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Geéeonetrie d'images multiples

On étudie les relationsapnetriques entre une ene 3D et ses images perspectives. Les liens
entre lesimages, et la reconstruction 3D de &nse partir de ces images, sont partiesimentelu-
cidés. L'outil central est un formalisme tensoriel de Bog#8trie projective des images multiples.

La forme et la structure addprique des contrainteseghetriques qui lient les diéffentes images
d’'une primitive 3D sonefablies A partir de B, plusieurs nouvelles ethiodes de reconstruction 3D
projective d’une senea partir d'images non-caliBes sont evelopges. Pour rehausser cette struc-
ture projectivea’ une structure euclidienne, on introduit un nouveau formalisme d’auto-calibrage
d’'une cangra en mouvement.

Geometry of Multiple Images

We study the geometric relations that link a 3D scene to its perspective images. The focus is on
the connections between the images, and the 3D reconstruction of the scene from these images.
Our central tool is a tensorial formulation of the projective multi-image geometry. This is used to
determine the form and structure of the geometric constraints between the different images of a
3D primitive. Several new methods for 3D projective reconstruction of scenes from uncalibrated
images are derived from this. We then introduce a new formalism for the autocalibration of a
moving camera, that converts these projective reconstructions into Euclidean ones.
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Chapitre 1

Introduction

Cette tlesectudie les relationsapnmetriques entre une sne 3D et ses images perspectives. Les
liens entre les diffentes images, et la reconstruction 3D de Ene@ partir de ces images, sont
particuliérementelucidés. L'outil central est un formalisme tensoriel de koggtrie projective
des images multiples. Quoique I'orientation du travail soit parfois assexithie, ce formalisme
repeésente un ehicule de expressiones puissant, autant pour le calcul renque que pour le
calcul formel. Tout au long de ce travail, nous avonsedetd ne jamais perdre de vue les aspects
algorithmiques et nueriques du sujet.

Pourquoietudier la gongtrie multi-images? — Nous vivons un temps samsgdént historique.
L'accroissement explosive de tout quieeé de I'ordinateur — intelligence artificielle, lessgaux,
le web, multi-n€dia, Ealite virtuelle et augmenmt’vidéo et cirtma digitale — risque de changer non
seulement nos &ns de travailler, mais aussi nogdas de voir notre propre monde. Soit il pour
le bien ou non, le bureau et la foyer somsdfmais instrumees et vont certainement devenir de
plus en plus eactifs, sinon plus intelligents». Il ne s’agira plus de habiter dans nos espaces
mais plutt d’« interagir avec eux. La cangra et 'image seront au centre de cetealltion, car
de tous nos sens, la vision est le plus riche et le plus informatif. Les moyens de calcul serat bient”
a ce rendez-vous mais nous manquons cruellement d’algorithmes efficaces, en particulier en tout
ce qui concerne lintergtation et la commtension de &mes et de structures 3D et dynamiques.

Les @volutions techniques se fait paregjdlité, et ici on se focalise sur ladbfie d’extrac-
tion de la structure 3D partir de plusieurs images oacgiences d'image4\ titre indicative et
non-exhaustive, lesesultats obtenus porte sur les catgrices pratiques suivantes): (mesurer
ou modliser une sene pour mieux grer nos interventions sur lui @trologie photogrametrique,
contile de qualig, planification, surveillance, applicationedicales) ; i) resyntletiser d’autres
images de la mme sehe (visualisation,eduction du dbit de Eseau ehiculant des smes);

(iii) modifier ou interagir avec la soe (Ealitt augmerd; studio virtuel).

L'automatisation quasi-comegle sera souvent indispensable pour rendre ces applications viable.
Pour la plupart d’entre elles, les utilisateurs ne voudraient pakser ou maintenir un calibrage
précis des camras — il leur faut des syaties qui s'auto-calibraient euxames. Pour toutes ces
raisons, il y a un besoin deetliodes amliorées de correspondance entre images, de reconstruction
3D a partir des correspondances treas; et d’'(auto-)calibrage.

Sous-jacena tout cela, il y a un besoin de comprendre la structueerilque du domaine. Nous
partageons le point de vue qul n'y a rien de plus pratigue qu’'une bonneetirie» — elle peut
aider aux @fivations et aux implantations, indiquer les limites d’application, expliquer comment

1. Pour l'instant, un ordinateur personnel ne peut faire qu’une traitement simpliste dguense d'images de taille
raisonnablea ‘temps eel. Mais si on cri’la loi de Moore (augmentation des puissances de calcul par un facteur de deux
chaque 18 mois), il est (seulement!) 20-30 ansqx de la puissance de calcul du cortex visuel humain, estira*® a
10'* opérations par second.
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contourner leethecs, sugger d’autres directions fructueuses ...

La forme de la théese

Ceci est une thlse sur travaux. C'est un genre que je n'aimergumais que les limites de
temps et mes autresgoccupations multiples m’obligeatadopter. La plupart du texte consiste en
des articles éja publés ou soumis, reproduits ici tels qualsine simple mise en pageegr Jai
parfois pris une version longue et/ou coaigs'il en existe, mais ces modifications datent de la
mémeéepoque de la publication initiale.

J'ai résis€ a toute tentation deecrire ces travaux, ame Bgerement. Je n'ai e pas e
au dgsir d’harmoniser les notations qui varient librement de papier en papier. Ceci pour la simple
raison que si je commeajsa récrire ces textes — et en parti@rk les plus vieux — je changerais
souvent quasiment toute I'exposition ... et parfoismg (mais plus rarement) la substance.

Organisation

Le prochain chapitrevoque tes brevement, et sans entrer dans aucetai, le cadre technique
de la trese. Chacun des trois chapitres suivants introduit, et puis reproduit, plusieurs papiers sur un
théme commun: chapitre 3 — les contraintes d’appariement et I'approche tensorielle ; chapitre 4
— la reconstruction projective ; et chapitre 5 — l'auto-calibrage. Un appendice donne uemeatri’
ensemble de papiers qui n'ont pas treyslace dans le corps du texte. L'introduction de chaque
papier est susceptible de contenir des notes historiques, un bref sommaire techrégeetuet|e-
ment des perspectives et commentaires. Ces introductions n’ont pas pour intention de donner une
compehension techniqueettiillé du travail : pour cela il faut sans exception lire I'article.

Chaque papier a sa bibliographie proprtui. La bibliographiea’la fin de la teSe ne contient
que les eférences céés dans les textes introducteurs.



Chapitre 2

Cadre technigue

Geéonetrie projective

On peut maintenant raisonnablement supposer quedasjfie projective soit famiére au lec-
teur (voir,ex.[SK52, HP47]). On adopte toujours les coordeas’homoegnes pour ecrire I'espace
3D et les images projectives. Chaque point@3DY Z)" se repesente par son vecteur honeog'
(XY Z1)T ... ou par tout autre vecteur de dimensioegéla celui-cia un facteur déchelle pes.
(Cette relation dtquivalence est ne€« ~ »). Il en est de rafe pour les points imageés y) ' qui
deviennent(z y 1) ". Quoique redondante, cette repentation homagiea un avantage capital :
toute transformation projective prend une appardim@aire quand on I'exprime dans les coordon-
nées homognes. C’est le cas pour les transformations projectivé®ihographies») 3D-3D et
2D-2D, et plus particudifement pour les projections perspectives 3D-2D, qui sont au coeur de la
formation des images.

