I [t+1] =

l/2
∑

k,l=−l/2

G
(T,dt)(k, l) I [t](x−k, y−l)



where dt represents the time step and l is a user-defined pa-
rameter that represents the size in pixels of the used gaussian
kernels. The more l is large, the more precise the numerical
approximation will be (Fig.6).

Main advantages of this numerical scheme are :
• At a current image point, more than just adjacent pixels

are considered for the evolution of the PDE (if l > 3).
• The maximum principle is preserved, since the local fil-

tering is done only with normalized gaussian kernels.
• It is more precise, since the computed kernels G

(T,t) do
not depends on derivatives of the image I . For the particular
case of image restoration, G depends only on the first deriva-
tive (gradient) or I , which leads to better numerical approx-
imations of the PDE. Moreover, for our proposed flow visu-
alization technique (section 3), no images derivatives have to
be computed, since the tensor field T will even not depend
on the structure tensor.

As for shortcomings, we have to mention that it is spe-
cially time-consuming, since it needs the computation of
several gaussian masks (i.e. exponentials functions) for each
image point and each PDE iteration.

3 Flow visualization with PDE’s

3.1 Principle of the method

Considering a 2D vector field F : Ω → R
2, we have several

ways to visualize it. We can first use vectorial graphics, but
we have to subsample the field since this kind of representa-
tion is not adapted to represent big flows. A better solution
is as follows. Starting from a completely noisy image I, we
apply this trace-based regularizing PDE that smoothes the
image exactly in the directions of the vectors :

∂I
∂t = trace

([

1
‖F‖FFT

]

H

)

(i = 1..n) (8)

This equation creates a textured image that represents the
different structures of the flow F , thanks to its highly
anisotropic behavior.

Whereas the PDE evolution time t goes by, more global
structures of the flow F appear, i.e. a visualization scale-
space of F is constructed (Fig.3). Here, our used regulariza-
tion equation (8) ensures that the smoothing of the pixels is
done exactly in the direction of the flow F . This is not the
case in [5, 8, 13], where the authors based their equations
on divergence expressions. Using similar divergence-based
techniques would raise a risk of smoothing the image in false
directions, as this has been pointed out above.

3.2 Extension to DT-MRI

Diffusion-Tensor MRI is a technique allowing the measure-
ment of the water molecule motion in the tissues fibers, by
the mean of rendering multiple MRI images under different
oriented magnetic fields. This large set of raw data is then
further estimated into a volume of 3D diffusion tensors T :

(a) Flow visualization with arrows
(b) Flow visualization with PDE (8) (5
iter.)

(c) Flow visualization with PDE (8) (15 iter.)

Figure 3: Using regularization PDE (8), for 2D vector flow visu-
alization.

Ω ⊂ R
3 → P(3) (i.e. 3 × 3 symmetric and positive-definite

matrices) that describe through their spectral elements, the
main diffusivities λ1, λ2, λ3 (with λ1 ≥ λ2 ≥ λ3) and the
corresponding principal orthogonal directions u

[1],u[2],u[3]

of the water molecule diffusion in tissues such as bones,
muscles and white matter of the brain (Fig.4b).

O
uλ

u[3] λ

[2]uλ [1]

3

2
1

(b1) Mean diffusiv-
ity = 1

3 (λ1 +λ2 +
λ3)

(b2) Part of the estimated tensor field T, repre-
sented with 3D ellipsoids.

Figure 4: Volumes of Diffusion-Tensor MRI.

DT-MRI images are well suited to study the fiber network
in the white matter of the brain. The need to visualize such
fibers bundles has recently raised a strong interest for spe-
cific visualization techniques dedicated to this issue (very
close to the ones encountered in flow visualization, in the
domain of applied physics). Common visualization methods
for DT-MRI images are :

• Ellipsoids are the natural representations of diffusion
tensors. They are well adapted to see independently each
DT-MRI voxel, and its spectral elements. Nevertheless, they
are not suitable to display large fields of DT-MRI because
of the high number of ellipsoids needed : as illustrated on
Fig.7a (left), displaying large tensor fields with ellipsoids can
be confusing.

• Streamlines are parametric representations of the
fibers. They are constructed from the tensor field by drawing



lines following the diffusion tensor principal orientations u.
Well adapted for displaying fibers of medium-size parts of
the tensor field, they can also be confusing for larger ranges
of view Fig.7a (right).

