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Abstract: We study the problem of articulated 3D human motion tracking in monocular video
sequences. Addressing problems related to unconstrained scene structure, uncertainty, and the high-
dimensional parameter spaces required for human modeling, we present a novel, layered-robust,
multiple hypothesis algorithm for estimating the distribution of the model parameters and propagat-
ing it over time. We use cost function based on robust contour and image intensity descriptors in a
multiple assignment data association scheme. Our mixed discrete/global and continuous/local search
technique uses both informed sampling and continuous optimization. Its novel hypothesis genera-
tion and pruning strategy focuses attention on poorly constrained directions in which large parameter
space deviations are most likely, thus adaptively tracking the complex cost surface produced by non-
linear kinematics, perspective projection and data-association problems. We also address the issue
of semi-automatic acquisition of initial model pose and proportions, and show experimental tracking
results involving complex motions with significant background clutter and self-occlusion.
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Une Approche Robuste Multi-Hypothèses Pour le Suivi de
Mouvement Humain dans des Séquences Monoculaires

Résumé : On étudie le problème de suivi des mouvements articulaires 3D humain dans des
séquences video monoculaires. En adresant des problèmes associés avec la structure non-contrainte
de la scène, l’incertitude et l’espace paramétrique de grand dimension nécessaire pour la modélisa-
tion humaine, on présente un nouvel algorithme, robuste à l’échelle, pour l’estimation de la distri-
bution sur les paramètres du modèle et leur propagation en temps. On utilise une fonction de côut
basée sur des descripteurs de contour et d’intensité robustes, dans une stratégie d’appariement mul-
tiple. Notre approche de recherche hybride discrète/globale et continue/locale ultilise à la fois un
échantionnage informé et une optimisation continue. Sa nouvelle statégie de génération et de sélec-
tion d’hypothèses, concentre ses efforts dans les directions mal estimées de l’espace paramétrique
ou de grandes déviations dans les paramètres sont les plus probables, ainsi il sera possible de suivre
adaptivement la surface de coût complexe produit par la cinématique non-linéaire, la projection
perspective et le problème d’association de données dans l’image. On adresse aussi le problème
d’acquisition semi-automatique des positions et proportions d’un modèle initiale et on présente des
résultats expérimentaux avec des mouvements complexes, avec des fonds fortement perturbés et des
auto-occultations.

Mots-clés : suivi de mouvement humain, optimisation contrainte, filtrage de particules, appariement
robuste
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1 Introduction

Extracting 3D human motion in realistic unconstrained environments based on monocular video se-
quences is a difficult process owing to the large number of parameters that even minimal generative
human models necessarily have, the incomplete observability of monocular projection, and the am-
biguities inherent in complex scene structure. We advocate an optimization based approach to this
problem, the essence of which is hybrid local/global minimization of a cost function representing
the posterior probability of the model given the data. Our cost function embodies thegeneralized
model-image mappingthat results from chaining the sequence of complex transformations that pre-
dict and evaluate model configurations in the image. It includes the effects of non-linear kinematics,
perspective projection and model to image data association. In this context, the critical issues include
strongly non-linear problem structure, observability and singularity issues, unconstrained motions,
and the ambiguous assignment of model predictions to image observations, particularly in cluttered
scenes and with inherently imperfect body and clothing modeling.

The main contribution of this paper is a robust, computationally efficient algorithm for estimat-
ing the posterior distribution over the model parameters and propagating it through time. As in other
sampling-based approaches, the distribution is represented by a set of hypotheses together with a
hypothesis generation and focusing mechanism. Our novel focusing mechanism captures the uncer-
tainty inherent in the generalized model-image mapping. Our hybrid cost optimization algorithm
involves both continuous and discrete components, namely: (i) local continuous optimization based
on robust error distributions and incorporating joint limits; (ii) informed discrete sampling and hy-
pothesis evaluation concentrated on the high-uncertainty parameter combinations of the continuous
estimate; and (iii) a final hypothesis pruning and propagation stage. We also address the problem
of semi-automatic model initialization from a single image, present a hierarchical algorithm for es-
timating body pose and proportions, and show experimental tracking results on video sequences
involving complex motions with significant background clutter and self-occlusion.

1.1 Relation to Previous Work

Approaches to body and body part tracking using 3D models can be broadly classified as either
deterministic continuous [7, 23, 18, 29, 28, 14], discrete [12, 19], or stochastic based on particle
filtering [10, 9, 25] (see [13] for a comprehensive review). Continuous approaches typically use lo-
cally linearized model approximations and unimodal Gaussian error distributions, often propagated
in time using extended Kalman filtering. Stochastic approaches use sample-based representations for
the underlying distributions, priors based on various expected motion models, and search focusing
methods ranging from importance sampling to annealing in an attempt to recover the ‘typical set’ of
probable configurations.