Projection centrale et calibrage interne d’'une canéra

On n'exposera pas ici sy@tiatiquement la #0rie de formation d’'images. Voir par exemple
Faugeras [Fau93] ou Horaud & Monga [HM93] pour le cas perspectif, et [JW76, Sla80] pour les
détails optiques. Bavement, i@alisons par unecaméra a projection centrale » tout dispositif de
projection d’'images avec la propit# que pour chaque demi-droiter@yon optique ») originea un
point 3D particulier (le« centre optique» de la canera), les images de tous les points 3D le long
de ce rayon soient confondus. Le netelSEnopE standard en est un exemple. Une eeancentrale
peut en principe enregistrer les rayons qui viennent de n'importe quelles directions 3D — une lentille
« oeil de poissom est une approximation — donc une image centrale cet@@st topologiqguement
un sptere (le spkte« panoramique de toutes les directions de vue au centre optique). On autorise
des @formations arbitraires dans I'image ... pourvu qu’on puissedésird’ plus tard pour retrouver
le « modele calibré » de la caneta, ar chaque point image correspoadine direction (rayon 3D au
centre) connue.

Supposons qu’on prend comme origine 3D le centre d'unescani est caligé. L'image du
point homogheX ~ (X Y Z 1)" estévidemment & un facteur céchelle pes) le point image
homoghnex ~ (X Y Z), car tous les point&\ X \Y AZ 1),\ > 0 se trouvent sur le erhe rayon
issu du centre. Cette projection image s’exprime detfichomoghe lirdaire commex ~ P X, ou
P = (I3x3]0) est lax matrice de projection » 3 x 4 de la canefa. On peut aussicrire cela sous
la formeAx = P X, oud on introduit une facteur dchelle\ pour compenser ¢chelle inconnue
relative des deuxatés de IBquation.\ s’appelle urx profondeur projective » car — moyennant
une normalisation convenable ©eX et P — elle devient la profondeur (distance du centre optique)
du point.
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Sous un changement de egp ‘euclidien (exprimen coordoneés homognes par une matrice
4 x4 (B1), ol Restune rotatiors x 3 ett un 3-vecteur de translation) on arrigeuhe matrice
de projectionP =~ (I3,3|0) (§}) = (R]t). Sion autorise aussi unefdrmation projective (ou
méme affine) arbitraire de I'image, on arrigeune matrice grérale3 x 4 (rang 3) de projection.
Au moyen de la dcomposition matricielle QR (ou plus exactement RQ), on peut obtenir d’'une telle
matrice une regi¢omposition dans la forme:

Uo
Yo

1/f

ou R;t sont une rotation et une translation qui donnenk fmse» (position et orientation) de
la can€ra, et la dformation 2D affine triangulair& est sa« matrice de calibrage interne» .
f,a,s,(ug,v) S'appellent respectivement la (distance) focale ; le rapporedeslles ; et leskewet

le point principal gongtrique de la caera. (On paratreK aussi parfois par les deux focales prin-
cipales(f,fa), et le skew et le point principalixéliquesf s et( fug,fvo). La focale peut s’exprimer
en pixéls ou — si les pigls sont dones$ en millinetres — en millinetres).

On appelle ce magle le moele « projectif sphérique » d’une canera. Il prend comme base
la géométrie projective spérique des rayons 3@ un point, notion qui date de lagdristoire de
la géonEtrie projectiveé. Le mocEle de projection centrale est en effetstipecis pour la plupart
des camsfas conventionnelles (mé part les camras« a balayage (pushbroom cameras) et les
mockEles avoisinants). Le metE projectif de calibrage internedgfbrmation projective de I'image)
est moins pecis: il esta la fois trop faible — pour la plupart des cara$, le skew est eptiément
négligeable — et trop fort — les distorsions optiques de lentille neEasen gréral régligeables,
en particulier avec les lentilles bon maegtde courte focale, ou de zoome&iimoins, dans cette
thése on adoptera toujours ce netelde camara projectif, car il est & maniable par comparaison
avec les modles internes non-lggires. En pratique, la distorsion optique ne pemegilementfre
incluse que:ij par pg-correction ;if) dans unestape d’estimation non-laggire —€tape quasiment
inévitable pour tout systhe pratique qui tenda la p€cision, mais gu’on n'abordera e ici.

1
P ~ K(R|t) K=10
0

S »

Reconstruction projective et euclidienne

Cong€quence ialuctable du fait que le processus de formation d'images soit projectif : tout
tentative dex reconstruction d’une sehea partir des images seules est aussi, de sa natemsem”
projective?. Une dsformation projective 3 la fois des caeras et de la grie ne change pas les
images, donc la structureefirmée ne peut pastfe distingee de la bonne structure au seul moyen
de ses images [Fau92, HGC92]. Pour remoatker structure refrique, il faut des contraintes non-
projectives, ou sur la soe, ou sur les mouvements, ou sur les calibrages desraarfMF92,

1. La projection suri(e. section par) un plan de la spte de rayons optiquesdit dgja courante chez lesegfretres
grecs, pouresoudre leurs probies de trigonostfie spletique &leste ... Le moele projectif spbfique s’appelle aussi
parfois le moele « projectif orient &€ » [Sto91].

2. Comme dans les images, la topologie naturelle de I'espace de reconstructions visuelles est toujours celle d’'une
sphere —ici d’'une 3-spére en 4 dimensions. Par exemple, I'imagessffue d’une droite infinie s’aget’abruptement aux
images de ses deux points de fuite ogsos coupure quietend de la structure affine 3D, et qu'on ne peut paseérgl
localiser dans les images si on ne voit qu'un segment fini de la droite. Dans chaque imagguepbn peut prolonger
le demi-cercle image de la droiteune cercle compte. La gongtrie de ces points supgptientaires reste celente —
sauf visibilite c’est identique celle des points visibles — et on peut les mettre en correspondance comremits les
images des points 3bau de& de l'infini », de la mMéme marére qu’on traite les vecteurs de direction commelpsints
a I'infini ». Gracea ces points 3D virtuels, la reconstruction de la droite devient un cercle topologique (mais elle est
droite, de rayon infini), et I'espace 3D devient uneesghtopologique. Il est dans la naturemmé de toute reconstruction
visuelle centrale de reger un tel espace. Mais la reconstruction projective rend la situation plus difficile, car sans le plan
a I'infini on ne sait plus quels sont les points virtualgeter.



FLM92, Har93a, Har94, MBB93]. C’est pour cela quetlidle de reconstruction visuelle spafe
naturellement en deux parties : la reconstruction 3D projectieed une projectivit’ 3D pies)a
partir des doneés images, et puis la reconstruction 3D euclidieneegjijsqua une transformation
3D euclidienne rigide @s)a partir de la reconstruction projective.

Il faut dire que ngime une structure projective edja tres informative. Elle nous donne toute
la géongtrie 3D nEtrique de la sene et des caaras — en principe un nombre presque illienité
paranetres —a seulement 9 paragtres pes:

— 3 déformations essentiellement projectivesgfldicement du plaa l'infini) ;
— 5étirements affines ;

— un facteur d&chelle global qu’'on ne peut jamais obtenir sans connaissances externes, car
toute 'optique (au moins dans sa limitegigtrique) est invarianta un Béchelonnement
global des camras et de la sne.

La structure projective suffit elle-emie pour certaines applications, en particulier celles de la re-
synthése des images quand elles peuvent se limiter awe@mT(Eels et virtuelles) projectives
non-calibges. Mais la plupart des applications exigent une structwigque, donc il faudra se
demander comment estimer ces derniers 8-9 patras Dans cette ¢ise onetudiera plusieurs
méthodes pour chacune de ces detapes de reconstruction.

