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Abstract

Tracking speakers in multi-party conversations represeant im-
portant step towards automatic analysis of meetings. phper,
we present a probabilistic method for audio-visual (AV)adqe
tracking in a multi-sensor meeting room. The algorithm fuse
formation coming from three uncalibrated cameras and a micr
phone array via a mixed-state importance particle filtetoal-
ing for the integration of AV streams to exploit the completagy
features of each modality. Our method relies on severalgprin
ples. First, a mixed state space formulation is used to define
generative model for camera switching. Second, AV lodatiaa
information is used to define an importance sampling functio
which guides the search process of a particle filter towaedgans
of the configuration space likely to contain the true configian
(a speaker). Finally, the measurement process integraiapes
color, and audio observations. We show that the principlech<
bination of imperfect modalities results in an algorithnatlauto-
matically initializes and tracks speakers engaged in resversa-
tions, reliably switching across cameras and between pigdints.

1. Introduction

Speaker detection and tracking constitute relevant taskaf-
plications that include automatic meeting analysis [16,4G@&nd
remote conferencing [21]. In the context of meetings, speakn
patterns convey a rich amount of information about the dyoam
of a group and the individual behaviour of its members, idelu
ing trends of influence, dominance and level of interest,casid
mented by a solid body of literature in social psychology]{14

understanding of rich multimodal behaviours.

Single-camera AV speaker tracking has attracted condittera
attention [3, 17, 19, 1]. Among the multiple approaches,egen
ative models that pose tracking as a statistical inferencklem,
and use either exact [17] or approximate [19, 22, 1] methodisf
ference, have shown encouraging performance. In contrask-
ing speakers in multi-camera scenarios has been less cdgnmon
studied [21, 22, 4]. While single-camera AV tracking al¢gjums
are useful for remote conferencing, meeting rooms usually c
for the use of several cameras to cover the different are@sewh
meetings unfold (table, whiteboards, and projector sQreEar-
thermore, cameras in meeting rooms often have little or rev-ov
lapping fields of view (FOVSs). In this sense, AV tracking sfmar
some features with other cases of multi-camera surveg|fh@).

In particular, Sequential Monte Carlo (SMC) or particle fil-
ters (PFs) [6] represent a principled methodology that leenb
recently used for AV tracking in single-camera [19] and rAult
camera [22] setups. For a state-space model, a PF recyrajvel
proximates the filtering distribution of states given obaébns
using a dynamical model and random sampling by (i) predictin
candidate configurations, and (ii) measuring their liketil, in a
process that amounts to random search in a configuratioe spac

Current SMC formulations for AV speaker tracking usually
fuse audio and video only at the measurement level, thus lead
ing to symmetrical models in which each modality accounts fo
the same relevance, and depending on the dynamical model to
generate candidate configurations. Furthermore, camathma
crophones are independently (and carefully) calibratedstate
modeling and measuring in 2-D or 3-D. Such formulations tend

The use of audio and video as separate cues for tracking areto overlook several important features of AV data. Firstiaus

classic problems in signal processing and computer viditmw-

ever, although audio-based speaker localization offeng valu-

able information about speaker turns [12], sound and vistiai-

mation are jointly generated when people speak, and prodde
plementary advantages for speaker tracking if their depecids
are jointly modeled [19]. Initialization and recovery frdailures
are bottlenecks in visual tracking that can be robustly eskid
with audio. However, precise object localization is beteited
to visual processing. There exists substantial evidenoetahe
role that non-verbal behaviour plays in meetings in genenad
in turn-taking in particular [14]. Automatically analyzjrthis be-
haviour, expressed in the form of gaze, facial expressimisody
postures, requires reliable localization and trackingusfhian body
parts. AV tracking therefore represents a valuable steprids\the

a strong cue to model discontinuities that clearly violageal as-
sumptions in dynamics (including speaker turns across @s)e
and (re)initialization. Its use for prediction would th&me bring
benefits to modeling realistic situations. Second, audimhbain-
accurate at times, but provides a good initial localizagoass that
could be enriched by extra visual localization informatiand in-
tegrated in a principled framework. Third, although audiigim
be imprecise, and visual calibration can be erroneous ddé&io
tortion in wide-angle cameras, their joint occurrence tetalbe
more consistent, and can be robustly learned from data.

