
Gesture Recognition for Remote  
Collaborative Physical Tasks Using Tablet PCs 

 
Jiazhi Ou, Xilin Chen,  Jie Yang 

School of Computer Science   
Carnegie Mellon University, Pittsburgh, PA, USA 

{jzou,xlchen,yang+}@cs.cmu.edu 
 

 
Abstract 

 
In this paper, we present effective and efficient gesture 

recognition algorithms for building a system to support 
remote collaborative physical tasks using tablet PCs. We 
discuss problems of gesture recognition in detail. We use 
a variable window to extract curvature changes to form 
invariant local features. We then employ a hierarchical 
classifier that consists of hidden Markov model (HMM) 
and decision tree classifiers. HMMs are utilized to 
classify closed gestures, while decision tree is used to 
classify open gestures. Experiment results show that the 
overall accuracy for all gestures is 96.4%.  Accuracies for 
closed gestures and open gestures are 96.9% and 96.1% 
respectively. We have developed a prototype system 
integrating gesture and live video to support 
collaboration on physical tasks. Besides normal gesture 
recognition, the system also supports gesture fitting, 
freehand drawing, and the combination of the two. The 
system can support both human to computer interaction 
and human to human communication. 
 
1. Introduction 
 

Collaborative physical tasks refer to tasks in which two 
or more people interact with real objects in the 3D world. 
They play an important role in many domains, such as 
education, industry, and medicine. As working force 
becomes increasingly distributed, there is a critical need 
for technologies to support collaborative physical tasks. 
Prior studies of physical collaboration suggest that 
people’s speech and actions in this context are inherently 
multimodal, intricately related to the position and 
dynamics of objects, other people, and ongoing activities 
in the environment [1, 2, 3, 5, 7]. In particular, 
communication during physical tasks combines both 
speech and gesture. During verbal communication, people 
use several types of gestures to clarify or enhance their 
messages [1, 6]. Pointing gestures are used to refer to task 
objects and locations. Representational gestures, such as 
hand shapes and hand movements, are used to represent 
the form of task objects and the nature of actions to be 
used with those objects, respectively.  

In face-to-face collaboration on physical tasks, people 
can readily combine speech and gesture because they 

share the same environment. Combining speech and 
gesture is more complicated in remote collaboration 
because of the need to reference external objects. Previous 
studies of video systems to support remote collaboration 
on physical tasks (e.g., [2, 3]) have repeatedly observed 
that remote participants have difficulty communicating 
because of their inability to gesture or point at objects in 
the workspace. These communication problems have 
negative effects on performance, in that remote 
performance on physical tasks takes longer than 
performance when the collaborators are co-located. To 
facilitate remote communication on physical tasks, it is 
thus necessary to provide a tool that allows remote 
collaborators to use both speech and gesture in the same 
way they would do so if co-located. 

The majority of previous systems for remote 
collaboration, however, have paid little attention to 
supporting activities that must refer to the external spatial 
environment. Consequently, gestural communication is 
not explicitly supported by most existing computer 
supported cooperative work (CSCW) technologies. The 
objective of this research is to develop technologies to 
support communication through speech and gesture 
during collaborative physical tasks. In the current work, 
we aim to develop an inexpensive multimodal system that 
can be easily incorporated into existing video 
conferencing systems. Our goal is to allow remote 
collaborators to communicate about their physical world 
through speech and gesture with the same ease as they can 
do so when co-located. 

We approach the problem by using pen-based 
gesturing over video stream. The video stream plays a 
dual purpose in the proposed paradigm: (1) it establishes 
remote communication among collaborators, and (2) it 
provides gestural communication media. The system 
allows collaborators to share the workspace through video 
connections. It also provides remote support for gesture 
by overlaying pen-based gestures over video streams. Our 
goal is to devise a system, using desktop PC and Tablet 
PC platforms, that enables speakers and listeners to 
produce and interpret both pointing and representational 
gestures as readily as they do in face-to-face settings. The 
preliminary idea has been evaluated by implementation of 
a cursor pointing device [4]. User studies concluded that 
cursor pointing is valuable for collaboration on physical 



tasks, but that additional gestural support will be required 
to make performance using video systems as good as 
performance working side-by-side.  