Contraintes d’appariement multi-images

Considrons plusieurs images d’'uneese, images prises depuis plusieurs points de vue par
une ou plusieurs caenas projectives. Les images d’'une primitive 3D (qu’elle soit point, droite,
courbe, surface ...) ne sont pas ergiment indpendantes entre elles: elles doiveatifiér cer-
taines contraintes de ceténce gomngtriques, qui exigent qu’elles soient toutes les projections
d’'une méme primitive 3D quelconque. Grilddiera la forme algfirique de ces contraintes d’ap-
pariement multi-images» en dtail plus bas. En effet, elles sont toujours multetaires en les
primitives proje€es qui apparaissent, avec pour coefficients des tenseurs (tableaux multi-indices)
inter-images, fabriges de matrices de projection de plusieurs ems. Ces tenseurs d'appa-
riement » sontévidemment fonction de laepnetrie (poses relatives et calibrages internes) des
caneras. En effet, il se trouve gu’ereggral 'ensemble des tensewaracérisentet mémepara-
meétrisentla partie projective — et moyennant urggie connaissance suppientaire, souvent aussi
la partie euclidienne — de laegigtrie cangras,sans aucuneéference explicite aux quaréis 30D
En particulier, les tenseurs peuveite estinesa partir de un nombre suffisant de correspondances
inter-images des primitives, sans connaissances de qsBfit’ D'al les inEréts principaux des
contraintes d'appariement :

1° Correspondances des primitives Une fois estinees, elles sont une aide$rpuissanta
ce probEme @renne de la vision, la mise en correspondance des primitives entre images.
Elles Bduisent la recherche des points correspondants entre deux imagedraitesepi-
pblaires», et la recherche des points ou droites correspondants dans larreist sules
guentes imagea la simple pediction et rification de la pesence de la primitiva Une
position qui peut se pcalculer.

2° Synthese des nouvelles vued.a prédiction ci-dessus peut servir plus activement comme
« transfert> des primitives correspondantes entre images, pour siyséind partir de quelques
images d’'une @me, de nouvelles vues qui semblent aetér prises de points de vue dif-
ferents de ceux des images d'emtr Ceci constitue une applicatioega la mode pour la
realit virtuelle.

3° Reconstruction 3D: Vu que les contraintes d’appariemergpgéndent de laepnetrie
multi-canmgras, on peut songarrecouvrir celles-ci des contraintes, et aasstconstruire



6 Chapitre 2. Cadre technique

les primitives appaeés. Ce genre de reconstructi@ogétrique a maintes applications en
métrologie, conception, planification, visualisatioealitt virtuelle...
Une fois qu'on a estimles contraintes d’appariement, toutes ces applicationasmisiérer. En
plus, les contraintes ne reggéntent que leatiut d’'une grande toile de relationsayretriques, qui
relient primitives 3D, primitives projegs, profondeurs projectives, matrices de projection, tenseurs
d'appariement et contraintes euclidiennes dans une structure globale, complexe reegnteoh’
La plus haute revendication de cettedh, c’'est d’avoir contria élucider une partie de cette
structure.



Chapitre 3

Contraintes d’appariement, et
I'approche tensoriellea la geometrie des
Images multiples

Ce chapitre, et en particulier son premier papier, pose les fondations de touteasstdlttnaite
spécifiquement des contraintes d’appariement — contraintebatgies inter-images, qui exige que
les difféerentes images d’une primitive 3D soient toutes consistantes entre elles. Mais ces contraintes
ne sont qu’un aspect de la richegyfétrie multi-images, et les techniques tensorielles quered”
loppe ici pour ce cas sténdent et se ramifieatbien d’autres prokhes.

3.1 Resung de« The Geometry of Projective Reconstruction : Match-
ing Constraints and the Joint Image»

Historique

Ce papier re@Sente mon travail de base sur les contraintes d’appariement multi-images. Il
donne un apey résolument projective-tensorielle de ces contraintes, approche qui restera sans
doute difficile pour les non-initiés», mais qui repesentea’mon avis le moyen le plus puissant
d’aborder toute la gongtrie projective multi-images. Il fuecrit et diffug€ en manuscrit vers la fin
de 1994, et pubdi’en version courta ICCV’95! [Tri95] (voir appendice). Il fut aussi soumis a
IJCV a I'epoque, mais n’a jamass Ce jour atteint sa version finale, suéemes eticences sur sa
forme, et surtou mes peoccupations avec bien d’autres travaux.

M éthode

Avec toutes les contraintes d'appariement, I'essentiel conaigrendre legquations de pro-
jection d’'une primitive 3D« parent- hypotrétique de tous les primitives images qu’on voudrait
apparier, et dliminer algbriguement les coordoan$ 3D du parent — eventuellement aussi ses
profondeurs projectives inconnues — afin d'arriver aguations liant les primitives images entre
elles. Pour les classes principales de primitives, on peut choisir une @aisation o' I'equation de

1. ConErence qui fut un eritable tournant sur notre congrénsion de lagpmétrie multi-images, avec I'apparition
(entre autres!) d’'importantes papiers pai): Faugeras & Mourrain [FM95b, FM95a] et Heyden Astrom [Hey95,
HA95] sur les contraintes d’appariement multi-images — tous les deux traitents fapnsa peu pes le neme domaine
que cet article, avec des conclusions eahmtes;i{) Carlsson [Car95] sur la duaittntre points et centres des @aas;
(iii ) Shashua & Werman [SW95] et Hartley [Har95b] sur le tenseur trifocal, et Hartley sur I'estimation stable de la matrice
fondamentale [Har95a].
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projection estinéaire dans les coordom®s 3D inconnues de la primitive, et aussi dans sa profon-
deur projective (facteur dchelle inconnu dans I'image). Dans ce cas, les inconnues peetvent ~
éliminées avec lesatérminants, een principec’est relativement facile deediver les contraintes
d’appariement pour la primitive par cette pagtnsatior?.

Considrons le cas des points. On a plusieurs imaged'un point 3D inconnuX, par des
caneras projective®;, i = 1...m. L'equation de projection egt ~ P; X, ou, si on introduit
une profondeur projective / facteuretthelle inconnu;, A; x; = P; X. On peut rassembler toutes
ceséquations de projection dans un grand eyst matriciel3m) x (4 +m):

X
P, x¢ 0 ... 0 Y
Py 0 X ... 0 !
S .. || e =0
P, 0 0 ... Xn _)'\m

Les points imageg; et les matrices de projectidR; sont colerents avec quelque point 3D si et
seulement si ce syatie homogne a une solution. Et bien entendu, la solution donne le poifX3D
correspondant avec ses profondeurs projectlyeglgébriquement, il y a une solution si et seule-
ment si tous les mineurs étErminants des sous-matricéd)+ m) x (4 + m) de la matrice du
sysEme sont nuls. Chaque mineur se forme d'un sous-ensenmdatdigpé des lignes des matrices
de projection et des points images correspondants. Laendlliithineur donne une contrainteelg”
brique entre les projections et les points, contrainte quiatoi Erifiée si ils sont consistants avec
quelque point 3D. Unetude etaille Bvele 3 classes de ces contraintes d’appariement de points,
qui sont bilirgaire, trilirdaire, et quadrilieaire, dans les points correspondant dans 2,3,4 images.
Les coefficients des contraintes sont degedhinantst x 4 de 4 rangs des matrices de pro-
jection. lls peuvenefre rangs en«tenseurs inter-images — tableaux multi-indices, avec des
indices (dimensions) qui appartient aux plusieurs images. Pour les images 2D dnre38; il y
a precigment 4 types de tenseurs d’appariemepipdle, matrice fondamentale, tenseur trifocal et
tenseur quadrifocal. Epipdle ne figure pas directement dans les contraintes d’appariement, mais
d’ailleurs joue un ofe central dans le formalisme.