This paper presents a mixed-state PF for multi-camera AV
speaker tracking, which addresses the points discussee admad
exploits the complementary features of the AV modalitiesthie
first place, a mixed-state space (with discrete and contimgom-



ponents) allows for the definition of a generative model fomera
switching [9]. In the second place, we advocate for the asgthm
rical use of modalities in the particle filter formulation. uéio
and color information are first used for sampling, and intet
via importance sampling (IS) [6, 8], by defining an IS funatio
that emphasizes the most informative regions of the spack. A
ditionally, audio, color and shape information are jointlyed to
compute the likelihood of candidate configurations. In tiedt
place, we present a simple yet robust AV calibration prooedu
that estimates a direct 3-D to 2-D+camera-index mappinm fro
audio localization estimates onto the image planes. Theegiure
does not requiring precise geometric calibration of camersd
microphones. The result is a principled method that caraline
and track moving speakers, and switch between multipleingget
participants across cameras in a real setting.

paper, we define a mixed-state model in which (i) human heads
in the image plane are modeled as elements of a template;spac
allowing for the description of a template and a set of vaths-
formations [2], and (ii) cameras depicting people are irdiesy a
discrete variable. Specifically, a state is defined by

X = (kh:ct),k S {0,..7NK — 1},£Ct S RNm,

wherek; is a discreteNk-valued camera index, and is a
continuous vector in the space of transformati®s . Further-
more, the dynamical model can be factorized as follows,

P(Xe|Xi—1) = p(ke| Xe—1)p(ze| ke, Xe—1). 2

The first factor in the right side of Eq. 2 constitutes a genera
tive model for switching cameras: for any given geometrm$-

The paper is organized as follows. Section 2 presents our al-formation at the previous timgy(k: = nlki—1 = m,z¢—1) =

gorithm. Section 3 describes the experimental setup. @edti
presents results. Section 5 provides final remarks.

2 Our approach for AV tracking

T..n(x:—1) represents a transition probability matrix (TPM) to
switch between cameras. The second fagif:|x:i—1,ki—1 =
m, ke = n) = Pmn(x:|zi—1) denotes elements of a set b
continuous dynamical models, one for each possible carreana t
sition. Additionally, the observation process dependshencom-
plete configuration (camera index + transformation),

Given an object representation and a Markov state-space

model, with hidden statefsx: } representing object configurations,
and observation$y.} extracted from an AV sequence composed
of multiple camera and microphone data streams, the fifjetis-
tribution p(x:|y1.:) can be recursively computed by

P(xe|Xe—1)D(Xe—1|y1:6—1)dXe -1,
1)

whereyi.: = {y1,...,y:}. The integral in Eq. 1 represents
the prediction step, in which the dynamical moggk:|x:—1)
and the previous distributiop(x¢—1|y1:t—1) are used to com-
pute a prediction distribution, which is then used as priorthe
update step, and multiplied by the likelihogdy:|x:) to gen-
erate the current filtering distribution. Except for a fevecial
cases, exact inference in this model is intractable. SMChmet
ods are usually employed to approximate Eq. 1 for non-linear
non-Gaussian problems as follows. The filtering distrifautis
defined by a set of weighted samples or partic{l(eéi), )i =
1,.., N}, wherex!” and=(” denote the i-th sample and its im-
portance weight at the current time. The point-mass appraxi
tion is given bypn (xily1e) = SN, m06(x, — x{”). The
prediction step propagates each particle according toyhard-
ics, and the updating step reweights them using their hikeld,
7 o 77 p(y|x$”). A resampling step using the new weights
is necessary to avoid degradation of the particle set [6].

A PF for AV speaker tracking involves the definition of the
state-space, the speaker model, the dynamical processare
pling strategy, the AV calibration procedure, and the obet#sn
models. These issues are discussed in the following stibssct

p(Xtly1:t) o< p(Yt|Xt)/

Xt—1

2.1 Mixed-state space for multi-camera tracking

p(ye|Xe)

The corresponding graphical model is described in Fig. 1.

p(ytlke, zt).

Figure 1. Model for tracking. Observed (resp. hidden)
variables are denoted by gray (resp. white) nodes.

Currently, we use three cameraé = 3), and the spacB™=
is a subspace of the affine transformations comprising latios
7%, 7Y and scaling, i.e.,z; = (T7, T/, 6,).

The estimated tracked configuration is computed as usual in
mixed-state models [9]. The MAP estimate of the camera index
k., and the weighted mean of the continuous compoiermfiven
the MAP discrete estimate are computed by

(4),.(3)
ZiezfC Ty Ty
t
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argmaxé D g =
T

whereZ; = {i|k{" = j}.