As far as we know, no continuous approach has used either continuous optimization based on
robust likelihood models, or optimizers incorporating hard joint limits (although [28] enforces joint
limits at the level of the Kalman filter). Nor has any dealt with robustly extracted image descriptors,
nor used a multiple assignment scheme, nor modeled or searched in a robust way the expected multi-
modal distribution over parameters.

INRIA
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Only a few works have addressedmonocular, 3Dtracking in a robust setting, particularly for
full human body models. Deutscher [9] uses a MCMC technique based on annealing to sample
the high dimensional space, but uses a clean background, an undressed person and silhouette and
edge-based components to regularize his cost function. He tracks a walking person using annealing
and temporal models but requires 3 cameras to track less periodic motion. Sidenbladh [25] uses
a similar particle-based technique to track a walking person in a more complex setting, using an
importance sampling method based on a strong learned prior motion model and an intensity-based
cost function. Both of these approaches make strong assumptions, either on the simplicity of feature
assignment (near-perfect silhouette and edge localization) and/or on the type of scene motions, to
derive specialized imporance sampling functions.

Although the use of temporal models is appealing, any tracker designed to handle an uncon-
strained environment necessarily has to deal with irregular behavior, at best requiring several motion
models and managing transitions between them. Unfortunately, multiple-model estimation schemes
in high-dimensional spaces are at present very expensive computationally [5].

While not underestimating the importance of incorporating prior knowledge of the problem do-
main, in the present work we focus on techniques rooted in the generative model approach. We
isolate two essential components of any optimization scheme based on a generative model, be it
deterministic or stochastic. The first is the careful design of the cost function, which must robustly
integrate the extracted image cues (contours, image intensity, motion boundaries) to limit the number
of spurious local minima in parameter space. The second is the analysis of the generalized mapping
linking model parameters to observations, which we believe is indispensable to allow accurate fo-
cusing of the search effort on the parameter space regions where good cost minima are most likely
to occur. We argue that analysis of the uncertainty structure of this mapping is an effective generic
technique for computationally tractable search in high-dimensional problems.

The paper is organized as follows: §2 briefly reviews the parameterization of our generative
model; §3 presents the design of the cost function in terms of robust error distributions and image
descriptors; §4 describes our hybrid continuous/discrete optimization method; §5 presents our semi-
automatic initialization method; §6 discuses experimental tracking results; and §7 summarizes and
discusses future research directions.

2 Generative Model

Our articulated model consists of kinematic and volumetric components. The underlying skeleton of
the body is modeled in terms of kinematic chains associated body parts, represented using minimal
parameterizations (xa). The volumetric structure of the parts is modeled using superquadric ellip-
soids, with additional tapering and bending parameters (xd) for approximate surface modeling [1].
Each ellipsoid is discretized as a mesh in its topological domainΩ (see Figure 1).

A typical model has around 30 kinematic d.o.f. Supplementary parameters include internal pro-
portions (xi) (8 parameters encoding the positions of hip, clavicle or skull tip joints and 9 parameters
for each volumetric part). Together, these produce a rather large parameter space, but only the kine-
matic parameters are actually estimated during tracking, although some of the internal proportions
and volumetric parameters are estimated during model initialization (see Section 5). We believe that

RR n° 4208
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Figure 1: Human body model used during tracking

such a model offers several advantages in terms of high-level interpretation and occlusion prediction,
and a good trade-off between complexity and coverage.

We encode the model representation in a single parameter vectorx = (xa, xd, xi). Any node
ui ∈ Ω corresponding to one of the model parts, can be transformed into a 3D pointpi = pi(x), and
subsequently into an image predictionri = ri(x) by means of a composite non-linear transforma-
tion:

ri = T (x) = P (pi = A(xa, xi, D(xd, ui))) (1)

whereD represents a sequence of parametric deformations which construct the corresponding part in
a self-centered reference frame,A represents a chain of rigid transformations on the corresponding
part kinematic chain, andP represents the perspective projection of the camera.

The process of model estimation involves a data association problem between individual model
feature predictionsri and one or more observations, that we shall generically denoter̄i (with ad-
ditional subscripts if these are several). We refer to∆ri(x) = r̄i − ri(x) as the feature prediction
error.