En effet, les contraintes d’appariement ne sont qu’un premier pas dans les aspects de la vi-
sion multi-images. Toute la dotie de la gonetrie multi-images s’exprimeeas naturellement sous
forme tensorielle, ce qui nous donne un moyen de calcul puissant pagor@ugie de la vision. Les
tenseurs d’appariement ne sont que I'expression la plus courante de cet aspect, et ils apparaissent
partout dans le formalisme.

Le lien entre les tenseurs et lagtétrie est tes naturel. Selon leet€bre« programme d’Erlan-
gen» de Felix KLEIN (ex.[Kle39]), une géonétrie se caraetise par son groupe de transformations,
et par les quan#s qui sont invariantes ou covariantes par ce groufmvariant » signifie « qui
transforme selon une loi cerénte eteguliere» — une telle loi s'appelle unereprésentation» du
groupe. Pour les groupes diaires (euclidien, affine, projectif ...), il se trouve que (quasiment) toutes
les repgsentations sont tensorielles, edarit construites par produit tensoriel d’'une ou plusieurs
« représentations de base — les« vecteurs» du syseme. Par exemple, dans I'espace projectif il
y a deux types de vecteurs — ceugontravariants » qui repgsentent les points projectifs, et ceux
« covariants» qui repesentent les hyperplans projectifs duaux des points. Les deux lois de trans-
formation sont aussi duales. Quand on construit un tenseur multi-indices, chaque indice correspond

2.« En principe» parce qu’en pratique, mis a part les points, cette approchegpeutes lourde. Elle ne peut que
difficilementétre implante pour les droites, et je n’ai jamais abouti pour les quadriques@hd¥ plusieurs tentatives.
Les équations de projection ne sont pluseliifes dans les matrices de projection agmscEuUxX caeras, et en plus la
dimension deseterminants monte. Donc la complexilggbrique augmenteds significativement.
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a un vecteur (ou plat™a une dimension vectorielle) d’'un de ces deux types, et transforme selon la
loi approprée. Mais dans 'espace euclidien, le groupe de transformations ag®est plus res-
treint et les deux lois de transformation se confondent, donc il N’y a qu’un seul type de vecteur et
d’indice.

En vision multi-images, il faut souvent travaillada fois dans plusieurs espaceseliffiits — par
exemple dans I'espace 3D et dans plusieurs images. En ce cas, les tenseurs peuseat gess’
indices de chacun des types disponibles en chaque espace. La notation devient plus complexe et un
peu lourde (si orvite détre ambige™...), mais le calcul tensoriel reste valable.

A titre indicatif, on peut identifier plusieurs facettes du formalisme tensoriel multi-images. Un
théme central dans nos approches est deesgmter chaque point 3D non par ses coordean”
3D, mais par I'ensemble de ses coordeas dans toutes les images. Cette aspntation« par
images eunies» est fortement redondante, mais ses liens aux geantisibles dans les images
sontévidemment beaucoup plus directes. Elle s’est neentirie approcheds fructueuse pour notre
probématique.

— La connexion projective / Plicker-Grassmann : Pour I'essentiel, la @dnétrie projective
est celle de I'alignement, de I'extension, de l'intersectioedimé. Dans un langage tensoriel,
ces oprations s’expriment par dee@rminants / sommes alte®s de composantes. Les
sous-espaces projectifs sont coordemmar leursc coordonnées Plicker-Grassmann» —
'ensemble de leursatérminants. Cette reggéntation a I'avantage atte linéaire (et donc
relativement maniable) dans ces coordees) mais elle devient rapidemergsiredondante
guand la dimension de I'espace augmente. Les coomtmnRlicker-Grassmann sont sujettes
aux« contraintes de consistance de Btker-Grassmanns, contraintes qui ont une structure
guadratique,eguliere mais exgfmement lourde en haute dimension. Tout reste maniable en
2 et 3 dimensions, mais reggénter une primitive 3D par ces images multiples peut largement
augmenter la dimension effective de I'espace ...

— « Projection inverse» des primitives images :Les primitives 3D principales (points, droites
dans la re@Sentation Ricker, quadriques dans la repentation duale) ont toutes une epr’
sentation a’leurs€équations de projection solibéairesdans leurs coordomes 3D. RCi-
proguement, on peut (si on conhi@ matrice de projection de la cama)« remonter d’'une
primitive image quelconqua Sa« primitive de support 3D » — la primitive 3D qui contient
tous les rayons optiques des points de la primitive image. (Si la primitive image est une pro-
jection, les rayons optiques — et donc famént la projection inverse — contiennent les points
de la primitive 3D d’origine). Par exemplei) (d’'un point image, on remonta son rayon
optique ; (i) d’'une droite image, on remongeson« (demi-)plan optique» — le (demi-)plan
qui contient la droite 3D et le centre optique de la eaan {ii) d’'une conique image, on
remontea son« cone optique».

On pourrait considfer qu'avec legquations de projection et lesaptions d'intersection et
d’'allongement lijaire, lesequations de projection inverse sont les emitle base de tout le
formalisme projectif-tensoriel.

— Reconstruction minimale : Si on connd”les matrices de projection des caras, on peut
reconstruire une primitive 3R partir d’'un nombre suffisant de ses images. Setpsations
de projection sont lieaires en la primitive 3D, on peugduire la reconstruction [a Bso-
lution d’'un syseme liréaire, ou — ce qui estquivalent —-a’l’« intersection » des primitives
reconstruite par projection inverse depuis les images (rayons optiques d’'un point 3D, plans
optiques d’'une droite 3D ...).
Si on ne prend que le nombre minimal des contraintes images pour faire la reconstruction,
on arrivea un« syseme de reconstruction minimal». Par exemple, il faut trois contraintes
linéaires pour reconstruire un point 3D, donc les deux cas minimaux $priitxgr une coor-
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donrée du point dans chacune de 3 imagés fiker les deux coordorg€s dans une image, et
une dans une autre. Toute autre combinaison est ou redondante, ou insuffisaeterin g’
reconstruction serait mieux conditioes si on prenait des contraintes redondantes, mais la re-
construction minimale fournit un lien important aux contraintes de transfert et d’appariement
discuges ci-dessous.

Equations de transfert : Une fois obtenue une reconstruction (soit minimale soit redondante)
d’une primitive 3D, on peut la reprojeter dans une autre image. Entre les primitivesed’entr”

et la primitive de sortie, il N’y a aucuneférence explicita'espace 3D. Donc on peut court-
circuiter I'espace 3D et travailler directement entre images.dangtrie 3D des camras est
repesente par ses auxiliaires dans les images, les tenseurs d'appariement. On peut utiliser
le transfert par exemple pour la syatie des nouvelles images depuis des points de vue
artificiels, ou pour gférer les contraintes d’appariement (voir ci-dessous).

