

Tailoring Learning Management Systems and Learning Contents
for the SCORM Model *

Xin Xiang, Ling Guo, Yuanchun Shi
State Key Lab of Intelligent Technology and Systems,

Computer Science Department, Tsinghua University, Beijing, 100084, P.R. China
{xiangx01@mails., guoling02@mails., shiyc@}tsinghua.edu.cn

Abstract
Standardized learning management systems and

contents are becoming prevalent over time with the
growing adoption of Web-based learning technologies.
The complexity adherent in the SCORM run-time
environment APIs and data model, however, makes it
difficult for instructional designers, content developers
and LMS vendors to tailor their contents and LMSs for the
SCORM model. In this paper, our own practice of the
SCORM model is presented. We firstly propose our
architecture for E-Learning applications. Being
LMS-centered, the architecture seeks to bridge the gap
between conformant LMSs and diverse learning contents.
To highlight our design, we present a comprehensive LMS
implementation with extended data elements adapted to
meet the needs of college education. Moreover, we detail a
systematic method of turning existing HTML-based
courseware into SCORM conformant contents. The last
part of this paper discusses technical and pedagogical
issues of concern regarding the learning scenarios of
SCORM in different learning environments and the
accordingly tuning of the LMSs.

1. Introduction

The recent approval of LOM (Learning Object

Metadata) standard[1] by the IEEE-Standards Association
and of Dublin Core Metadata Element Set[2] by ISO
marked a new milestone in the field of metadata
standardization. It is believed that in the near future, they
are to be widely accepted by industry and academia alike.

Whereas metadata and content related E-Learning
standards are intended to specify the description of
metadata and content, the SCORM (Sharable Content
Object Reference Model) model[3][4][5] extends these
standards by further specifying the run-time environment

* This material is based upon work supported by the Ministry

of Education and the National Natural Science Foundation in
China.

of LMSs (Learning Management Systems), including
APIs and data elements needed to launch the SCOs
(Sharable Content Objects).

Based upon the AICC API specification[6], the IMS
metadata and content package information models[7][8]
and their XML binding specifications[9][10], the SCORM
model has made a great progress in leading instructional
designers, content developers and LMS vendors to
develop their standardized products.

Further, the newly released SCORM 1.3 application
profile working draft[11] complements the original
SCORM model with the missing piece, namely
sequencing, based on the simple sequencing specification
published by IMS[12]. This supplement allows course
designers to specify a learner’s path through a number of
learning objects depending on how they are doing, thereby
making the SCORM model more flexible and easy to
adapt for different instructional needs.

In this paper, we are to present our own practice of the
SCORM model. In our viewpoint, LMSs play a central
role in the Web-based E-Learning scenario. It connects
learning contents and learners together in a standardized
manner and is underscored in our E-Learning application
architecture. Taking into account the maturity of the
SCORM 1.2 specification and the complexity of the
sequencing mechanism introduced in the SCORM 1.3
application profile, we choose SCORM 1.2 as the basic
specification with which both the LMS and the contents
comply. As a part of a campus-wide comprehensive
Web-based E-Learning system, the LMS aims to provide
an effective learning platform by customizing the SCORM
run-time environment. It not only implements the basic
run-time environment functionality, but also provides
overall records on learner performance, which could be
revisited in future evaluation. Besides, since conformant
contents are also indispensable in fulfilling the
instructional and technical function of the SCORM
run-time environment, we demonstrate how to reconstruct
a common HTML-based courseware to make it SCORM
conformant, according to a programmable and systematic
approach.

The remainder of this paper is organized as follows:
section 2 introduces some SCORM related work. Section
3 introduces the LMS-centered E-Learning application
architecture, and section 4 covers the customization of the
SCORM run-time environment. Section 5 gives a common
method used to repurpose existing HTML-based
courseware for SCORM. The process of launching SCOs
from within run-time environment is detailed in section 6.
Section 7 introduces technical and pedagogical issues of
concern with respect to the differentiation of public and
personal LMSs. Section 8 concludes this paper.