3 Cost Function Design

Whether continuous or discrete, any optimization process is dependent on the cost function to be
minimized. Besides smoothness properties, we believe that cost functions should be designed to
limit the number of spurious local minima in parameter space. Our approach employs a combination
of edge and intensity information on top of a multiple assignment strategy based on a weighting
scheme that focuses attention towards motion discontinuities. We also aim for a probabilistically
interpretable model and build our cost function around robust error distributions

INRIA
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3.1 Error Distribution and Functional Form

Robust parameter estimates are intrinsically related to the choice of a realistic likelihood model
that embodies the expected total inlier plus outlier distribution for the observation. We model the
distribution in terms of robust radial terms,ρi, whereρi(s) can be any increasing function with
ρi(0) = 0 and d

dsρi(0) = ν
σ2 , that models an error distribution corresponding to a central peak, with

influenceσ, and a widely spread background of outliersν. In this work, we use the following two
robust error distributions (usually known as ‘Lorentzian’ and ‘Leclerc’ [4]):

ρi(s, σ) = ν log(1 +
s

σ2
) (2)

ρi(s, σ) = ν(1 − e−
s

σ2 ) (3)

We aim towards a probabilistic interpretation and optimal estimates of the model parameters by
maximizing the total probability according to Bayes rule:

p(x|r̄) =
1
Z

p(r̄|x)p(x) =
1
Z

exp(−
∫

e(r̄i|x)di)p(x) (4)

wheree(r̄i|x) is the cost density associated with the observationi, p(x) is a prior on model pa-
rameters andZ a normalization constant. The cost for the observationi, expressed in terms of
corresponding model prediction ise(r̄i|x) = 1

Nν pui(x), whereN is the total number of model
nodes,Wi is a positive definite weighting matrix associated to the assignmenti, and:

pui(x) =




1
2ρi(∆ri(x)Wi∆ri(x)>), if i is assigned
νbf = ν, if back-facing
νocc = kν, k < 1, if occluded

(5)

In our MAP approach, we discretize the continuous problem and attempt to minimize the nega-
tive log-likelihood for the total posterior probability, expressed as the following cost function:

f(x) = − log(p(r̄|x)p(x))
= 1

Nν (1
2

∑
a ρa(∆ra(x)Wa∆ra(x)>)

+Nbfνbf + Noccνocc) + fp(x)
(6)

wherefp(x) is the negative log-likelihood of the prior, whileNocc andNbf the occluded and back-
faced (self-occluded) number of model nodes, respectively.

3.2 Image Descriptors

We choose both edge and intensity features for our cost function design. The images are smoothed
with a Gaussian kernel, then a Sobel edge detector is applied. We employ a robust multiscale optical
flow computation [3] to obtain both a flow field and an associated outlier map. The outlier map
conveys useful information about the motion boundaries and is used to weight the significance of
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Figure 2: Image Processing Operations: original image, motion boundaries, edge detection, flow
field in horizontal direction.

edges (see Figure 2). The motion boundaries are processed similarly to obtain a smooth image. For
each node on model occluding contour, we perform a line search along the normal and retain all
possible assignments within the search window, weighting them based onboth the edge strength
and their importance qualified by the motion boundary map. For nodes lying inside the object, we
use intensity information derived from the robust optical flow. Including multiple edge assignments
and flow, the first term in the cost function (6) becomes:

f(x) = 1
2 (

∑
i

∑
ae∈A ρiae(∆riae(x)Wiae∆riae(x)>)

+
∑

j ρjaf
(∆rjaf

(x)Wjaf
∆rjaf

(x)>))
(7)

When evaluating sampled hypothesis, only the edge based term in (7) is used (see section 4.2).

4 Hybrid Optimization

Our search technique uses a combination of robust, consistent, local continuous optimization and
more global (discrete) informed sampling.

4.1 Robust Bound Consistent Continuous Optimization

The model prediction in the image involves a complex generalized transformation including non-
linear kinematics and perspective projection. The Jacobian matrix of this transformation,J = ∂T

∂x
encodes the connection between differential quantities in the parameter and observation space, re-
spectively.

INRIA
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The robust gradient and Hessian corresponding to the predicted model featurei and the assign-
mentsa ∈ A can be derived:

gi = J>
i

∑
a∈A

ρ′iaWia∆ria (8)

Hi ≈ J>
i

∑
a∈A

(ρi
′
aWia + 2ρ′′i (Wia∆ria)(Wia∆ria)>)Ji (9)

The gradient and Hessian corresponding to all observations are assembled, together with prior con-
tributions:

g = go + 5fp, H = Ho + 52fp (10)

For optimization, we use a second order damped Newton trust region method, where a descent
direction is chosen by solving the regularized system [11]:

(H + λW )δx = −g (11)

whereW is a symmetric positive-definite matrix andλ is a dynamically chosen weighting factor.
Joint constraints are handled in the optimizer, by projecting the gradient onto the current active

constraint set. We find that imposing anatomical constraints on the joints effectively regularizes the
tracking, providing an efficient way of bringing a weak form of prior knowledge into the problem.
Also, notice that adding bound constraints in effect changes the shape of the cost function, and hence
the minimum reached. In Figure 3 we plot a 1D slice through the constrained cost function together
with a Taylor expansion based on the quadratic approximation. Notice nonzero gradient at minimum
due to the presence of the bounds. The gradient changes abruptly because the active-set projection
changes the motion direction during the slice to maintain consistency with the constraints.