Contraintes d’appariement: On a dja évoql€ ces contraintes. Elles peuvetie interpe-
tées dans les deuxdans suivantes i une primitive transffée vers une autres images doit
étre identigue la projection de la primitive d’origine 3D ; oui) les primitives 3D reprojetes
depuis toutes les images doivent s'intersecter d’'uperfazoterente en une primitive 3D bien
définie. Ces contraintes sont fortes utiles petablir les correspondances de primitives entre
images. Inversement, elles fournissent ureghuade pour estimer les tenseurs d’appariement
a partir d'un ensemble de correspondances initiales dans les images.

Contraintes de cbture : Vue la dgrivation des matrices de projection, les tenseurs d’appa-
riement doivent satisfaire certaines contraintes de consistance avec ces matricamrDe fa,
tensorielle, ces contraintes de cbture » expriment le fait que I'espaceel est seulement

de dimension 3 et se renferme sur lui ethe». La repgsentation d’'une primitive 3D par ses
images multiples a beaucoup degiEes de liber’et aurait pu regsenter les images 2D d’'un
espace de dimension plus grande que trois ... mais puisque ce n’est pas le cas, il doit y avoir
une« cldture» a la dimension trois. Les contraintes detale sont’'la base de la sthode de
reconstruction par otlre [Tri96b, Tri97a], qui estetrite dans le chapitre prochain. Elles en-
gendrent aussi les contraintes d’appariement aux profondeurs des contraintes de Grassmann,
qui vontétre discutes tout de suite.

Contraintes d’appariement aux profondeurs projectives :Les contraintes de atlre sont
lingaires dans les matrices de projection qui y apparaissent. Si on applique ces raatrices °
point 3D, on @grere une sfie analogue de contraintes qui lient les tenseurs d’appariement
aux images du poirdvec leurs profondeurs projectives correct8& on connd’les tenseurs

et les points images, on pewgatiErer de fapn linéaire les profondeurs correspondantes.
Ces contraintes somt I'origine de la nethode de reconstruction par factorisation projective
[ST96, Tri96a], qui esterit dans le chapitre prochain. Ehrminant les profondeurs (facteurs
d’echelle) inconnues, orcupere les contraintes d’appariement traditionnelles dont ogjaa d”
parké.

Identités Plicker-Grassmann: La dérivation depuis les matrices de projection des ten-
seurs d’appariement est essentiellemeneéasir les dferminants. En effet, les tenseurs
peuventetre identifés aux coordore€s de Rlcker-Grassmann de I'espace 3D dans I'espace
réuni de toutes les coordoa®s images. Ceci implique que les tenseurs doiverifier entre

eux des relations de consistance qui sont exactepwrivalentes aux contraintesueker-
Grassmann. Il y a un grand nombre de ces relations. Certaineseofdrrileres, mais pour

la plupart elles sont mal connues, bien que parfois utiles. On peut amségles contraintes
sur les tenseura partir des contraintes deotlite qui sont I'expression la plus primitive de
la cléture par @terminants. Les contraintes dei€kér-Grassmann servesmestimer certains
tenseurs d'appariemeatpartir d’autres, par exemple lepipdles s’expriment partir d’'une
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matrice fondamentale.

Perspectives

On peut maintenir que ce papier et ses pairs [FM95b, Hey95] ont canstitutournant de
I"etude systiatique des contraintes d’'appariement multi-images. Au nivezarithie, on a &
sormais une méise des aspects projectifs et des primitivegdimés (points, droites et plans 3D),
qui semble pour l'instant plus ou moircompEte» et « finale». Mais au niveau pratique le cas
est moins clair. Certes la communeawd dja pu capitaliser sur cette mi@Se pour ceer des al-
gorithmes de reconstruction et de transfert qui sembl@st ¢fficaces, au moins au niveau des
primitives ggongtriques isaes. Maisa'mon avis — comme c’est souvent le cas dans la recherche,
et bien qu’on a beaucoup appris dans le processustaitline victoire un pea la Pyrrhus. Misa®
part les cas les plus simples de deueerituellement de trois images, on a app&fnitivement
gue les contraintes d’appariement — et en particulier leurs contraintes de consistance entre elles —
sont algbriguement si complexes et redondantes, qu'’il semble plus prudent s’enfuir aot pleist”
la simplicite relative d’une re@sentation 3D traditionnelle. J'estime que le tenseur quadrifocal n'a
jamaiséte utilisé de faon convaincante en vraie grandeu, et que neéime pour le tenseur trifocal,

il est dans la plupart des cas plus facile de bascubar gqlie possible sur une repentation par
matrices de projection (ou ce qui revient en efida méme chose, sur une r&s€ntation homo-
graphie +epipdle). Méme si on se limite aux regséntations hyper-redondantek base d'images
(plénoptique, mosgues...), on ne peut pas se passes tohgtemps de la consistanaogBtrique
globale, qui semble exiger une repentation plus ou moins explicite du monde 3D.

Il faut également souligner qu'il y a des cas que I'on n'a pas encoresnudre, le plus im-
portantetant les contraintes d’appariement entre quadriques 3D dans 3 images (ce quieast li”
probléme de I'obtention de la structure euclidiermpartir de 3 images — voir plus bas). J'ai alberd”
ce probeme plusieurs fois par plusieursethodes diffrentes, avec des sascparfois partiels mais
jamais complets. En principe il esfacile » — 'expansion de certainsetérminantd 0 x 10 dont les
coefficients sont quadratique aux matrices de projection, et leur regroupement en terme de (termes
qui sont un produite de 5) tenseurs d’appariement. Mais en pratique c’est trop lcemtk avec
les astuces diverses que j'ai su mettre en oeuvre. |l est bien possible gu’il n'y ait aucune solution
simple. Et néme s'il N’y en a, il est probable qu’elle aurait un nombestimportante de formes
alternatives, gaCe auxequivalences Grassmann-Cayley.

3.2 Resung de « Optimal Estimation of Matching Constraints » —
SMILE’98

La version ci dessous de ce papier fut pataii workshop SMILE'98 de ECCV’98 [Tri98]. Il
décrit une approcha 'estimation optimale statistique adaptaux petits probémes gongétriques
tordus» qu’on retrouve si souvent en vision, et plus partierdment aux contraintes d’appariement
multi-images. Puis ilesume mes travaux sur une biblietjue nurefique sgcialig€e pour ce genre
de probEme. Une version pliminaire du papier contient plus detdil technique sur la &pn de
formuler I'optimisation [Tri97b].

Le texte repose sur quatre axes principaux uge reformulation du probhe gnréral d’ajuste-
ment d’un moele ggometrique sur les dora€s incertaines, bas’sur I'optimisation sous contraintes ;
(i) une discussion de la melilSation des erreurs statistiques robusté@g);une discussion de la pa-
ramétrisation des problhes gongtriques complexes, face aux litkestde choix de jauge (sygshe
de coordonaés), contraintes de consistanet, (iv) une beve discussion de comment casxér
la performance d’'une telle athode.
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Considrons un proldme d’'ajustementapnétrique simple, par exemple I'ajustement d’'une
surface implicite sur un ensemble de points 3D incertains. On suppose gu'il y«a/uaie» surface
sous-jacente qui est inconnue, et desais» points 3D sous-jacents qui scegdlement inconnus.
Les points tombent pcigment sur la surface, donc ilenfient sans aucuresidu sesquations
implicites. Mais on ne conn@i la surface ni les points — on observe seulement une versioméruit”
des points, et on voudrait estimer au mieux la surfacventuellement les points 3D sous-jacents.
L'approche classique consiste en). (minimiser en les paraatres de la surface, la somme des
distances (Mahalanobis-) orthogonales des observatidassurface ;i{) estimer le point dans la
surface la plus procha chague observation. La nouvelle approche consiste en: introduire les po-
sitions des points sous-jacents inconnus comme des paessupm@mentaires dans le prabhe,
et optimiser sutousles parareires, et de la surface, et des points. Cette @eueiapproche est
logiquement plus simple etdoriquement plus pcise, mais le nombre de paretresa optimiser
est nettement plus grandellhmoins, la matrice Jacobienne de ce nouveaersgsest &S creuse
et une formulation appro@€ de I'alggbre nunetique nous donne une algorithme efficace.