In this paper, we present a system supports remote 
interaction using gestural communication over video 
streams using video cameras, tablet PCs, and desktop 
PCs. The system allows collaborators to share the 
workspace through video connections. It also provides 
remote support for pointing and representational gesture 
by overlaying pen-based gestures on video streams. Our 
objective is to find an effective and efficient way to 
recognize and fit gestures. Therefore, we employ a 
hierarchical scheme consists of hidden Markov models 
(HMM) and decision trees. 
 
2. Pen-based Gesture Recognition 
 

With the progress in hardware, touch screen has been 
widely used in various computational devices, such as 
PDA and Tablet PC, etc. This highly stimulates the 
researchers’ interests in Pen-based technologies. We use a 
pen-based interface to implement gestural communication 
over video streams.  In a pen-based interface, a gesture is 
represented by the trajectory of moving points. The task 
of gesture recognition is to classify a sequence of points 
into different predefined classes. 

The problem we address in the paper differs from 
online handwriting recognition [11, 13, 16]. Although the 
number of gestures defined in our system is smaller than 
those in online handwriting recognition systems, the 
drawing style of pen-based gesture recognition is more 
arbitrary. In a handwriting recognition system, input 
samples will have almost the same orientation and size, 
while in our system, gestures are identical under affine 
transformation. For example, straight arrows may 
represent the command to move a camera, and their 
lengths and directions are parameters of each command. 
While most online handwriting recognition algorithms use 
x/y coordinates of sample points as input features, we 
could not apply those technologies directly in gesture 
recognition because they are not invariant of rotation and 
scaling. 

Technically pen-based gesture recognition can be 
viewed as a graph recognition or classification problem if 
we do not take their scopes and commands into account. 
The earliest pen-based work is Sutherland’s Sketchpad 
[18], which is also the first graphic user interface. [8] 
described a gesture-based interface called GRANDMA. 
GRANDMA specifies single-stroke gestures drawn by 
mouse movement, beginning with the press of a mouse 
button. He used a statistical method for gesture 
recognition. First, thirteen locally and globally 
geometrical features are extracted to represent the input 
stroke. Then, the feature vector is classified as one of the 
C possible gestures via a linear evaluation function. 

Finally, a closed formula is used to calculate the weights 
in the function. 

Jorge and Fonseca used decision tree and fuzzy logic 
method for online graphics recognition [9]. The 
recognition process starts from the first pen-down event 
until a set timeout value after the last pen-up. First, global 
geometric properties of the input stoke are extracted as 
features. Second, a decision tree is applied to filter out 
unwanted shapes using distinctive criteria. Third, fuzzy 
logic is used to associate degrees of certainty to 
recognized shapes. 

Jin et al. [10] proposed an on-line sketchy graphics 
recognition algorithm. There are four pre-processing 
steps. First, it removes redundant intermediate points 
using polygonal approximation. Second, agglomerate 
points filtering is employed to reduce hooklets at the end 
of the lines and circlets at the turning corners. Third, end 
point refinement is used to delete extra points for a self-
crossed stroke and extend endpoints for an open stroke. 
Fourth, convex hull is calculated to select n vertexes to 
represent the original line. After the pre-processing, m 
points from the original n vertexes are selected with a 
recursive vertex combination algorithm. The closed-shape 
graph is classified according to the number m. 

The problem of supporting gesture recognition in 
remote collaboration on physical tasks differs from what 
has been explored in previous research in many ways. 
Technologies for supporting gesture communication in 
CSCW must be different from those supporting human-
computer interaction (HCI). In HCI, a gesture-based 
interface, which translates input gestures to coded data, is 
designed to implement human-computer communication 
through human-like styles. Humans are in the human 
computer interaction loop. The gesture recognition system 
recognizes the predefined gestures. On the other hand, the 
function of a gestural tool in CSCW systems is to mediate 
human-human communication. Instead of the human in 
the loop, we have put the computers into the human 
communication loop. The role and functions of the 
computer have been changed. Furthermore, a gesture tool 
might ideally have both HCI and CSCW functions. As an 
HCI tool, gestures can be used as an input device for 
camera control (pan, tilt, zoom). As a CSCW tool, 
gestures are intended to communicate meaning to a 
remote partner. In design of our system, we have fully 
considered how gesture recognition can be implemented 
to facilitate both to enhance interpersonal communication 
and as a camera control device. Unlike existing gesture 
recognition systems used for human computer interaction, 
which support recognition only of predefined gestures, 
our system supports recognition of predefined gestures, 
freehand drawing, and a combination of the two. We 
propose to use a hierarchical structure of classifiers that 
consist of hidden Markov models (HMMs) and decision 
trees to achieve good performance for the gesture 