4.2 Multiple Hypothesis Algorithm

We represent the evolution of our distribution over time as a set of hypotheses, weighted based on
their costs. Although representational schemes based on propagating multiple hypotheses (samples)
tend to increase the robustness in the estimated model, the great difficulty with high-dimensional
distributions is hitting their typical sets (areas where most of the probability mass is concentrated).
Consequently, informed ways of driving the sampling are needed. The main techniques developed in
the vision sampling community involve either (i) a combination of careful regularization of the cost
function, use of prior motion models, and importance sampling, or (ii) the adoption of a hierarchical
search, actually a form of Gibbs sampling (assuming Gaussian marginals) referred as partitioned
sampling [21], or (iii) general MCMC sampling techniques based on annealing.

Although we acknowledge the importance of both careful cost function design and the incor-
poration of more specific prior knowledge on human motion as a component of a robust system,
we observe that no previous sampling technique has attempted to base its search on the fundamen-
tal, and therefore generalintrinsic component of any generative model, the generalized transform
that maps points in model parameter space to observation-associated predictions, thus automatically

RR n° 4208
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Figure 3: Displaced minimum due to bounds constraints

including non-linear kinematics, perspective projection and data-association uncertainties and sin-
gularities. For example, such an algorithm is able to detect problems emphasized by [10] and to
focus the search towards those directions in parameter space.

We propose a general algorithm in which each hypothesis over model configurations is subjected
at each time-step to a robust continuous optimization. The estimation uncertainty of each hypothesis
is represented by its covariance matrix (inverse Hessian) at its convergence point. An eigenvalue
analysis primarily recovers the principal directions and we sample primarily along directions with
high uncertainty, by normalizing according to their standard deviations. We generate and evaluate a
set of hypotheses which is added to the hypothesis pool of the next frame. For speed, the evaluation
uses only the edge component of the cost function, although some information from optical flow
is automatically included by weighting by the confidence map derived from the motion boundaries.
When all hypotheses have been processed, the pool is pruned by choosing the bestk hypotheses
which are then propagated to the next time step. We have empirically studied the form of the cost
function by searching along uncertain directions for various model configurations. The careful se-
lection of image descriptors, combined with the robust continuous optimization usually produces a
smooth, singly peaked, distribution over model parameters. Locally multi-modal behavior is found
in certain configurations as shown in Figure 5, which corresponds to one of the hypotheses at times
0.8sec and 0.9sec in the human tracking sequence of Figure (8). We have also studied the cost func-
tion along uncertain directions at much larger scales in parameter space (see Figure 6) and notice
that we recover the expected robust shape of the distribution, without too many spurious local min-
ima. Consequently the conjunction of robust cost function design and informed search is likely to be
computationally efficient. The multiple hypothesis algorithm is briefly summarized in Figure (4).

INRIA
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k  number of hypothesis to propagate
ns number of smallest singular vectors to consider
pf  perturbation factor along singular directions

MultipleHypothesisA lgorithm (k, n s, p f )
{
  t = 1
  hypothesisSet(t) = InitializeModel()
  for each time−frame (t)
  {
     for all h c ε hypothesisSet(t)
     {
        nextSet = {}
        (h i ,H i ) = RobustContinousOptimize(h c)

        (v, λ)
j=1..N

 = GeneralizedEigenDecomposition(H i )

        for j = N downto N − n s
        {

   σj = 1 / sqrt( λj ) 
          for p = −p f  to p f
          {   
              nh i = h i + p σj v j

              EvaluateCost(nh i )
              Add(nh i , nextSet)
          } 
        }
     }
     hypothesisSet(t+1) = Prune(k, nextSet)

     t=t+1
  }
}

Figure 4: Multiple Hypothesis Algorithm

RR n° 4208
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5 Model Initialization

The visual tracking starts with a set of initial hypotheses resulting from a model initialization process.
Correspondences need to be specified between model joint locations and approximate joint positions
of the subject in the initial image. Given this input, we perform a consistent estimation of joint angles
and body dimensions.