3.3 Resung de« Differential Matching Constraints » —ICCV’99

Cet article fut pubk'a ICCV’99 [Tri99]. Il reprend lesléments de base du papieatching
Constraints and the Joint Imagei dessus, et les redléloppe au cas @guent en pratique)uo”
plusieurs des caeras sont &S proches les unes aux autres. Il y avajadle nombreusetides
sur ce prol#me dans le cas de deux images caklisr& flot optique»), mais tes peu dans les cas
multi-images et/ou non-calibe’s [HO93, VF95, VFI6AH96, AHI8, SS97]. Le travail déstrém
& Heyden AH96, AH98] bas sur les sfies de Taylorgfait le seula’aborder systhatiquement
dans cette limite les contraintes multi-images. Maimon avis cette approcheetdit pas satisfai-
sante : elle mena# des contraintes etdes tenseurs défentiels tes complexes et sans fim, &
la théorie discete avait des contraintes et tenseurs relativement simples en 4 images au maximum.
La source de cette diffictest en effet lesesie de Taylor: approche hors pair quand lepld-:
cements sont vraiment infiesimaux, mais qui requiert un nombre infini de termes pour exprimer
tout dplacement fini (et tous legedlacements qu'on voit en pratiqaentfinis !).

On a donc dvelop® une expansioa la base de difffencedinies qui est mieux adapt au
probléme. En plus, pouetfe capable de traiter lee@iences multiples, oregéralise au caswles
images tombent en plusieurs groupes, celles de chaque grtami@roche les unes des autres, et les
groupesetant autories détre mieux spages. On consite aussi bavement le cas desuite d’'un
tenseur d’'appariement» le long d'une squence d’images, qui peatré une aide la suite des
cibles eta'la recouvrement de laegh¥trie caneras-sehe. Ce caa des liens forts avec I'estimation
optimale i€rative des tenseurs, car les miggeur du tenseur — ou le long de lecgience, ou dans
une boucle erative — se basent sur leemésequations.

Perspectives

Ce travail a €ussi dans le sensi@h a ceé un formalisme efficace et faci'emettre en oeuvre
pour les petits dplacements. BEnmoins, certaines de mes conclusions restgutives : dans les
cas @i tousles images sont proches les unes aux autres, bien que les expansiongremabf
finies soient possibles, elles ne me semblent pas apporter grand chose par rappesuliatsr’
correspondants non-défféntiels. Leur forme est plus complexe, leuegsion en pratique semble
la méme ou Egerement pirea'cause des erreurs de troncature, et leureddgrhon-ligarie esta
peu pes le néme: il n'y a pas de liaarisation de contraintes de consistance comme dans le cas
de la suite d’'un tenseur, car fgoint d’expansion» (le tenseur de bas quand toutes les images
coincident) est singulier.
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En plus, pour tous leesultats bass sur le tenseur trifocal, il me semble plus direct de convertir
dés que possible dans une regghtation bas sur les matrices de projection (ou — ce qui revéent °
la méme chose — sur les homographies etlaigsles).
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Abstract a topic of lively interest in the vision community.

_ _ _ _ This paper uncovers some of the beautiful and use-
This paper studies the geometry of perspective projecyy strycture that lies behind them and should be of
tion into multiple images and the matching constraints;

that this induces between the images. The combined prol—r?tereSt to anyone working on the geometry of vi-

jections produce a 3D subspace of the space of combined'©" We will show that in thre.e dimensions there

image coordinates called tiwnt image. This is a com-  are only three types of constraint: the fundamental
plete projective replica of the 3D world defined entirely Matrix, Shashua’s trilinear tensor, and a new quadri-
in terms of image coordinates, up to an arbitrary choice oflinear four image tensor. All other matching con-

certain scale factors. Projective reconstruction is a canonstraints reduce trivially to one of these three types.
ical process in the joint image requiring only the rescal- Moreover, all of the constraint tensors fit very natu-

ing of image coo'rdinates.. Thg matching cpnstraint_s te"rally into a single underlying geometric object, the

whether a set of image points is the projection of a smglejoint image Grassmannian Structural constraints

world point. In 3D there are only three types of match- h . lead drati |
ing constraint: the fundamental matrix, Shashua’s trilin- on the Grassmannian tensor lead to quadratic rela-

ear tensor, and a new quadrilinear 4 image tensor. Alltions between the matching tensors.
of these fit into a single geometric object, floint im- The joint image Grassmannian encodes precisely
age Grassmanniartensor. This encodes exactly the in- the portion of the imaging geometry that can be re-
formation needed for reconstruction: the location of the covered from image measurements. It specifies the
jointimage in the space of combined image coordinates.loca,[iOn of thgoint image, a three dimensional sub-
Keywords: Computer Vision, Visual Reconstruction, manifold of the space of combined image coordi-
Projective Geometry, Tensor Calculus, Grassmann Gepgtes containing the matching-tuples of image
ometry. points. The topology of the joint image is compli-
cated, but with an arbitrary choice of certain scale
factors it becomes a 3D projective space containing
a projective ‘replica’ of the 3D world. This replica

This is the first of two papers that examine the geom-'s all that can be inferred about the world from im-

. - age measurements. 3D reconstruction is an intrinsic,
etry underlying the recovery of 3D projective struc- . . : A
canonical geometric process only in the joint image,

ture from multiple images. This paper focuses on the . . .
P g bap however an appropriate choice of basis there allows

eometry of multi-image projection and theatch- o
9 yo 1g€ proj : the results to be transferred to the original 3D world
ing constraints that this induces on image measure- S
up to a projectivity.

ments. The second paper will deal with projective
reconstruction techniques and error models. This is a paper on the geometry of vision so there

Matching constraints like the fundamental ma- will be ‘too many equations, no algorithms and no
trix and Shashua'’s trilinear tensor [19] are currently real images’. However it also represents a power-
This unpublished paper dates from 1995. The work was sup-fUI new way to thmk_ about projective vision and
ported by the European Community through Esprit programsthat doeshave practical consequences. To under-
HCM and SECOND. stand this paper you will need to be comfortable

1 Introduction

15
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with the tensorial approach to projective geome-early vision will be ignored: we will basically as-
try: appendix A sketches the necessary backgroundsume that the images have already been reduced to
This approach will be unfamiliar to many vision re- a smoldering heap of geometry. When token match-
searchers, although a mathematician should have nmmg between images is required, divine intervention
problems with it. The change of notation is unfortu- will be invoked (or more likely a graduate student
nate but essential: the traditional matrix-vector nota-with a mouse).

tion is simply not powerful enough to express many  Our main interest is in sequences of 2D images of
of the concepts discussed here and becomes a reatdinary 3D Euclidean space, but when it is straight-
barrier to clear expression above a certain complexforward to generalize t@®; dimensional images of
ity. However in my experience effort spent learning ( dimensional space we will do so. 1D ‘linear’ cam-
the tensorial notation is amply repaid by increasederas and projection within a 2D plane are also prac-
clarity of thought. tically important, and for clarity it is often easier to