2. Related Work

Considering the complexity of the SCORM model,

ADL released a SCORM implementation guide[13]
covering the learner and context analysis, the instructional
and content design, the development of SCOs and content
packages, and the verification and validation of final
products. This guideline provides a step-by-step and
easy-to-follow approach for instructional designers and
content developers to construct their SCORM conformant
contents. Also, the Carnegie Mellon Learning Systems
Architecture Lab released a SCORM best practices
guide[14] being targeted at instructional designers and
content developers. The guide gives a detailed description
on the designing of SCOs, structuring of tests and
determining of sequencing in the process of developing
SCORM conformant contents. The accompanying
SCORM Simple Sequencing Templates and Models[15]
could be conveniently copied and revised to fit diverse
instructional needs.

Aside from official SCORM guidelines, some issues of
concern regarding the practice of SCORM have been
proposed in the literature. [16] describes the design and
implementation of library module components for WBT
(Web-Based Training) systems conforming to SCORM
and AICC CMI specifications. [17] proposes a method
using Web service to build the SCORM run-time
environment and LMS. [18] discusses several deficiencies
of SCORM concerning reusable learning contents and
WBT. [19] presents the design and implementation of a
SCORM conformant CS courseware, and [20] narrates the
SCORM conformant redesigning and upgrading of a
collaborative courseware generating system. [21] proposes
a method for separating the presentation of a SCO from its
content, allowing multiple SCOs from multiple origins to
be combined in a single unified learning experience. [22]
gives a brief introduction of SCORM and its implications
on engineering education.

3. Architecture

Our discussion is based on an LMS-centered

E-Learning applications architecture depicted in Figure 1.

Client C1

Repository R1
Repository R3

Client C2

Public
LMS L2

Personal
LMS L1

Personal
LMS L3

Repository
R2

a

b

c

bc

b

c

d

a. the requests of clients
b. the requests of LMSs asking for metadata or contents
c. the delivery of meta or contents from repositories
d. the delivery of metadata or contents to clients

Figure 1. The Architecture of

LMS-Centered E-Learning Applications

Basically, there is no one-size-fits-all architecture or

framework that could address all the problems in the field
of Web-based learning. The proposed architecture focuses
on the effective delivery of standardized contents between
E-Learning systems and students in an LMS-centered
approach.

The proposed architecture comprises three types of
participants:

· Learning Resource Repositories
Standardized learning resource repositories provide

massive storage for learning resources and metadata, and a
uniform interface for query and delivery. The repositories
deal with two types of requests: the query requests
searching for specific metadata, and the delivery requests
asking for the actual content. The content may be an asset,

a SCO, or a conformant content package, as described in
section 4 and 5.

· Learning Management Systems
LMSs play the role of clients and application servers

simultaneously. As clients, they request metadata and
contents from the repositories; and as application servers,
they forward the clients’ query and delivery requests to
repositories, and prepare the returned metadata and
contents for clients’ browsing.

· Clients
Clients use common Web browsers to view the

metadata information and the launched SCOs through
HTTP sessions.

It is possible for a client and an LMS to reside in the

same host, e.g., a PC may have a lightweight personal
LMS (such as L1 or L3 in Figure 1) capable of requesting
contents, launching SCOs, and providing application
service to a local browser.

A typical learning scenario taking place in this
architecture is described as below:

1. Client C1 logs on to LMS L2;
2. Client C1 issues a request for conformant contents

on data structure in computer science;
3. LMS L2 forwards the request to repository R1, R2

and R3 in turn;
4. Metadata records satisfying the request are

returned from the repositories. After being returned,
they are cached in LMS L2;

5. Client C1 looks through the resulting metadata of
contents and issues a request to download one of
them;

6. LMS L2 forwards the request to the repository
storing that content;

7. The repository delivers the requested content to
LMS L2;

8. LMS L2 launches the SCOs packaged in the
retrieved content from within its SCORM
compliant run-time environment and delivers them
to client C1.