2.2 Person model

State-spaces defined on the image plane or in 3-D are sensible Speaker heads are represented by their silhouettes (cshitou

choices. However, 3-D modeling usually requires preciseeca
calibration and the computation of non-trivial feature2][2n this

the image plane [2]. In particular, we used a parameterigetital
ellipse to represent the basic shape.



2.3 Dynamical models

The uncountable set of TPM& ;... (z:—1) } is coarsely quan-
tized based on the value ¢ffy”,, 7} ;) to allow for camera
switching based on the speaker location at the previous. time
The image planes depicted by each of the cameras are divide
into a set of likely and unlikely regions for camera switahin
{R;¥}, {R:*}. A likely region is for instance the one occupied
by speakers when they stand up from their seats to go to thte-whi
board or projector screen (note that in practice, a speakgntm

be viewed by more than one camera based on their overlapplng

FOVSs). Two TPMs are then defined,,,,(R**) andT ., (R*™).

Regarding the individual dynamical models, when = n
each of the distributiong. (z¢|z+—1) is defined by a second-
order auto-regressive dynamical modelonWith an augmented
continuous state component denotediy= (z:,z;—1)”, each
switching dynamical model is defined by = Ap.Z:—1 +
Byn(we,0)T, whereA,,,,, B, are the parameters of each model,
andw:; is a white noise process. This set of pdfs allows to handle
camera-specific motion models, potentially useful forkiag ob-
jects viewed from rather different perspectives. Wheg n, the
pdf is substituted by a prior distributigpf, (;) that draws sam-
ples in the current image plane in regi¢R;”}. A full state in
the augmented model is therefore defined by

Xt = (Xt,Xt—l)-

2.4 Mixed-state i-particle filters

The basic PF relies only on the dynamical model to generate
candidate configurations, which as discussed earlier haitah
tions due to imperfect motion models and the need for reiniti
ization, due for instance to speaker turns. Additional kiedge
about the true configurations can be extracted from otheru®sgc
and modeled via importance sampling [6, 8], by using an 18fun
tion I:(x¢) that emphasizes the most informative regions of the
space. The technique first draws samples fib(n) rather than
from the filtering distribution, concentrating particledietter pro-
posal regions. It then introduces a correction mechanisandar
to keep the particle set as a faithful representation of tignal
distribution, defined by an importance ratio,

( ) _ PN (Xt )|Y1 t—1) _ Z;V 1 ﬂ't(J)ﬂ’(xt )|X(J) ) )
I(x;") Ti(x ,E )
and applied to the particle weigh o wt p(y |x ). A

reinitialization prior is introduced via a two-componenixtare,

(6)

whereg: (x:) denotes a reinitialization prior, angy,1 — a}
is the prior on the mixture. Another variation in the modeh te
further introduced, in which samples are drawn from theioab
dynamics, the dynamics with IS, and the reinitializatioiopwith
probabilitiesaq, a; anda,-, respectively [8].

We extend the previous use of I-PFs to multimodal fusion. Au-
dio tends to be imprecise for localization, due to discaritias
during periods of non-speech, as well as effects of revatioer
and other noise. Audio does have some important advantages h
ever, such as the ability to provide instantaneous lodadizaat

P(xtly1:e—1) = age(xt) + (1 — )P (xt|y1:6-1),

reasonable computational expense. Additionally, evenghau-
dio can be inaccurate, it can still provide reasonable Bajstthat
could be enriched by the use of extra visual localizationrimia-
tion, and integrated in the IS function. We propose an asytmme

({ical use of modalities, where audio and skin color are used f

ocalization via sampling (as part of the IS function and ribiei-
tialization prior), and shape, color and audio are furthezcuas
observations in the measurement process. For the reirsti@n
prior, the IS function is directly used; ~ ¢:. Fig. 2 summarizes
the particle filter algorithm. The definition of the IS furati and
observation models is described in detail in following fdti®ns.

(4)
17555)177715 1

Generatd k", z{" x{"} from {k{"
1. Conpute 1S function I().