INRIA
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Previous approaches to model initialization from similar input and a single view, haven’t fully
addressed the generality and consistency problems [26, 2], not enforcing the joint limits constraints
and making assumptions regarding either restricted camera models or restricted human subject poses
in the image, respectively. Alternative approaches based on approximate pose recovery based on
learned silhouette appearance [24], might be used to bootstrap an algorithm like the one we propose.

Our initialization algorithm is a hierarchical three step process that follows a certain parame-
ter estimation scheduling policy. Each stage of the estimation process is essentially based on the
formulation described in Section 4.1.

Hard joint limits constraints are automatically enforced at all stages by the optimization proce-
dure, and corresponding parameters on the left and right sides of the body are “mirrored”, while we
collect measurements from the entire body (see below). Initialization proceeds as follows. Firstly,
we solve an estimation problem under the given 3D model to 2D image correspondences (by min-
imizing the projection error), and prior intervals on the internal proportions and sizes of the body
parts (namely parametersxa, xi and and some ofxd). Secondly we optimize only over the remain-
ing volumetric body sizes alone (limb crossections and their tapering parametersxd) while holding
the other parameters fixed, using both the given correspondences and the local contour signal from
image edges. Finally, we refine all model parameters (x) based on similar image information as
in the second stage. The covariance matrix corresponding to the final estimate is used to generate
an initial set of hypotheses, which are propagated in time using the algorithm described in (4.2).
While the process is still heuristic, it gives a balance between stability and flexibility. In practice
we find that enforcing the joint constraints, mirror information and prior bounds on the variation of
body parameters gives far more stable and satisfactory results. However, in the monocular case, the
initialization always remains uncertain in some directions, a problem that is probably only soluble
by fusing pose information from multiple images.

6 Experiments

The experiments we show consists of an 8sec arm tracking sequence and a 1.2sec full body one in
noisy image sequences with complex backgrounds and cluttered subjects as well as significant self-
occlusion. Both sequences were shot at 25 FPS interlaced video rate. The experiments were run on
a SGI O2 at 270 Mhz using an unoptimized implementation. They take around 10 sec/frame for the
hand experiment and around 4 min/frame for the full human body sequence, most of the time being
spent evaluating the cost function.

Shots showing the model (rendered) overlayed on the image are shown. For the arm sequence,
only half is shown while the other half involves a similar reversed trajectory back to the starting
position. The hand sequence involves 7 d.o.f which are tracked using just 3 hypothesis resulting from
sampling along the smallest uncertain direction, while the full human body sequence involves 30
d.o.f which are tracked using 7 hypothesis based on discretizing the last 3 uncertain directions, each
with 2 hypotheses, followed by pruning and propagation in each frame. The motion is successfully
tracked over the entire sequence in both cases.

Notice that we are tracking in a cluttered background, with specular lighting and loose fitting
clothing. As the hand sequence was shot with a camera situated quite close to the subject, the

RR n° 4208



14 C.Sminchisescu and B.Triggs

deformations undergone by the arm muscles are significant. The imperfections in our arm model
are also apparent. This caused problems when using a tracker based on a single hypothesis and non-
robust Gaussian error distributions, especially at the points where the arm edges coincide with the
pillar and when the arm self-occludes. Our focus of attention strategy based on motion boundaries
helps to disambiguating the difficult configurations in which the arm (and the full human body),
passes the white pillar with strong contrast edges. As emphasized in Section 4.2, we find multi-
modal behavior during difficult configurations when the motions are far from parallel with the image
plane, for instance between 2.2sec-4sec in the arm sequence, and over almost the entire full body
sequence.

7 Conclusions

We have presented a novel multiple hypothesis approach to monocular human motion tracking. The
approach is robust at various levels, namely: (1) in the cost function involving the extracted edge and
intensity descriptors, and data association using a weighted assignment scheme based on focus of
attention; (2) at the optimization level involving joint limit consistent continuous optimization based
on realistic likelihood models, and at a more global scale by representing the posterior distribution
as a discrete set of hypotheses. An important component of the method is an efficient hypothesis
generation scheme, which automatically focuses the search in the areas of the parameter space that
are poorly estimated due to the combined effect of non-linear kinematics, perspective projection
and data-association non-linearities. We have also introduced a semi-automatic algorithm for pose
and body proportion acquisition from a single image and reported experimental results in complex
scenes. Future work will be directed towards a more rigorous analysis of the uncertainty during
initialization and its propagation in the tracking stage, and to the inclusion and application of general
priors on human poses and motions.
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