In origin this work dates from the initial projec- see the general case first.

tive reconstruction papers of Faugeras & Maybank OUr notation is fully tensorial with all indices
[3, 15, 5]. The underlying geometry of the situa- written out explicitly €.f. appendix A). It is
tion was immediately evoked by those papers gl-modelled on notation developed for mathematical
though the details took several years to gel. In thatPhySics and projective geometry by Roger Penrose

time there has been a substantial amount of word18l- Explicitindices are tedious for simple expres-
on projective reconstruction. Faugeras’ book [4] is SIoNs but make complex tensor calculatiansich

an excellent general introduction and Maybank [14] €2SI€r- Superscripts denote contravariaet point
provides a more mathematically oriented synthesis©" Vector) indices, while subscripts denote covari-
Alternative approaches to projective reconstruction@nt (- hyperplane, linear form or covector) ones.
appear in Hartleyet.al. [8] and Mohret.al. [17]. Contravariant and covariant |nd|ces transform in-
Luong & Vieville [13] have studied ‘canonic decom- Versély under changes of coordinates so thatime

positions’ of projection matrices for multiple views. traction (i.e. dot product’ or sum over all values)
Shashua [19] has developed the theory of the trilin-Of @ Covariant-contravariant pair is invariant. The
ear matching constraints, with input from Hartley EiNStein summation convention’ applies: when the
[7]. A brief summary of the present paper appearsSame index symbol appears in covariant and con-
in [21]. In parallel with the current work, both Wer- travariant positions it denotes a contraction (implicit
. ] . . b

man & Shashua [22] and Faugeras & Mourrain [6] sgmg over that index pair. For exampkjx” and
independently discovered the quadrilinear constraint< Lt POth stagdbfor standard matrix-vector multi-
and some of the related structure (but not the ‘bigPlication >-, Tyx". The repeated indices give the
picture’ — the full joint image geometry). However contraction, not the order of terms. Non-tensorial la-

the deepest debt of the current paper is to time sperf€!S like image number are never implicitly summed

in the Oxford mathematical physics research group®Ve"-

lead by Roger Penrose [18], whose notation | have Different types of index denote different space
‘borrowed’ and whose penetrating synthesis of theOr 1abel types. This makes the notation a little
geometric and algebraic points of view has been dParoque but it helps to keep things clear, espe-

powerful tool and a constant source of inspiration. Cially when there are tensors with indices in sev-
eral distinct spaces as will be common here*

denotes thehomogeneous vector space of objects
2 Conventions and Notation (i.e. tensors) with index type:, while P* denotes

the associategrojective space of such objects de-
The world and images will be treated as projectivefined only up to nonzero scale: tensdi¥ and
spaces and expressed in homogeneous coordinatesT® in ‘H” represent the same element7f for
Many equations will apply only up to scale, denoted all A # 0. We will not always distinguish points
a ~ b. The imaging process will be approximated of P* from their homogeneous representatives in
by a perspective projection. Optical effects such#*. Indicesa, b, ... denote ordinary (projectivized
as radial distortion and all the difficult problems of homogenizedd-dimensional) Euclidean space®
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(@ = 0,...,d), while A;, B;,... denote homoge- mann coordinates and dual Grassmann coordi-
neous coordinates in thB,;-dimensionali’” image  natesfor the subspace. Read appendix A for more
PAi (A; = 0,...,D;). When there are only two details on this.

imagesA and A’ are used in place of; andA,. In-

dicesi,j,... = 1,...,m areimage labels, while 3 Preludein F

p,q,... = 1,...,n arepoint labels. Greek in-

dicesa, ... denote the combined homogeneous g 4 prelude to the arduous general case, we wil

coordinates of all the images, thought of as a sin-yjeqy consider the important sub-case of a single
gle big (nl? + m)-dimensionaljoint image vector i o o images of 3D space. The low dimension-
(D =321 D). Thisis discussed in section 4. ality of this situation allows a slightly simpler (but
The same base symbol will be used for ‘the sameultimately equivalent) method of attack. We will
thing’ in different spaces, for example the equationswork rapidly in homogeneous coordinates, view-
x4 ~ Pix® (i = 1,... ,m) denote the projection ing the 2D projective image spac®s andP4’ as
of a world pointx® € P* tom distinct image points 3D homogeneous vector spadéd andH* (4 =
x4i ¢ PAi viam distinct perspective projection ma- 0,1,2; A = (/,1,2) and the 3D projective world
tricesPZ:. These equations apply only up to scale spaceP® as a 4D vector spacK® (a = 0,... ,3).
and there is an implicit summation over all values of The perspective image projections are tRent ma-
a=0,...,d tricesP4 andP2’ defined only up to scale. Assum-
We will follow the mathematicians’ convention ing that the projection matrices have rank 3, each
and use index0 for homogenization,i.e. a Eu- has a 1D kernel that corresponds to a unique world
clidean vector(z!---2%)T is represented projec- point killed by the projection:P; e* = 0 and
tively as (1 z'---z%)7 rather than(z!--- 29 1), P2 ¢ = 0. These points are called thentres
This seems more natural and makes notation an®f projection and each projects to thapipolein the
coding easier. opposite imagee? = PAe/” ande?’ = P¥ e
Tleb-< denotes the result of antisymmetrizing !fth_e centrgs of projection are distinct, the two pro-
the tensofT'®-< over all permutations of the indices 1€Ctions define & x 3 rank 2 tensor called thtein-
ab. .. c. For examplerlet = %(Tab — T, Inany Qamentallma;[‘nx 11‘;1,4/ [4]. This maps any given
d -+ 1 dimensional linear space there is a unique-up-'mage pointx (jf Jtoa correjpgndln@plpol_ar
to-scaled + 1 index alternating tensar®an and ~ 1N€ Loy ~ Fa4x” (La ~ F40x7) inthe otherim-
its dual €qyq,..a,. Up to scale, these have compo- age. Two image pom_ts c_orresponq in the sense _that
nents+1 and0 asagas . . . ay, is respectively an even ey could be the projections of a single world point
or odd permutation o1 ... n, or not a permutation I and only |fAea§,h lies on the epipolar line of the
at all. Any antisymmetrid: + 1 index contravariant Other: Faa x“x® = 0. The null d'reCt'Oni of the
tensor Tl%0-x] can be ‘dualized’ to an antisym- fundamentg! matrix are the ep_lpol$;.4A/ et =0
metric d — k index covariant oné+T),, , ,..q, = andF 44 e = 0, so every epipolar line must pass
1 Eak_,_l~~~adbo~~~kabOmbk1 and vice versa through the corresponding epipole. The fundamen-