recognition task. We discuss our gesture recognition 
algorithms in detail below.  
 
2.1. Preprocessing 
 

Like many other pattern recognition tasks, 
preprocessing is necessary for enhancing robustness and 
recognition accuracy. We have performed two different 
preprocessing techniques before the feature extraction. 

A user will draw a gesture at different speeds. This 
means that the sampling rate for the same gesture  is not a 
constant, i.e., for a given period of time, the number of 
samples is changeable. Several methods can be used for 
this task, such as linear, B-spline, Bezier interpolation, 
etc. In the current system we apply linear interpolation 
before  resampling the sequence of points.  

Most of the people draw gestures with hooklet-like 
segments, either in start or in the end. [10] states that the 
hooklet-like segments happen at the end of the sketchy 
lines, but we find that the hooklets are more likely to 
happen at the beginning of gestures. Therefore, if we find 
a sharp curvature change after a few points from the start, 
we remove those points, as shown in Figure 1.  

 

Figure 1. An example of removing the hook at 
the beginning of the gesture. 
 
2.2. Feature extractions 
 

Hand written signal recognition systems uses either 
local features ([11, 13, 14]) which include x (y) offsets, 
slope angles, curvatures, etc. or global features ([8, 9, 10, 
11]). In our system we first extract local features, which 
are more informative. Because we want to extract features 
that are insensitive to affine transformation, we use the 
maximum curvature within certain window as the feature 
to describe the gestures. To obtain a stable feature, we use 

a window W, which contains a gesture segment sC (
∩

AB ) 
with length of L, as shown in Figure 2. We measure the 
curvature θ of the segment as following: 

1. Select points C, and D on the segment, so that 
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2. Calculate the angle θ between AC and BD to 
measure the curvature of the segment. The larger 
the angle θ  is, the larger the curvature. 

 

A

B 

θ 

C

D 

 
Figure 2. An illustration of curvature calculation. 
 
When we compute the feature, we need to consider that 
the size of window and the coefficient c. Note that the 
curvature may change with the scale of the gesture. 
Therefore a small window may focus only on the detail of 
the curve and ignore the real important shape information. 
Similar to dynamic time wrapping (DTW) in speech 
recognition, we use a variable window size to calculate 
the curvature. We define the window size as: 

SegmentNo

dC
L

gureture∫= , 

where ],[ MaxNoMinNoSegmentNo ∈ . 
The curvature sequence {θi, i = 1,…n} is the feature 

that we use for classification. In order to differentiate the 
rotation of the slope change (clockwise or counter-
clockwise), we add a sign to each θi. In addition, some 
gestures are easy to classify with global features. We will 
introduce them in detail specifically in Section 2.3.2. 
 
2.3. Hierarchical Classifier 
 

Gesture classification is a key part for gesture 
recognition. Researchers have employed different 
classification technologies for online pen-based input, 
such as decision tree, HMM, and Bayesian network, etc. 
Our design principle is simple, high accuracy, and robust. 
In order to balance simplicity, accuracy, and robustness, 
we combine decision tree and HMM into a classifier in a 
hierarchical structure.   

Our system recognizes 12 predefined gestures, which 
can be classified into two categories by the distance 
between the first point and the last point of the gesture. 
The first category is called Closed Gestures, which 
includes Ellipse, Triangle, Quadrangle, Pentagon, and 
Star (Figure 3). The other is called Open Gestures, which 
includes Straight Line, Check, Cross, Delete, Arrow, and 
Round Arrows (Figure 4). 

   
Ellipse Triangle Quadrangle Pentagon Star 

Figure 3. Closed gestures. 