2. Resanpl i ng.
{fC ~ (%)

1%
3. Prediction. Foreach{kt 1

Resample{kt 1,zt 1} to generate
} based or{r'"

7))

(a) generate a uniformly distributed numigee [0, 1].
(b) if B < ., sample fromy, (x;) to produce(k"”, z{"),
and setw” = 1.
(c) if ar < B < ar + a;, sample froml;(x;) to produce
(k7. 2{7), and setw!” as in Eq. 4.
(d) if o + az < 3, sample fromo(xt|xt,1) to produce
(6, 2" as follows and set{” = 1,
i. sample fromT . (z:—1) tO generatéci”.
ii. sample frompy,n (z¢|zi—1) tO generate:!".
4. Measurement. Re-weight each particle by computing
the observation Iikelihood and weighting by the importance

weight, 7" = wt Dp(ye|k?, 2. Normalize all weights
such thady >, m, @ =1,

Figure 2. Mixed-state i-particle filter algorithm.

2.5 AV calibration

Single-camera AV calibration works have usually assumed
simplified configurations [19, 1]. For multi-camera setingu-
thors have resorted to rigorous camera calibration praesd@2].
However, camera calibration models become more complex for
wide-angle lenses (a usual requirement in video survedar-ur-
thermore, although audio localization estimates are lysnalsy,
and visual calibration is affected by geometric distortidmeir
joint occurrence tends to be more consistent. We have threref
opted for a rough AV calibration procedure, which estimates
mapping from audio configurations in 3-D onto the correspond
ing camera image plane (or planes if there are overlappingsirO
using a training sequence, but without requiring precisergsric
calibration of audio and video. For this purpose, we colda se-
guence with a person speaking while performing activitiethe
room in typical locations (walking, sitting, moving whileated,
standing at the whiteboard and projector screen areas)atiie



localization procedure described in Section 2.8 was usedio We define a vector of theoretical time-delays associated wit

pute 3-D pointsZ; for each frame, and a visual (shape-based) PF a 3-D locationZ € R® ast? £ (%%, .. % . D7),
tracker, hand-initialized in the proper image plane, wasdu® where P is the number of pairs and”Z is the delay (in sam-
compute the corresponding 2-D+camera-index points. Thefse ples) between the microphones in pair defined asr”? =
correspondences obtained for the training set was useditede s (1Z — MP|| — || Z — MZ||) /c, whereM?, M2 € R? are the
mapping between discrete sefs: R®* — {0,.., Nx — 1} x R?, locations of the microphones in pair||.|| is the Euclidean norm,

such that 3-D positions are mapped into vectors contairangeca fs the sampling frequency, andthe speed of sound. Note that
index and image positior;'(Z:) = (k¢, T, 7). The mapping for a given time-delay and pairp, there exists a hyperboloid of

for new data is computed via nearest neighbor search. locationsZ satisfyingr?Z = 7.
From two signalss? (¢) and s (¢) of a given microphone pair
2.6 AV fusion for measurement p, the frequency-domain GCC-PHAT [11] is defined as:
We propose to combine shape and localization (audio and Ap A SV ISEOA
color) information in the measurement process. The solgaisa Gruar(f) = ‘|5f(f) [SEOHT )
of shape is clearly limited to discriminate between two efiéint
human heads. In presence of multiple people or visual ¢utte where S7(f) and S7(f) are Fourier transforms of the two
shape likelihood is multimodal, and particles with largeigits signals and[-]" denotes the complex conjugate. Typically the

would be generated for each person, and likely remain thene e two Fourier transforms are estimated on Hamming-windovegd s
after a speaker turn. Furthermore, the mean configuration (E Ments of 20-30 ms. By performing an Inverse Fourier Tramsfor
3) would be a bad representation of the posterior, as it wbeld ~ and summing the time-domain GCC-PHAT,, ,; ,.(7) across
somewhere between the peaks of the distribution withouteeor ~ pairs, we obtain the SRP-PHAT measure,
sponding to any object. Fusing shape and localization inéer P
tion (e.g. audio) in the observation process would solveatime
ambiguity, tracking speaker turns with lower latency, ameking Psrp—prar(Z z:: prar ) ®)
only onto the current speaker. Modalities are fused by dgjini

From this, the source location is estimated as

p(yelxe) = ply:" [x)p(ye*[x:), (6) .
Z = arg max [Psrp—pPuaT(Z)), (10)

where p(y;"|x;) denotes a shape-based observation likelihood,
andp(y.°°|x;) represents a localization likelihood, that uses audio Based on geometrical considerations, at least three nfiorep

and color information, as described in the following sulises. pairs (P > 3) are required to obtain a unique peak.
The maximization is implemented using an exhaustive search
2.7 Shape observations model over a fixed grid of pointsf C R® such thatvZ € R® ,3Zy €