This architecture to some extent integrates existing

heterogeneous learning resource repositories and learning
management systems, and connects the students and
learning contents in a distributed environment.

The LMSs play a key role in the scenario. It is the
LMSs where most of the application logics of learning
activities are performed, including search, evaluation,
delivery and launch. It is also the LMSs that bridge the
gap between a variety of contents and learners who are
unaware of the internal mechanism of run-time
environment when browsing learning materials.

The LMSs may vary in terms of size, performance,
functionality and scalability. The lightweight LMSs, such
as LMS L1 and LMS L3 in Figure 1, could be referred to
as Personal Learning Management Systems. They are for

personal use, functionally and instructionally compact,
and could be easily deployed on a home PC. On the other
hand, Public Learning Management Systems, such as
LMS L2 in Figure 1, have the full functionality of an LMS
and are able to serve learners in an organization ranging
from a lab to a college.

4. Customization of the SCORM Run-Time
Environment

Incorporating the AICC CMI/Lesson communication

data model and IMS metadata and content packaging
specifications, SCORM seeks to equip developers with a
standard and practicable application profile in developing
conformant contents and learning management systems.
The API and data model defined in SCORM, however, is
rather complex and all-inclusive. It is the responsibility of
instructional designers, content developers and LMS
vendors to customize and tailor the SCORM model to fit
their instructional and technical needs.

A public LMS is needed for college education. It
should provide the basic functionality of the run-time
environment as well as overall records on learner
performance, which could be revisited in future
evaluation.

4.1 The Components

As depicted in Figure 2, four components are involved

in the run-time environment:

API Adapter
(Java

Applet)

LMS Server

Asset
Asset

Browser

Javascript
API

Database
Data

Persistence

HTTP
Communication Launch

SCO

Figure 2. The SCORM Run-Time Environment

· LMS Server
Strictly speaking, an LMS server is part of an LMS.

Besides the LMS server, the LMS also provides the data
persistence and the API adapter described below. Hereafter,
an LMS server is referred to as the component of an LMS

that is responsible for communication with the API
adapter.

In our system, the LMS server is implemented as a Web
application deployed on a WebLogic application server. It
manages all the database connections and http sessions
through the internal mechanism provided by the
application server.

· API Adapter
The role of the API adapter is to connect the client-side

SCOs with the server-side learning management system
server. It implements the required API functionality
defined in the SCORM run-time environment
specification.

We built a fully functional API adapter as a Java applet
without user interface (It can also be implemented in
C++ and loaded as a browser plug-in.). It is delivered to
the browser when the learner logs on to the LMS. To
maintain the robustness of the API adapter, all the
required APIs and an adaptive debug mechanism are
implemented.
· SCO
A SCO is defined in the SCORM content aggregation

specification as a collection of one or more assets
including a specific asset that is launchable and utilizes
the SCORM run-time environment to communicate with
the LMS server. Assets, as defined in SCORM, are
electronic representations of media, text, images, sound,
Web pages, assessment objects or other pieces of data that
can be delivered to a Web client.

It is the responsibility of the SCO to locate the API
adapter and issue the required API calls to communicate
with LMS.

Section 5 details the customization of SCOs.
· Database
Although not explicitly specified in the SCORM model,

databases play a key role in maintaining the persistence of
data model elements transmitted between the LMS and the
client browser, especially for a comprehensive LMS
designed to serve a large group of users.

In our system, an Oracle 8i database management
system is used to store all the implemented run-time
environment data elements in conjunction with some
educational parameters useful in future evaluation.

4.2 The Data Elements

All the data elements defined in the SCORM run-time

environment data model are broken up into nine categories:
core, suspend data, launch data, comments, objectives,
student data, student preference, interactions and
comments from LMS, as depicted in Figure 3 (reproduced
from [13]).