 
 

 
 

Straight Line Check Mark Cross Delete 

 
 

 

 

Arrow Round Arrow A 
(Clockwise) 

Round Arrow B 
(Counterclockwise) 

Figure 4. Open gestures. 
 
To further classify gestures within closed gesture set 

and open gesture set, we use different classifiers. Given 
an input gesture, if we know the number of vertexes (large 
curvature changes) and their orders, we can classify it by 
simple rules. Vertexes can be detected by sharp curvature 
changes, which can be achieved by the threshold method. 
However, for the closed gestures, the concept of ‘angle’ is 
quite vague sometimes. Curvature changes around obtuse 
angles are small. Arcs with low curvatures (flat arcs) are 
close to lines, arcs with high curvatures (sharp arcs) are 
close to angles, and round angles are close to arcs (seeing 
Figure 5). An explanation on this is that when a user 
draws several continues corners, they could not control 
the distribution of curvature change well. Hence ellipses 
with sharp arcs, quadrangles with round angles, and 
polygons with obtuse angles are hard to classify correctly. 
Furthermore, if we rely on the angles detected, the 
performance is very sensitive to the features. Mis-
detection of one or more  angles due to a slightly noisy 
feature will cause a wrong classified result. Therefore, we 
model lines, angles and arcs statistically with HMMs, thus 
local features are fully utilized. And we will present a 
novel constrained HMM in the next section. 
 

Sharp Arc

Flat Arc Round Angle
 

Figure 5. Examples of ambiguous angles. 
 

Open gestures, on the other hand, have more 
significant angles, and most of them are not so sensitive to 
the noisy data. If we miss an angle for Arrow or Delete 
gestures, they still can be recognized correctly by the 
other detected angles. We use a decision tree, which is 
fast and intuitive, to classify gestures in this category. 

The diagram of this hierarchical is shown in Figure 6: 

Figure 6. A hierarchical classifier. 
 
2.3.1. HMM Based Classifiers for Closed Gestures.  
Hidden Markov models are well known to model 
sequential data and were successfully applied to speech 
recognition, handwriting recognition, and other pattern 
recognition tasks [12, 13]. We found that it produced 
satisfactory results to classify closed gestures. 

Observable Symbols 
As described in Section 2.2, given an input gesture, 

we extract curvature information θi, with sign that decides 
the direction of the drawing (clockwise or counter-
clockwise). Because we don’t care this direction for the 
closed gestures we defined in our task, we use the 
absolute values as input features: 

O = { o1, o2, …, on }, where oi=|θi|. 
Discrete HMMs were used as generative models to 
generate the features. Continuous value oi is quantized 
with 20 levels (0 to 19) evenly when it is smaller than a 
threshold. Values greater than this threshold are quantized 
to one level (20). 

2-State HMMs 
Two 2-state HMMs were constructed to model 

polygons (Triangles, Quadrangles, Pentagons, and Stars) 
and Ellipses respectively. The rationale behind it is states 
for polygons represent edges and angles respectively, and 
states for ellipse represent flat arcs and sharp arcs 
respectively. Training was processed using traditional 
Baum-Welch algorithm. Initial state probability vector π, 
transition matrix A, and output probability matrix B were 
updated. The distribution of output probabilities for each 
state (B matrix) is shown in Figure 7. We can see that 
edge state and flat arc state tend to generate features 
correspond to low curvatures. While angle state and sharp 
arc state tend to generate features that correspond to 
higher curvatures. 

We have no prior knowledge on the probabilities of 
these gestures, and assume they have equally the same 
occurring probabilities. Therefore, by using the Bayesian 
decision rule to classify polygons and ellipses, we have: 

 
“Polygon”: If Pr ( O | Polygon HMM)> Pr ( O | Ellipse HMM) 

“Ellipse”: Otherwise 

Closed Gesture? 

HMM based 
classifiers 

(Section 2.3.1) 

Decision tree 
based classifiers 
(Section 2.3.2) 

Yes No 



Edge State

 

Angle State

 
Flat Arc State

 

Sharp Arc State

Figure 7. An illustration of output probabilities 
for each state. The x-axises are the curvatures 
and the y-axises are the probabilities. 
 