H suchthaf(Z, Zu) < 0, wherel'(Z1, Z5) is the dlstance in

The observation model assumes that shapes are embedded i Pme delay space

clutter [2]. Edge-based measurements are computed dlong-
mal lines to a hypothesized contour, resulting in a vectaaoidi- J

date positions for each ling; = {1}, } relative to the point lying I(Z1, Z2)
on the contour. With some usual assumptions, the shape-based
observation likelihood fo, normal lines can be expressed as

"U |

P
Z (P21 — 1P Z2) (11)

and~, is the desired precision in samples. Since we typically
o L . L X H — U2 upsampleR?, ., , (T ?with afactora,, (€.9. 20),_ the (_Jlesirt_ed pre-
ply:"[xe) o< [ [ p(vilxe) o [ [ max ( K, exp(— 5,2 "))+ cision is set accordingly tgo = 1/aw,. The gridH is built by
=1 =1 7 picking points heuristically on a few concentric spherestesd
™ on the microphone array. The spheres’ radii were also datedn
by ~o. Conceptually this approach relates to [7]. Finally, foclkea

where?’!, is the nearest edge detected on#ieline, andK is a . . . . K
time frame, our implementation approximates Eq. 10 with

constant introduced when no edges are detected.

i i 7 =~ arg max [PSRpprAT(Z)]. (12)
2.8 Audio observation model ZeH

Our audio speaker localization approach consists of tagsste 2 g 2 Speech/non-speech classification
finding candidate source locatiori%, and classifying them as

speech or non-speech. Details are presented in the foljowin Speech/non-speech classification is typically seen as a pre
processing step, often based on an energy threshold oriteim

the current work however, we propose basing the speech/non-
speech decision purely on the localization informatiomfqrening

To locate sources, a simple single source localizationnigcie it after the location estimate has been obtained.

based on Time Delay of Arrival (TDOA) is used. In particular, Conventional single-channel speech/non-speech segtioenta
we use the SRP-PHAT technique [5], due to its low computation approaches are based upon energy, SNR estimation (as ior[5])
requirements and suitability for reverberant environraent more complex estimators such as zero-crossing rate [13]leWh

2.8.1 Source localization



relatively robust, techniques based on energy threshpldften several days. Skin pixels were classified based on thresigold

miss low-energy beginnings of words, or even entire spetaikes, on the skin likelihood, followed by morphological postpess-

when these are short; furthermore, they can provide a signifi ing to extract blobs. Then, the centroid positions of &}l skin

amount of erroneous audio estimates to the PF. blobs within a radius';, from any image-mapped audio estimate
Here we pose the problem of speech/non-speech classificatio are also considered as proposal Iocatlons The IS is therededs

in the framework of localization. We first run single souroedl- Ii(ke, ) = 6(ke — kf )[ '+ () whereI ¢ (x;) is a GMM using

ization on each time frame, thdrased on the localization results || AV proposals as components,
classify each frame as speech or non-speech, relying otxtenor

clustering of location estimates, as explained in the Yalhg. P NN ; PR

Short(:qterm Clustering Algorithm . (gur motivation fcij:gshort- Lo (5, T, 60) = Z AN (it ) (13)
term clustering is that noisy location estimates featugh hvari- =t
ations over time, while location estimates are consistemnind where)\{ denotes the prior on the mixture, the mea‘»jg:
speech periods. The proposed algorithm has three stepsuild) (7", 47", 1) consist of either a projected audio estimate onto
short-term clusters of frames whose location estimateslase the image plane or a skin blob centroid positi@nfr,u?y),
to each other; (2) retain only “significant clusters” by appy a and a camera-dependent, time-independent scale fa¢toand

duration constraint; and (3) label those frames belongingrly the covariance matriceés! are diagonal, with translation compo-
significant cluster as speech, others as non-speech. Tilecas nents proportional to the (camera-dependent) mean headrsiz

then be used by the PF. the training set, and with scaling component proportionathe