• LIC (line integral convolution). As proposed in [9, 21],
the idea is to integrate a noise texture in the direction of the
principal tensor direction, leading to a texture-representation
of the flow. It is more adapted to display fibers in larger DT-
MRI regions, but is more time-consuming.

3.3 Proposed method

We propose here an alternative method to visualize a 3D dif-
fusion tensor field T : Ω → P3, based on regularization
PDE’s. The idea is as follows. Starting from a noisy 3D
volume I0 : Ω̃ → R (uniform noise), we apply this specific
PDE flow :











I(t=0) = I0

∂I

∂t
= trace (DH)

(9)

where D : Ω → P(3) is another diffusion tensor field com-
puted from T as :

∀x, y, z, D = uu
T + g(FA) (Id − uu

T )

where u is the principal direction of T, Id is the identity
matrix and g : [0, 1] → [0, 1] is a decreasing function. The
Fractional Anisotropy FA is defined as :

FA =
√

(λ1−λ2)2+(λ1−λ3)2+(λ2−λ3)2

2(λ2
1+λ2

2+λ2
3)

Its value characterizes the shape of a tensor (isotropic for
low values, and anisotropic for high values) [24]. We do not
choose directly D = T since it could quickly oversmoothes
the noisy image I . Moreover, our proposed equation (9) has
the interesting property of smoothing the image I in the prin-
cipal directions of the tensors where they are anisotropic (i.e.
FA(x, y, z) >> 0), while performing an isotropic smooth-
ing where tensors are isotropic (i.e. FA(x, y, z) ' 0). This
trace-based equation has a real interpretation in terms of lo-
cal smoothing, and can be implemented using local convo-
lution techniques, as described in section (2). Instead of the
method proposed in [5, 25], we ensure here that the smooth-
ing of the noisy image is done along the fiber directions,
thanks to our trace-based PDE expression. Once the textured
image has been obtained, we multiply it by the image of the
Fractional Anisotropy FA :

Ifinal = Iregularized ∗ FA

This allows to emphasize only regions of high anisotropy
(i.e fibers), while attenuating regions of high isotropy (for
instance the liquid in the CSF filled ventricles).

Our visualization technique is also well adapted to create
multi-scale texture representations of the fiber structures in
DT-MRI images. As illustrated in Fig.7,8, it is suited to view
fibers in large portions of DT-MRI fields.

4 Experimental results

We illustrate the different aspects of our proposed visualiza-
tion algorithm (9) on Fig.5,6,7 :

• Fig.5 shows the scale-space property of our method, in-
herent to the use of a regularization PDE technique. Starting
from a noisy image, we create a textured representation of a
flow F (here, a tensor field). Progressively, the noisy image
is smoothed and thin details of the flow F softly disappear.
It allows the representation of F at different scales, which
are anisotropically computed by the PDE (9).

• Fig.6 illustrates the accuracy of our proposed numerical
scheme (section 2.2), based on local convolutions with ad-
justing gaussian kernel. If we use a classical finite difference
scheme to approximate the PDE term trace (TH), direc-
tions of the flow F that are not directed along the main axes
X or Y may appear oversmoothed (Fig.6a). Conversely, the
use of adjusting gaussian kernels to perform the diffusion
avoid this effect until the size l of the convolution masks
used is large enough (practically, l >= 7 pixels).

• Fig.7 and 8 are two results of fiber tracking in different
regions of the corpus callosum, from DT-MRI datasets. This
region located in the white matter of the brain is representa-
tive of the fiber bundles, since it links the two hemispheres
of the brain. On the left, the DT-MRI data are displayed us-
ing ellipsoids and lines that represent tracked fibers (Fig.7a).
On the right, fibers appear naturally by applying our flow-
visualization technique (9) on a noisy 3D volume. As we
may notice, this display mode is more perceptible for such
dense DTMRI datasets.

Conclusion & Perspectives
We analyzed how regularization PDE’s are performing local
smoothing and used it to design a new diffusion PDE that
creates textured images from general input flows. Our for-
mulation allows the visualization of big portions of dense
vector or tensor fields, and has been used to create fiber
tracking results in the white matter of the brain, thanks to the
use of DT-MRI datasets. The proposed numerical scheme
has proven its efficiency beside classical finite difference
schemes. The fast computation of the results is an open prob-
lem of interest, which we are working on.
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