Figure 3. Data Model Categories
Available for Use by the SCO

(Reproduced from [13])

Some of them are mandatory for an LMS to be

SCORM 1.2 conformant[23] (To increase interoperability,
the SCORM version 1.3 will make all run-time
environment data model elements mandatory, but
presently we prefer SCORM 1.2 and do not follow that
obligation.), hence should be implemented in any SCORM
conformant LMS. These mandatory data elements include:
student id, student name, lesson location, credit, lesson
status, entry, score, total time, exit, session time, suspend
data, and launch data. All of them are indispensable for an
LMS to track the information contained in a SCO and the
learner performance.

To keep track of the exact time a user requests to
launch and exits a SCO, two data elements are added to
the SCORM run-time environment data model. One is
start_time, representing the time when a learner requests
to launch a SCO, the other is end_time, representing the
time when a SCO is exited.

Both our LMS server and API adapter provided by the
LMS have been adapted in order to effectively accomplish
the addition of data elements.

To comprehensively record the information pertaining
to learner performance, several database tables are created
to maintain the information about students, courses and
SCOs.

5. Making an HTML-Based Courseware
SCORM Conformant

One initiative of the SCORM model is to construct

learning material as SCOs that could then be seamlessly
reused within different learning environments in a
context-independent fashion. The concept of integrating

existing sharable content objects, however, has been
doubted by some instructional and pedagogic experts who
claim that a sequence of such de-contextualized learning
objects may not truly convey a unified experience for the
learner[24].

We thereby drop the idea of developing a
comprehensive courseware on the basis of a series of
reusable learning objects, and resort to a technically and
pedagogically more sound approach, that is, repurposing
existing learning materials for SCORM model.

The existing material is an HTML-based courseware on
The C Programming Language Course in computer
science with built-in navigation between chapters and
sections.

In the process of making an existing HTML-based
material SCORM conformant, the following steps are
required:

1. Remove all the frame structures in the HTML
pages.

In a SCORM conformant learning management system,
frames are used to provide a tree-based navigation
mechanism. If an HTML page itself contains frames, the
Web interface provided by the LMS will be distorted,
hence is unacceptable. By removing the frame structures,
the HTML pages become clean, compact and easy to tailor
for the SCORM model.

2. Identify SCOs.
Although there are many different instructional designs

that could affect the identification of SCOs, we adopt a
simple and easy-to-follow method, that is, identify each
HTML page in the courseware as a SCO.

3. Obliterate all the navigation structures contained
in the SCOs (HTML pages).

All the navigation mechanisms, i.e., all the buttons
such as “previous page”, “next page”, “first page”, “last
page”, etc, are to be provided by the LMS as a sequencing
engine defined in SCORM as the components of an LMS
used to interpret sequencing information and execute the
specified sequencing behaviors. It may sequence the
contents based upon the sequencing information provided
in the content package, or in accordance with its
hard-coded sequencing mechanism.

4. Remove all the inter-SCO links.
In SCORM model, only an LMS can launch SCOs. A

SCO can not launch another SCO. In this step, the
previous rule applies, that is, all the navigation
mechanisms are to be provided by the LMS.

5. Tailor the SCOs for the SCORM model.
A SCO is required to adhere to the SCORM run-time

environment. The SCO must have a means to locate an
LMS’s API Adapter and must contain minimum API calls,
i.e., LMSInitialize and LMSFinish. It can be achieved by
calling common methods responsible for finding an
adapter and calling APIs, thus obviating the need for each
SCO to execute the same code fragment. The file
containing these common functions can be identified as an

asset.
6. Create metadata for the learning objects in the

courseware.
Although optional in the development of SCORM

conformant content, metadata is used here to increase the
reusability and discoverability of the contents. The
metadata pertaining to the courseware include the
metadata for assets, SCOs and the whole package.