In step 1, two frame¢, andt; belong to the same cluster if  variance in scale of head sizes. In case of non-speech, nm¢S f
d(Zu,, Z1,) < do and|ts —t1| < Ty, whered, andTy are thresh-  tjon exists, so the filter draws samples only from the dynamic
olds in space and time respectiveli(Z:, , Z:,) is a distance de- Finally, the importance function is also used for the AV

fined according to the setup. With a single, planar microghon |ocalization-based observation likelihood,
array it is reasonable to use the difference in azimuth beme, loe
andZ;,. Ty should be close to the length of a phoneme. Py [xe) oc To(xe), (14)
For step 2, we find the longest segment within each cluster. i case there is audio, and it is a fixed constant otherwise.
If that segment lasts more than a threshbld, .., the cluster is
kept as “significant”, otherwise itis dropped. Simplereria such
as minimum cluster duration or the minimum number of frames
within the cluster did not prove adequate. Additionally,eton-
inate far-field noise sources (e.g. PC, projector), we aiscadd AV recordings were made in a 8.2n3.6mx2.4m meeting
clusters whose average SRP-PHAT value is below a threshold.  F00m containing a 4.8m1.2m rectangular meeting table, and
In step 3, frames belonging to any significant cluster areleab ~ €quipped with fully synchronized video and audio captuneats
as speech, others as non-speech. In the usual case wheuelithe a [15]. The configuration is shown in Fig. 3. The video equip-
frame rate is higher than the video frame rate, we downsample mentincludes three identical PAL-quality, CCTV cameraSK&
the audio by grouping audio 3-D estimates between consecuti SSC-DC58AP), each with a wide-angle lens with adjustable FO
video frames. For example, with audio frame rate 62.5 fps and (38° — 80°), connected to a MiniDV tape recorder. Two cam-
video frame rate 25 fps, there can be zero (non-speech)twae, ~ €ras in opposite walls record frontal views of two particiisaat

3 Experimental setup

or three (speech) audio 3-D estimafés } per video frame. the table, including the workspace area. These camerasseere
in order to avoid occlusion by participants seated on thesip@
2.9 Importance sampling function side, and have null overlapping FOVs. A third wide-view cam-

era looked over the top of the participants towards the wliiizrd
and projector screen. The audio equipment consisted ofgént-ei
element circular equi-spaced microphone array centeréaeota-
ble, with diameter 20cm, and composed of high quality muriat
electret microphones (Sennheiser MKE 2-5-C). Video was cap
tured at 25 fps, while audio was recorded at 16kHz, with fiestu
estimated at 62.5 fps. Images are 2880 pixels. In such setup,
human heads are approximately>x3b pixels in the close-views,
and about 2@ 30 in the wide-angle view.

As stated before, the IS function is defined by audio and color
information. For each frame, each of the audio estimatesDns3
mapped onto their corresponding image planes and 2-D ttati
(Section 2.5). In the camera setup in the meeting room (Fig. 3
one camera has overlapping FOV with the other two, whileghes
two cameras do not share FOVs with each other. We used a ma-,
jority rule to keep all the proposats(Z;) = (k:, Ty, TY) for the
specifick; that has the largest number of audio estima¥gs

While multiple audio estimates are beneficial for sampling,
some cases all of them are inaccurate (due to errors in thie aud . .
localization and the AV mapping), but roughly close to theetr 4 Results and discussion
configuration. Therefore, such estimates canbe used @ pid- 4 1 Aydio speaker localization evaluation
posals, and enriched by using additional visual localiratnfor-
mation in the IS process. Specifically, skin color blobs amac This section presents an evaluation of both parts of theoaudi
puted at each time for the camérachosen by audio as described speaker localization system. We first describe the test Gdsn,
before. A 20-component Gaussian Mixture Model (GMM) of skin  we report the performance of the audio source localizatistesn.
color was estimated from a training set of people of diffeegh- Afterwards, we report results of the speech/non-speedsitilea-
nicities participating in real meetings in the room, caiéetover tion system, and finally we describe the global audio peréoroe.



[ camer Tm on a single test case. The classification results were meghwlith
A, the frame accuracy on ground truth speech frames, and with
B, the frame accuracy on ground truth non-speech frames The

rancomn( - Microprone O obtained results ard = 0.766, meaning that the system missed
- ) - 23.4% of human-labeled speech frames, Brel0.984, indicating
@ O that false alarms happened in only 1.6% of non-speech frames

The pair(A, B) is indicated by a cross in Fig. 5.