Constrained HMMs for Polygons 
To find the number of edges or angles generated by 

the polygon HMM, one possible way is to track the 
Viterbi path of the feature sequence and count the number 
of transitions between states, the other way is to model 
this number of transitions explicitly. The latter was 
implemented in our system because it has more fertile 
information. 

First we define PATHm as the set of state paths that 
have exactly 2×m-1 transitions between edge state and 
angle state in the polygon HMM. More specifically, paths 
in PATHm should repeat {edge state, edge state, …, edge 
state, angle state, angle state, …, angle state} m times. We 
model the probability of the number of edges given the 
input feature as: 

∑
∈

∝
mPATHpath

HMMpathHMMpathOOedgesm )|Pr(*),|Pr()|Pr( . (2) 

To calculate (2), we expand the polygon HMM 
manually to a left to right model HMM′ (Figure 8). 

 
E A E A…… 

1 2 3 2*m
 

Figure 8. The expanded left to right model HMM′. 
E and A represent edge state and angle state 
respectively. 
 
And equation (2) becomes: 

∑
∈ mPATHpath

HMMpathHMMpathO )|Pr(*),|Pr(  

)'|*2,Pr( HMMmstatelastO ==    (3) 
Note that probability calculated in equation (2) is an 
approximate value. It’s biased because when m is larger, 
there are more paths. Therefore, we penalize the model 
with more edges. That is, the model with m edges has a 
positive factor penalty(m), which satisfies 

,...4,3),()1( =>+ iipenaltyipenalty  
The classification of gestures in polygon set is: 

)}()|Pr({logmaxarg mpenaltyOedgesm
m

−  

The penalty factors were tuned using the training data. 
Both Pentagon and Star have five edges. We need a 

global feature called crossing to differentiate them 
quickly. It is defined as whether there exist two separated 
segments that intersect each other. We use the way 
presented in [11] to calculate Crossing. Obviously Star 
has enough Crossing and Pentagon doesn’t have any. 

This method can be easily extended to other polygons 
or folded lines that have a fixed number of edges. 

2.3.2. Open Gestures 
Higher Level Features 

While we don’t have the ‘blurred angle’ problem in 
the open gesture category, we could use a threshold to 
detect vertexes, that is, an angle is marked once the 
curvature is larger than the threshold. But instead, we 
want to learn the thresholds from the training examples. 
Therefore, we first specify a set of thresholds {thredk | 
k=1, 2, 3, 4 and thredi < thredi+1}. For each threshold 
thredk, the number of vertexes V_NUMk and their 
positions posk

1, posk
2, …, posk

v are recorded as higher 
level features. To decide whether it contains curves or not, 
we use the following ratio to see how well the detected 
vertexes fit the original gesture: 
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Where (xi, yi) and resampled points, posk
0=1 and posk

v+1=n. 
To detect arrows, we measure the ratio between the 

lengths of the first and the second line segments: 
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Features that are not dependant on the value of 
thresholds are Crossing described in last section and the 
majority of signs of curvatures Sign. 

Decision Tree Classifier 
In the training phase, for each gesture we extract 

(V_NUM1, …, V_NUM4, Curve1, …, Curve4, Ratio1, …, 
Ratio4, Crossing, Sign) as feature vector. C4.5 algorithm 
([17]) is applied to select the most distinguishable 
attributes and construct the decision tree. Attributes 
included in the output decision tree are shown in Table 1. 

Table 1. Attributes of the output decision tree 

V_NUM1 Discrete 
V_NUM3 Discrete 
Curve2 Continuous 
Ratio1 Continuous 
Ratio2 Continuous 
Crossing Discrete 
Sign Discrete 
 



In the test phase, only 7 attributes (out of 14) listed in 
Table 1 are needed. 
 
2.4. Gesture Fitting 
 

To better support human gestural communication, we 
provide a gesture fitting tool. Our system recognizes the 
intentional shape a user is drawing and regularizes it. We 
would like users to be able to draw arbitrary sketches, not 
restricted by the graphs we can fit. While many free hand 
sketching interfaces aim at accurate approximation to the 
input strokes (e.g. [14]), we feel it is unrealistic in our 
task if parts or all of a single gesture are potentially free 
hand drawings. To address this situation, we proposed to 
combine gesture fitting with freehand drawing. 