7. Create manifest file.
The manifest file contains information relative to the

contents (including assets and SCOs) in the courseware,
the course structure, the location of metadata, and if
available, the sequencing method. The manifest file is
indispensable for the LMS to extract information from the
courseware for future launch.

8. Package the courseware in a PIF (Package
Interchange File) format using the PKZIP Version
2.04g archive format (zip).

The PIF provides a concise Web delivery format that
can be used to transport content packages between
systems (zipped). The LMS could then import the
packaged courseware and extract all the needed
information.

A launched SCO in the standardized courseware is

shown in Figure 4:

The Course
Structure

The HTML
Page (SCO)

Figure 4. A Launched SCO in the LMS

Since there is no special requirement on the sequencing

method utilized by the LMS in launching this course (and
it is hard for instructional designers to impose lots of
sequencing requirements in a non-traditional course and
comply with the newly published SCORM 1.3 draft
specification), the LMS could launch the course in a
simple flow or choice sequencing method, that is, launch
the SCOs one by one or launch them upon the
unconstrained choice of the learner.

As far as the navigation interface is concerned, the

AICC’s icon standards: user interface[25] gives a good
recommendation on functions of the student/user interface
to CBT material and delivery systems.

The procedure described above is rather
straightforward and could be employed to mass-produce
SCORM conformant contents based on existing
HTML-based courseware. These courseware are
considerably popular in current E-Learning environment.

[19] also gives an instructive narration of SCORM
conformant redesigning of an existing computer science
courseware. It focuses on the identification and
management of assets, SCOs and content aggregations.

6. Launching of SCOs from within Run-Time
Environment

At the time of courseware importing, a persistence

object (database or disk file) is built to maintain the
persistence of run-time environment data elements
implemented by the LMS. Meanwhile, the LMS extracts
the course structure by parsing the standard manifest file
contained in the content package, and the sequencing
method is determined depending on either the sequencing
mechanism hard-coded in the LMS or that specified (by
instructional designers and programmers) in the manifest
file.

On completion of the actions above the course is ready
for future launch.

Upon the learner’s request for launch, the LMS will
firstly determine the structure of the requested course, and
find from database whether it is the first time that the
learner accesses the course, or the learner quitted the
course normally or abnormally in an earlier time and
wants to resume now.

If it is the first time that the learner launches that course,
the LMS should determine which SCO is to be launched
first. After that, the LMS delivers that SCO to the client
browser through HTTP session.

If the learner once quitted the course and wants to
resume now, the learning management system should
determine (through database) the point where the learner
quitted the course last time, and deliver the relevant SCO
to the client browser.

It is the responsibility of the SCO to find the API
adapter upon launch, through which it could communicate
with the LMS. Thereafter the API adapter acts as a broker
between the SCO and the LMS.

As per the SCORM specification, the SCO should at
least call the methods LMSInitialize and LMSFinish to be
SCORM 1.2 conformant, and depending on the nature of
the content, it may call other APIs defined in SCORM
model, namely LMSGetValue, LMSSetValue, LMSCommit,
LMSGetLastError, LMSGetErrorString, and
LMSGetDiagnostic.

Most of the SCOs in the courseware could simply call

LMSInitialize upon loading and LMSFinish upon
unloading.

More complex SCOs may call LMSGetValue and
LMSSetValue to operate different SCORM model data
elements. Fox example, a SCO containing a test may call
LMSSetValue to notify LMS the learner’s performance on
the test, another SCO may call LMSGetValue to acquire
the learner’s name and print a greeting message.

The traverse of a SCO’s states during its lifecycle is
depicted in Figure 5.

InitializedNot Initialized
LMSInitialize

LMSFinish

LMSGetValue
LMSSetValue
LMSCommit

LMSGetLastError
LMSGetErrorString
LMSGetDiagnostic

LMSGetLastError
LMSGetErrorString
LMSGetDiagnostic

SCO Launched
by LMS

Finished

Find the API

Figure 5. The SCO State Transitions

As can be seen from the figure, all processing relative

to the current SCO must be performed prior to calling
LMSFinsih.