In order to compare our algorithm with a single-channel
method, we applied a threshold on frame energy to determmine a
alternate speech/non-speech classification, and comtheembr-

] responding A, B) pairs. By varying the energy threshold we ob-
Figure 3. Meeting recording configuration. tained the continuous curve in Fig. 5. The energy-basedsyst
performed noticeably lower, especially if we consider tfipto
achieve a similar performance on speech frames (0.766) the

Meeting Table

[ Projector Soreen [

4.1.1 Testcase energy-based system induces many false alarms on nonkspeec
We recorded a human speaking the same utterance at nine knowrframes B = 0.854); and (ii) to achieve a similar performance
fixed locations, including two seated positions and sevandsbg on non-speech frame®B(= 0.984) the energy-based system in-
positions. These nine locations spanned an aréa‘ih azimuth, duces a much lower proportion of correct speech frames (
and from 0.9m to 2m in radius. The recording was annotated in 0.428). Since the recording contained only single sourgmsets

two manners: and a small background noise, we can anticipate that thgener

1. “Located Ground Truth (GT)": the true beginning and end based system would perform even worse on recordings with-spo
of each of the nine segments was determined by a human listenetaneous, overlapping speech.

(42 sec total). Each of these segments was thus annotatiea wit
beginning, an end and a 3-D location.

2. “Speech/non-speech GT": the entire recording (92 s) was
segmented in terms of speech and non-speech by a humaeiisten
The speech segments included the nine located segmentstiplus
ers of unknown location.

i
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4.1.2 Audio source localization

)

Audio source localization was evaluated on the nine located
ments. Cumulated error histograms are shown in Fig. 4. We ob-
serve that most frames (70.5%) yield an angle error belowlesix .
grees, most other frames having a much higher error. Therlatt 4-1.4 Global audio performance

may correspond to short silences between words. In contr@st oy the located speech segments, we counted the number of
radius estimates are not accurate, as expected with a single frames falling below an azimuth erreg. of 6° before and after
speech/non-speech classification. Results are reporfEabie 1.

For the energy-based, baseline system, we chose a SNRdltresh
such that the frame accuracy on GT non-speech frames would be
the same as for the location-based syst&n({.984).

It can be seen that the location-based system classifiestlmo
all correct location estimates as speech frames, as opposbd
energy-based system which misses many of them. The maximum
4 s azimuth error is also significantly reduced. This resultastip-
ularly important in the context of speaker tracking: unlike
Figure 4. Source localization performance (cumulative energy-based system, we can expect the location-basesist
histograms). detect speaker changes very well and with a very small deseg-

ing most of the correct audio estimates to the PF while drappi
most of the erroneous ones.

Figure 5. Speech/non-speech classification performance.
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4.1.3 Speech/non-speech classification 42 AV tracking

After running source localization on all frames, we applibd

speech/non-speech classification described in Sectiof. 2\&e Parameters in the model (dynamics and observations) were
used azimuth only and chose threshalds= 5°, T, =200 ms and hand-specified based on intuition, and kept fixed for all expe
Teonsec =100 ms. The first two thresholds were intuitively chosen, ments. Parameter estimation is an issue that has to be addres
based on the results in section 4.1.2, and on the typicalgghen in future work. Regarding the dynamical models, the TPMsawer
length, respectively. The last threshold was chosen adthoed defined byT,.,(R*") = [.90 .05 .05;.05 .90 .05;.05 .05 .90],



speech/non-speech ¢, €az €az
classification <6° > 6° max
technique (frames) | (frames)| (degrees)
none 2081 626 179.6
location-based 2076 100 37.7
energy-based 1523 89 177.3

Table 1. Overall audio speaker localization performance.

andT,, (R*¥) = [.95 .025 .025;.025 .95 .025; .025 .025 .95].
Furthermore, in the current implementation we have usetiick
motion parameters for all models, . (z:|zi—1), Ann = [21 e
Bon :[é 8] and the white noise process has standard devi-
ations for translation and scaling equal to 4 and 0.000pe®s
tively. For the shape-based observations, the number ofumea
ment linesL = 16, each with length 20 pixels, and a standard de-
viationo in Eq. 7 equal to 5 pixels. Finally, for the IS function, we
used a uniform prior for all mixture componenta? (= W),
and a radiug, = 70 pixels for all cameras.

The results should be fully appreciated by looking direetly
the AV sequences accompanying this papdie sequences are
encoded in AVI (using DIVX), and RealMedia formats.

