Monocular Human Motion Capture with a Mixture of Regressors

Ankur Agarwal and Bill Triggs GRAVIR-INRIA-CNRS, Grenoble, France

IEEE Workshop on Vision for Human-Computer Interaction, 21 June 2005

Introduction

Goal

- To recover 3D human body pose from monocular image silhouettes
 - 3D pose = joint angles
 - Use either individual images or video sequences

Applications

- Human computer interaction
- Gesture interpretation / activity recognition
- Markerless motion capture
- Visual surveillance

"Model Free" Learning Based Approach

- No explicit 3D model recovers 3D pose directly from robust silhouette descriptors
- Human motion capture data used to train mixture of kernel regressors

Advantages

- No need to build an explicit 3D model
- Easily adaptable to different appearances/people; possibly more robust
- Motion capture data captures typical human movements, not just kinematically possible ones

Disadvantages

• Harder to interpret than explicit model, and may be less accurate

Regression based pose estimation from Silhouettes

- Robustly encode silhouette shape using vector quantized local Shape Context Histograms (z)
- Denote the output (3D pose) as a vector (x)
- Learn a regressive mapping $\mathbf{x} \sim \mathbf{r}(\mathbf{z}) \equiv \mathbf{A} \boldsymbol{\phi}(\mathbf{z}) + \mathbf{b}$

A: matrix of weight vectors, $\phi(\mathbf{z})$: vector of scalar basis functions

• Can allow for robustness/sparseness with the use of SVM/RVM ...

Training data

• Real silhouettes from motion capture videos supplemented with synthetic silhouettes from several human body models

Ambiguities in static pose reconstruction

- The silhouette (z) to pose (x) problem is inherently multi-valued.
- Treating it as a function can lead to averaging or zig-zagging between different solutions.

Multimodal Pose Estimation

- Introduce a discrete latent variable k ∈ {1, 2...K} to encode the information missing in the silhouette.
- Assume a mixture of experts model based on K underlying functional regression rules x ~ r_k(z):

$$p(\mathbf{x} | \mathbf{z}) = \sum_{k=1}^{K} p(\mathbf{x} | \mathbf{z}, k) p(k | \mathbf{z}), \qquad p(\mathbf{x} | \mathbf{z}, k) = \mathcal{N}(\mathbf{r}_k(\mathbf{z}), \mathbf{\Lambda}_k)$$

• Linear regressor within each component k

$$\mathbf{r}_k(\mathbf{z}) \,\equiv\, \mathbf{A}_k \, \boldsymbol{\phi}(\mathbf{z}) + \mathbf{b}_k$$

Obtain multimodal probabilistic solutions in 3D pose space

Mixture of Regressors

• Fit a mixture of regressive Gaussians to the joint density ($\phi(z), x$):

$$egin{pmatrix} oldsymbol{\phi}(\mathbf{z}) \ \mathbf{x} \end{pmatrix} \simeq \sum_{k=1}^K \pi_k \, \mathcal{N}(oldsymbol{\mu}_k, oldsymbol{\Gamma}_k) \end{cases}$$

Mixture of Regressors (contd.)

• Special covariance structure enforces "regressive" noise model

$$oldsymbol{\mu}_k = egin{pmatrix} oldsymbol{\phi}(ar{\mathbf{z}}_k) \ \mathbf{r}_k(ar{\mathbf{z}}_k) \end{pmatrix}, oldsymbol{\Gamma}_k = egin{pmatrix} oldsymbol{\Sigma}_k & oldsymbol{\Sigma}_k \mathbf{A}_k^ op \ \mathbf{A}_k oldsymbol{\Sigma}_k & oldsymbol{A}_k oldsymbol{\Sigma}_k \mathbf{A}_k^ op + oldsymbol{\Lambda}_k \end{pmatrix}$$

- Parameters learned using Expectation Maximization
 - **M-step:** Estimate A_k , b_k by weighted least squares regression, Λ_k from residual errors. Compute μ_k , Σ_k , π_k for each class.
 - **E-step**: Reestimate class membership weights for each point.

Multimodal Pose Estimation from Static Images

- Provides multiple solutions for pose, with corresponding probabilities
- Most cases of ambiguity are identified

	% of frames with m solutions			Error in the	Error in best of
	m = 1	m = 2	$m \ge 3$	top solution	top 4 solutions
Test person	62	28	10	6.14°	4.8 4°
Test motion	65	28	6	7.40 °	5.37°
Train subset	72	23	5	6.14°	4.55°

Numbers of solutions and RMS joint angle reconstruction errors for 3 test sequences.

Tracking with automatic (re)initialization

- Particle filter tracker, samples from dynamics $p(\mathbf{x}_t | \mathbf{x}_{t-1})$ as usual
- Uses regressive mixture $p(\mathbf{x}_t | \mathbf{z}_t)$ to assign posterior particle weights
- (Re)initializes by sampling from full mixture

$$p(\mathbf{x}_0 | \mathbf{z}_0) = \sum_{k=1}^{K} p(k | \mathbf{z}_0). \ \mathcal{N}(\mathbf{r}_k(\mathbf{z}_0), \mathbf{\Lambda}_k)$$

• Potentially real time owing to closed form solution for posterior.

Self-Initializing 3D Tracking

Detects the presence of a person and decides whether to wait, initialize or track using observed silhouette shape.

Upper Body Gesture Recognition

- Associate (by hand) different mixture components with gestures
- Use posterior class probabilities to identify action

Training gestures (Basketball signals)

Traveling

Illegal dribble

Stop clock

-

Hand check

Technical foul

Tracking and labelling gestures

Conclusion

- "Model free" methods for recovering 3D human pose from monocular silhouettes
- Multiple hypothesis pose estimates with associated probabilities
- Stable pose recovery from static images and image sequences
- Action recognition using mixture components