7. Public and Personal LMSs

We further the initiative of customizing LMS in section

4 here by a discussion of differentiation between public
and personal learning management systems.

The differentiation of these two kinds of LMSs comes
from the consideration that although large and
comprehensive LMSs are important for both training and
educational use, small and compact LMSs are also
indispensable in facilitating the off-line and unconstrained
(by sequencing method) use of learning materials in a
personal environment.

A comprehensive public LMS should implement the
following function regarding SCO launching:

· Fully Functional API Adapter
The LMS should supply a stable and robust API

adapter that fully implements the required functionality
described in [5].

· Comprehensive Data Elements
The LMS should implement most data elements

defined in the specification including elements describing
student information, learner performance and comment
data to enable full support of the SCORM run-time
environment data model and utmost trackability of
information about the launched SCOs.

· Persistence Through Database
Database-enabled persistence mechanism should be

provided to maintain the persistence of the complex data
elements implemented by the LMS. The database could
extensively and efficiently record the learner information,
SCO information and learner performance, thereby
fulfilling the responsibility of a public LMS.

· Adaptive Sequencing Engine
To fully function as defined in the IMS simple

sequencing specification and the SCORM 1.3 application
profile, the LMS should implement an adaptive
sequencing engine that could handle various sequencing
requirements arising in Web-based learning environments,
hence meeting different technical and instructional needs
in different learning contexts.

A personal LMS, however, need not implement as

much functionality as a public LMS does.
· Simple API Adapter
A personal LMS should supply a simple and compact

API adapter that implements the basic functionality during
launching of SCOs, for instance, the LMSInitialize and
LMSFinish described in [5].

· Reduced Data Elements Set
As proposed in [19], the set of data elements

implemented by a personal LMS might be selectively
reduced in order to improve the performance of LMS
while maintaining its basic functionality.

· Lightweight Persistence Mechanism
Since a personal LMS cares little about the

management of the learner information, the detailed SCO
information and the evaluation of learner performance, it
is recommended that the basic disk file-based persistence
mechanism be implemented, making the LMS small,
efficient and easy to deploy.

· Basic Sequencing Engine
The personal LMS may only implement the basic

choice sequencing method, neglecting the instructional
designer’s sequencing requirements and allowing for the
learner’s freely browsing the learning material, most
probably off-line.

Although SCORM claims to be pedagogically neutral,

the learning scenario of launching SCOs in a Web-based
run-time environment has been deemed
individual-centric[26][27][28], even in a pubic LMS
environment. As stated in [26], “SCORM is essentially
about a single-learner, self-paced and self-directed.” The
purpose of the differentiation of personal LMSs from
public ones, however, is to adapt the LMSs in different

learning environments, thereby avoiding a one-size-fits-all
solution in this rapidly changing E-Learning application
market.

We hope that the in the near future, SCORM will
evolve into an E-Learning standard that is not only
technically mature, but also pedagogically sound. And it is
the responsibility of LMS vendors to tune their products,
not only to fit training use, but also to meet the
progressive need for collaborative learning.

8. Conclusion and Prospect

In this paper, we present our own practice of the

SCORM 1.2 model in an LMS-centered distributed
E-Learning architecture. In the architecture, a
comprehensive LMS is tailored for college use, and the
process of making an HTML-based courseware SCORM
conformant is detailed for demonstration. Finally, a
discussion focusing on the differentiation of public and
personal LMSs is given, from pedagogical and technical
perspectives.

At this time, a campus-wide E-Learning application
conforming to the proposed architecture, with Xindice[29]
as its XML metadata repository and WebLogic as the
application server is being developed in our university. A
public LMS with extended data element set based on
Oracle 8i database has been implemented to fit the need of
college education.