A single gesture is segmented by the vertexes we have 
detected. We verify a line segment using the most 
intuitive way. If the distance between their end points is 
shorter than the original length to some extend, we reject 
it. Otherwise we connect them with a straight line. Instead 
of trying to approximate the curves, which may be 
intractable in some situations, we leave them as free hand 
drawings connected with other line segments (either 
recognized gestures or free hand drawings). 
 
3. A Prototype System  
 

We have incorporated the gesture recognition scheme 
into a system to facilitate gesturing over video within the 
context of an instructional collaborative physical task 
where two or more people interact with real objects in the 
3D world. The architecture of the system is shown in 
Figure 9. The workspace is visually shared through video 
cameras and equipped with tablet PCs, desktop PCs or 
other handheld devices. Real-time video streams from 
these cameras are sent to collaborators’ computing 
devices in the workspace. A helper can make freehand 
drawings and pen-based gestures on the touch sensitive 
screen of a computing device, overlaid on the video 
stream, just like using a real pen on a piece of paper in a 
face-to-face setting. The results are observable by all 
collaborators on their own monitors. Details of the 
implementation are discussed in the remainder of this 
section. 

Since we want to overlay gestures over video streams 
and display them together, we need two running threads: 
one is for video communication, the other is for gesture 
communication. Because they are concurrent 
procedures—i.e., the order of these two threads are 
undetermined—displaying them directly on the screen 
will have flashing effect. Therefore, an image buffer is 
prepared before the ultimate image is displayed.  

Video cameras are essential to facilitate remote 
collaboration. In order to reduce potential network delay 
caused by the video server, we opted to use network IP 
cameras, which are inherent servers, to solve the problem 

of distributing network traffic. Each network IP camera is 
a server and connected to the network independently; 
other computers on the network can be its clients. Once 
started, a network IP camera opens a TCP/IP port and 
waits for its clients. When a connection is established, the 
server’s status message and the client’s authentication 
messages will be exchanged. If the client is authenticated, 
video data will be sent in JPEG format upon a client’s 
image request message. By using this technique, the video 
flow and the process overhead is shared by all network IP 
cameras. Furthermore, because jitter is more likely to 
happen in an Internet environment because of a higher 
chance of collision, we establish a local area network 
(LAN) for our preliminary tests of the system. A wireless 
router is used to connect network IP cameras, workers’, 
and helper’s computers. The devices communicate with 
each other locally, isolated from the Internet. In this way, 
we can minimize effects caused network delay. 
Disruption of remote gestures by network jitter was 
investigated by Gutwin [15], and is an important issue we 
will be addressing in future work. 

 

 
Figure 9. Overview of system architecture. 
 

After connecting to network IP cameras, the 
communication among collaborators’ computing devices 
is also in client-server mode. For example, the worker’s 
computer can be a server and the helper’s computer can 
be clients. A socket is created on the worker’s computer. 
It waits and accepts client sockets from the helper’s 
computer. After the establishment of a connection, a 
helper can send remote gestures and commands through 
socket communication, or vice versa. The trajectories of 
freehand drawing and gesture recognition results are 
observable on all collaborators’ monitors. 

Pen-based gesture and freehand drawing consist of 
sequences of points. Each sequence starts from the pen 
touching the screen and ends when the pen is lifted. When 
the helper is drawing, the sequence of points will be 
added to a link list of the current gesture and sent to the 
workers’ computers simultaneously. While drawing, the 
helper can choose among freehand drawing, gesture 
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recognition, or drawing normalization. In freehand 
drawing, what is sketched will be shown exactly as drawn 
on the screen. In gesture recognition mode, a predefined 
gesture will be recognized and a certain command will be 
executed. In the drawing normalization mode, the current 
sequence of points will be sent to a gesture recognition 
module immediately after the user lifts the pen from the 
screen. The recognition module recognizes the shape that 
the user is trying to draw (e.g., arrow, circle) and returns a 
set of parameters to approximate the recognized shape. 
The interface, on the other hand, will use these parameters 
to synthesize and display the normalized shapes. There 
are several parameters that a user can set for sketching, 
including pen width and color of the drawing.  