Fig. 6(a-d) shows the results of tracking four speakers gedgja
in a two-minute conversation in the meeting room (3000 fredne
using 500 particles (weighted mean of the posterior in ret; e
mated by Eq. 3, and standard deviation from the mean in yel-
low). Speakers talk at a natural pace, and one of the paatitip
stands up and addresses the others from the projectiomsanee
whiteboard areas (see sequedemo—test—seql.avi). Audio
data are non-continuous (1815 audio samples in 3000 fraares)
there is a considerable amount of overlapping speech. @bkdr
is automatically instantiated when a person starts tallkamg re-
mains for the most part in accurate track across particsptort
the rest of the sequence with small latency. In case of queirig
speech, the tracker locks onto only one speaker. Trackingpig
challenging for the objects observed by the wide-view candeie
to distance from the array and object size.

Table 2 presents an objective evaluation of the resulteigusi
a semi-automatically generated ground-truth (GT) of speakg-
ments, which consists of the camera index and the approgimat
speaker’s head centroid in the corresponding image plareafdh
speaker segment.
considered for evaluation, as our tracker does not outpautitee
for multiple simultaneous speakers.

We define two performance measures, and present results ave

aged over ten runs of the patrticle filter. The first measured t-
ror on the estimated camera indiegs(with range [0,1]). Results
are presented for each camera, and for all the results ceahbin
Camera indices are very well estimated for cameras 1 and &t Mo
errors arise from the wide-view camera: the tracker hasdetery

to lock onto the speakers at the table, given their shorgtadce to
the microphone array, which captures small audio acti@&pb-
ally, the camera indices were correctly estimated in 88.88%%e
frames labeled in the GT.

Segments with overlapping speech were nof:

s

the error in the image plangr- vy, between the GT and es-
timated mean 2-D positions, computed over all those fraraes f
which the estimated camera index was correct. The main sourc
of error for cameras 1 and 2 is the fitting of the contour temepla
onto the neck contour rather than onto the chin. It is intergto
notice that for the wide-view camera, the camera index wagmo
difficult to predict, but the error in 2-D for the cases for atithe
index was correct remained small.

error type | modality | camy | camy | canmy | global
ex(x1072%) AV 1.91| 031 25.00| 11.27
(0.09) | (0.09) | (0.39) | (0.18)

€(T=,Tv) AV 188| 1.69| 0.40 1.00
(0.08) | (0.18) | (0.01) | (0.03)

A 11.39 | 11.86| 10.60 | 11.20

\Y 457 | 4.88| 219 3.52

Table 2. AV tracking results. The std of each measure is
shown in parenthesis; the units@Qf-- 1) are pixels.

For comparison, the results of audio-only localization as®
shown in Table 2. Figures have been computed only taking into
account frames with detected speech. The errors reportee-co
spond to the median over time of the mininum error between the
GT and all the audio estimates available at each frame. Such e
rors are the combined effect of 3-D localization and AV calib
tion. We have also included the results obtained by a visnbl-
histogram-based tracker [18] initialized by hand at eacraker
turn. Errors are slightly higher, although visually thefpemance
is similar. For this sequence, AV fusion has shown bettefoper
mance than each independent modality.

The benefit of using color and audio information compared to
audio-only in the IS function (Eg. 13) and in the measurerpent
cess (Eq. 6) can be appreciated in the sequendeo2.avi (im-
ages not shown here). In this video, the GMM defining the I$fun
tion consists only of audio estimates. It can be observedridek-
ing is less accurate than the observed in the previous exaihpé
to the inherent limitations of single microphone-arrayireates
and the errors introduced by 3-D-to-2-D mapping that arebeet
ing improved by the use of color, asdemo—test—seql.avi.

Performance of the method on a cluttered background is shown
in Fig. 6(e-i), and in videogemo—test—seq2.avi (1200 frames),
nddemo—test—seq3.avi (800 frames). The sequences display
a four-party conversation with a fifth person walking in tbem,
and creating visual distractions by approaching the speaRée
tracker can get momentarily distracted by the walking pereo
by the background visual clutter, but recovers in all casab.
though not shown here, work for a single-camera version ef th
system has shown that our formulation can also handle iadinit
ization in cases of total AV occlusion.

5 Conclusions

We have shown that AV fusion via mixed-state i-particle fil-
ters makes good use of the complementary advantages of indi-

The second performance measure is the median over time ofvidual modalities for speaker tracking in a multi-cameramo

lyww.idiap.ch/ gatica/av—tracking-multicam.html.

Our method can consistently track speakers in multi-paoty- ¢
versations. Current work concentrates in the generabaatf the



method to a multiple-object tracker, which involves theegra-
tion of person-dependent appearance models, and the tamtsis
labeling of tracked objects along time and across cameras.
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