The learning management system may be improved in
the following aspects:

· Introduction of Adaptive Sequencing Engine
As the main contribution of SCORM 1.3 application

profile to the SCORM model, sequencing mechanism has
been deemed not only a technical improvement of LMSs,
but also a pedagogical requirement of instructional
designers and content developers. For simplicity, there are
only flow and choice sequencing methods available in
current implementation.

We hope that in the near future, an adaptive sequencing
engine complying with the simple sequencing model in
SCORM 1.3 application profile could be designed and
developed, hence providing instructional designers and
content developers with a variety of choices of sequencing
their contents depending on their technical and
pedagogical needs.

· Implementation of All SCORM Model Data
Elements

Although laborious for implementers, the SCORM
version 1.3 will make all SCORM run-time environment
data model elements mandatory to increase
interoperability. The concept of optional data model
elements from an LMS perspective has been removed. As
practitioners of a comprehensive public LMS, we consider
it desirable to implement as many SCORM model data
elements as possible to benefit both the content developers

and the users.
· Integration of Personal LMSs
With the growing number of conformant LMSs and

contents, a single user is likely to freely browse
conformant contents off-line instead of logging on an
LMS, registering for a course and browsing material in the
sequence predefined by instructional designers. To fit
these needs, a personal LMS implementing the basic APIs
and data model of run-time environment should be
provided.

9. References

[1] IEEE Learning Technology Standard Committee Workin
g Group 12, “Final 1484.12.1 LOM draft standard”, http://lt
sc.ieee.org/doc/wg12/LOM_1484_12_1_v1_Final_Draft.pdf, Se
ptember 2002.
[2] Dublin Core Metadata Initiative, “Dublin Core Metadat
a Element Set, Version 1.1”, http://dublincore.org/usage/terms
/dc/current-elements/, October 2002.
[3] Advanced Distributed Learning, “The SCORM Overvie
w, Version 1.2”, http://www.adlnet.org/ADLDOCS/Documents
/SCORM_1.2_Overview.pdf, October 2001.
[4] Advanced Distributed Learning, “The SCORM Content
Aggregation Model, Version 1.2”, http://www.adlnet.org/ADL
DOCS/Documents/SCORM_1.2_CAM.pdf, October 2001.
[5] Advanced Distributed Learning, “The SCORM Run-Tim
e Environment, Version 1.2”, http://www.adlnet.org/ADLDO
CS/Document/SCORM_1.2_RunTimeEnv.pdf, October 2001.
[6] Aviation Industry CBT Committee, “AICC CMI Guideli
nes for Interoperability Revision 3.5 Release 2”, http://www.
aicc.org/docs/tech/cmi001v3-5.pdf, April 2001.
[7] IMS Global Learning Consortium, “IMS Learning Reso
urce Meta-data Information Model Version 1.2.1 Final Speci
fication”, http://www.imsglobal.org/metadata/imsmdv1p2p1/ims
md_infov1p2p1.html, September 2001.
[8] IMS Global Learning Consortium, “IMS Content Packa
ging Information Model Version 1.1.2 Final Specification”,
http://www.imsglobal.org/content/packaging/cpv1p1p2/imscp_in
fov1p1p2.html, August 2001.
[9] IMS Global Learning Consortium, “IMS Learning Reso
urce Meta-data XML Binding Version 1.2.1 Final Specificati
on”, http://www.imsglobal.org/metadata/imsmdv1p2p1/imsmd_
bindv1p2p1.html, September 2001.
[10] IMS Global Learning Consortium, “IMS Content Packa
ging XML Binding Version 1.1.2 Final Specification”, http://
www.imsglobal.org/content/packaging/cpv1p1p2/imscp_bindv1p
1p2.html, August 2001.
[11] Advanced Distributed Learning, “ADL SCORM Version
 1.3 Application Profile Working Draft 1.0”, http://www.adl
net.org/adldocs/Other/SCORMV1.3_AppProfile.zip, March 20
03.
[12] IMS Global Learning Consortium, “IMS Simple Sequen
cing Information and Behavior Model Version 1.0 Final Spe
cification”, http://www.imsglobal.org/simplesequencing/ssv1p0/
imsss_infov1p0.html, March 2003.
[13] Advanced Distributed Learning, “The SCORM Impleme
ntation Guide: A Step-by-Step Approach”, http://www.adlnet.
org/adldocs/Documents/SCORM_IG.pdf, November 2002.
[14] Learning Systems Architecture Laboratory, Carnegie Me