In the current experiment setting, a user can make two 
sets of commands besides sketching. The first set of 
commands concern erasing gestures already drawn. A 
user can choose remove all gestures, the first gesture, or 
the latest gesture. In addition, we are testing an automatic 
fade-out function, in which each gesture fades out after a 
predefined time.  

The second set of commands is “undo/redo”. There is 
a pair of buttons and a user can always undo the last 
action (i.e., drawing or erasure) or redo what is undone. 
Inverse action is taken after each undo/redo command as 
shown in Table 2. 

Table 2. Actions to Take for Undo/Redo 

Last Action Undo Redo 

Draw a Gesture Erase Last Gesture Resume Last Gesture 

Erase Last Gesture Resume Last Gesture Erase Last Gesture 

Erase First Gesture Resume First Gesture Erase First Gesture 

Erase All Gestures Resume All Gesture Erase All Gestures 

 
The third set of commands is to take a ‘snapshot’. If a 

user wants to keep an image at any time, he/she can use 
the snapshot command to save the image as a JPEG file 
on the local disk. 
 
4. Experimental Results 
 
4.1. Experiment Setup 
 

In order to demonstrate the feasibility of the proposed 
methods, we have performed experiments to evaluate 
accuracy of gesture recognition. We collected a total of 
1337 gestures from 14 people. 666 gestures from 7 people 
were used as training data to train HMMs and tune the 
thresholds. 671 gestures from other 7 people were used as 
test data. Then we switch training data to test data and test 
data to training data. The performance was evaluated with 
the test data in these two experiments. 

We evaluated the gesture recognition accuracy in 
macro level, which is computed by first calculating the 
accuracy for each gesture individually, then averaging the 
accuracy of each class. The overall accuracy of 12 
gestures is 96.4%. 
 
4.2 Results of Closed Gestures 
 

The accuracy of closed gestures is 96.9%. Results of 
individual gestures are shown in Table 3. 

Table 3. Recognition Results for Closed Gestures 

Gestures Accuracy Gestures Accuracy 

Ellipse 99.1% Triangle 100.0%% 

Quadrangle 89.2% Pentagon 96.4% 

Star 100.0%   

 
4.3. Results of Open Gestures 
 

The accuracy of open gestures is 96.1%. Results of 
individual gestures are shown in Table 4. 

Table 4. Recognition Results for Open Gestures 

Gestures Accuracy Gestures Accuracy 

Straight Line 100.0% Check Mark 97.3% 

Cross 98.2% Delete 92.8% 

Arrow 94.6% Round Arrow A 94.6% 

Round Arrow B 95.5%   

 
4.4. Gesture Fitting 
 

We also tested combination of freehand drawing and 
gesture fitting together. An example of gesture fitting 
combined with freehand drawing is illustrated in Figure 
10.  

 
Figure 10. An example of gesture fitting. Part of a 
single gesture is free hand drawing. 
 
5. Summary 
 

Free hand 
drawing 

Recognize
d gestures 



We have developed a system support gestural 
communication over live video stream for remote 
collaborative physical tasks using tablet PCs. Our task 
differs from other gesture recognition systems in the way 
that it supports not only human to computer interaction 
but also human to human communication. Our current 
system support recognition of 12 predefined gestures, 
gesture fitting, freehand drawing, and combination of two. 
In gesture recognition, we have used a variable window to 
extract curvature changes as local features for 
representing input gestures. We have presented a novel 
hierarchical classifier that consists of hidden Markov 
models and a decision tree. HMMs handle the problems 
of ambiguous angles of closed gestures statistically. And 
the constrained HMMs can be extended to gestures with 
fixed number of edges and angles. While open gestures 
have more significant higher level features, we propose to 
extract features with different thresholds. And a decision 
tree is used select the most distinguishable features. We 
have demonstrated feasibility of the proposed algorithms 
through experiments. Recognition results have indicated 
promising performance of our algorithms. The overall 
accuracy of 12 gestures is 96.4%. Accuracies for closed 
gestures and open gestures are 96.9% and 96.1% 
respectively. 
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