llon University, “SCORM Best Practices Guide for Content
Developers”, http://www.lsal.cmu.edu/lsal/expertise/projects/de
velopersguide/developersguide/guide-v1p0-20030228.pdf, Febr
uary 2003.
[15] Learning Systems Architecture Laboratory, Carnegie Me
llon University, “SCORM Simple Sequencing Templates and
 Models”, http://www.lsal.cmu.edu/lsal/expertise/projects/devel
opersguide/sstemplates/templates-v1p0-20030228.pdf, February
 2003.
[16] Nakabayashi K., Kubota Y., Yoshida H., Shinohara T.,
“Design and implementation of WBT system components an
d test tools for WBT content standards”, In Proceedings of
 1st IEEE International Conference on Advanced Learning
Technologies, August 2001.
[17] Shih T.K., Wen-Chih Chang, Lin N.H., Lin L.H., Hun-
Hui Hsu, Ching-Tang Hsieh, “Using SOAP and .NET web
service to build SCORM RTE and LMS”, in Proceedings o
f 17th IEEE International Conference on Advanced Informat
ion Networking and Applications, 2003.
[18] Bohl O., Schellhase J., Sengler R., Winand U., “The s
harable content object reference model (SCORM) - a critica
l review”, in Proceedings of 1st IEEE Conference on Comp
uters in Education, 2002.
[19] Qu C., W. Nejdl, “Towards Interoperability and Reusab
ility of Learning Resource: a SCORM-conformant Coursewa
re for Computer Science Education”, in Proceedings of 2nd
 IEEE International Conference on Advanced Learning Tech
nologies, IEEE Computer Society Press, September 2002.
[20] Qu C., W. Nejdl, “Towards Open Standards: the Evolut
ion of an XML/JSP/WebDAV Based Collaborative Coursewa
re Generating System”, in Proceedings of the 1st Internatio
nal Conference on Web-based Learning, August 2002.
[21] Canada’s Department of National Defense, “SCORM D
ynamic Appearance Model White Paper”, February 2002.
[22] Edward R. Jones, “Implications of SCORM and Emer　
ging E-learning Standards On Engineering Education”, in Pr
oceedings of the 2002 ASEE Gulf-Southwest Annual Confere
nce, March 2002.
[23] Advanced Distributed Learning, “SCORM Version 1.2
Conformance Requirements”, http://www.adlnet.org/ADLDO
CS/Documents/SCORM_1.2_ConformanceReq.pdf, February 2
002.
[24] Scott Wilson, “Experts question SCORM's pedagogic va
lue”, CETIS Article, http://www.cetis.ac.uk/content/200208021
12525, August 2002.
[25]] Aviation Industry CBT Committee, “AICC Icon Stand
ards: User Interface Version 1.0”, http://www.aicc.org/docs/A
GRs/agr009.zip, June 1996.
[26] Wilbert Kraan and Scott Wilson, “Dan Rehak: "SCOR
M is not for everyone"”, CELTIS Article, http://www.cetis.ac.
uk/content/20021002000737, October 2002.
[27] Juliette, “Is SCORM coming out ahead?”, http://www.se
ptember15.net/log_september15_archive/000100.html#000100,
October 2002.
[28] Edward Welsch, “SCORM: Clarity or Calamity?”, Onli
ne Learning Magazine, http://www.onlinelearningmag.com/onl
inelearning/magazine/article_display.jsp?vnu_content_id=15267
69.
[29] http://xml.apache.org/xindice/