T , . : )
Taoak  — L (4T, .y, ebsibaorar tal matrix F 44 can be estlmat_ed from image cor
. (ARt AT Okg1bd ' respondences even when the image projections are
without losing information.
_ _ T unknown.
A k dimensional projective subspace of the Two image vectors<? and x?’' can be packed

dimensional projective spacP can be denoted jnto a single 6 component vectaf = (x4 x4)T
by either the span of any + 1 independent \yhereq = 0,1,2,0/,1/,2. The space of such vec-

points{x}|i=0,... ,k} init or the intersection of o5 will be calledhomogeneous joint image space
any d — k independent linear forms (hyperplanes) 1y Quotienting out the overall scale factor
{Ili =k +1,... ,d} orthogonal to it. The an- produces a 5 dimensional projective space called
tisymmetric tensorscy® ... x,* and It -1, projective jointimage spaceP®. The two3 x 4im-

uniquely define the subspace and are (up to scale) inage projection matrices can be stacked into a single
dependent of the choice of points and forms and duab x 4 joint projection matrix P% = (P2 PA)T.
to each other. They are called respectivelsass-  If the centres of projection are distinct, no point in
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P is simultaneously killed by both projections, so any(x* x4)T € 1%, the equations

the joint projection matrix has a vanishing kernel A

and hence rank 4. This implies that the joint pro- 0 = < ua ta > ( ))XA, )
jection is a nonsingular linear bijection frof® va v A X

onto its image space if“. This 4 dimensional uax? upx? A
image space will be called tHeomogeneous joint - < vax?d vax? ) < N )

image Z7¢. Descending tgP¢, the joint projection h trivial solution if and onlv if
becomes a bijective projective equivalence between ave a nontrivial solution I and only |
uAXA uA/xA/ >

P¢ and theprojective joint image PZ¢ (the pro- AN
jection of Z into P%). The projection ofPZ“ to Fanx™x" = Det( vaxA v x4
each image is just a trivial deletion of coordinates,
so the projective joint image is a complete projec-
tive replica of the world space in image coordinates
Unfortunately,PZ is not quite unique. Any rescal-
ing {P2, P2} — {\PZ, NP2} of the underlying
projection matrices produces a different but equiv-
alent spacePZ®. However modulo this arbitrary
choice of scaling the projective joint image is canon-
ically defined by the physical situation.

Now suppose that the projection matrices are un-( uy uy > R A( uy uy )( /X 0 )
known but the fundamental matrix has been esti-\ va va VA Var 0 1/X
mated from image measurements. Silitkas rank  \yhere is an arbitrary nonsingularx 2 matrix and
2, it can be decomposed (non-uniquely!) as {\, \'} are arbitrary nonzero relative scale factors.

A is a linear mixing of the constraint vectors and has
ug  uy > no effect on the location of®, but A and \’ repre-
VA va sent rescalings of the image coordinates that move
Z° bodily according to

=0

In other words, the set of matching point pairs in
the two images is exactly the set of pairs that can
be rescaled to lie iTf“. Up to a rescaling, the joint
image is the set of matching points in the two images.
A priori, Z¢ depends on the choice of the decom-
positionF 4 4 = ua v — vauys. Infact appendix
B shows that the most general redefinition of tie
andv’s that leaved" unchanged up to scale is

Fao = ugvay —vauy = Det(

whereuy £ v4 anduy # vy are two pairs of N N

independent image covectors. It is easy to see that ( XA/ ) — ( /\/XA, >

uy < uy andvy < vy are actually pairs of cor- X A x

responding epipolar linés In terms of joint image  Hence, giverF and an arbitrary choice of the rel-
space, thex's andv’s can be viewed as a pair of 6 ative image scaling the joint imagg” is defined
component covectors defining a 4 dimensional Iin-unique|y_

ear subspacg® of H* via the equations: Appendix B also shows that given any pair of non-
singular projection matriceP# and P#" compat-

N x4 ug x4 +uy x4 ible with F 44/ in the sense that the projection of

NS {( <A ) | ( vaxA + vy xA ) every point of P* satisfies the epipolar constraint

Faa PAPY x9%" = 0, theZ® arising from fac-
AR VIR VY. x/ —0 torization of F' is projectively equivalent to th&“
VA Vg x4 arising from the projection matrices. (Here, non-
singular means that each matrix has rank 3 and the
Trivial use of the constraint equations shows that anyjoint matrix has rank 4i.e. the centres of projection
point (x4 x4")T of 7 automatically satisfies the are unique and distinct). In fact there is a constant
epipolar constrainF 4 4 x*x4" = 0. In fact, given  rescaling{PA, P2} — {APA X P’} that makes
. the two coincide.
1 H HTR. A .
Epipolarity: ua e® = 0 = wva e” follows In summary, the fundamental matrix can be fac-
from 0 = Fa. e = (uAeA) Var — (vAeA) uu, . : . . ..

. . torized to define a three dimensional projective sub-
given the independence ofiy, and v, for rank 2 F. o . .
CorrespondenceFor anyx® onu, us x* = 0 implies that ~ SPacePZ of the space of combined image coor-
Fau x? = —(vax®)uy ~uy. dinates. PZ¢ is projectively equivalent to the 3D
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world and uniquely defined by the images up to H?

an arbitrary choice of a single relative scale factor. >< Pa |

Projective reconstruction if?Z® is simply a mat- o e

ter of rescaling the homogeneous image measure-

ments. This paper investigates the geometrpHf i
and its multi-image counterparts and argues that up
to the choice of scale factor, they provitte natu-

ral canonical projective reconstruction of the infor-
mation in the images: all other reconstructions are
merely different ways of looking at the information
contained infPZ<.

HOMOGENEOUS

PROJECTIVE

"i

joint image

FULLY PROJECTIVE
/ 1-'
o
3 \e

2

x 2 <

] l =
v

>

4 Too Many Joint Images

WORLD SPACE JOINT IMAGE SPACE IMAGE SPACES

Now consider the general case of projection into
m > 1 images. We will model the world and im-
ages respectively as and D; dimensional projec-
tive spacesP® (a = 0,...,d) and P4 (4; = points. Since anyn-tuple of matching points is an
0,...,D;i=1,...,m)and use homogeneous co- element ofP41 x ... x P4n it may seem that this
ordinates everywhere. It may appear more naturakpace is the natural arena for multi-image projective
to use Euclidean or affine spaces, but when it comeseconstruction. This is almost true but we need
to discussing perspective projection it is simpler toto be a little more careful. Although most world
view things as (fragments of) projective space. Thepoints can be represented by their projections in
usual Cartesian and pixel coordinates are still in-P41 x ... x P4, the centres of projection are
homogeneous local coordinate systems covering almissing because they fail to project to anything at
most all of the projective world and image mani- all in their own images. To represent these, extra
folds, so projectivization does not change the essenpoints must be glued on B4t x - .. x PAm,
tial situation too much. When discussing perspective projections it is con-
In homogeneous coordinates the perspective imvenient to introduce homogeneous coordinates. A
age projections are represented by homogeneouseparate homogenizer is required for each image,
(D;+1) x (d+1) matrices{P2|i = 1,... ,m} that  so the result is just the Cartesian proda¢t’ x
take homogeneous representatives of world point§{42 x --. x H4= of the individual homogeneous
x® € P to homogeneous representatives of imageimage space${:. We will call this D + m di-
points x4 ~ PZix® ¢ P4, The homogeneous mensional vector spadeomogeneous joint image
vectors and matrices representing world poirts  space®. By quotienting out the overall scale fac-
image pointsx” and projectiondi are each de- tor in H® in the usual way, we can view it as a
fined only up to scale. Arbitrary nonzero rescal- D + m — 1 dimensional projective spag@* called
ings of them do not change the physical situationprojective joint image space This is abona fide
because the rescaled world and image vectors stilprojective space but it still contains the arbitrary
represent the same points of the underlying projectelative scale factors of the component images. A
tive space$® andP4, and the projection equations point of H* can be represented as/a+ m com-

Figure 1: The various joint images and projections.

x4 ~ P4 still hold up to scale. ponent column vectax® = (x4t ... x4»)T where
Any collecton of m image points thex“: are homogeneous coordinate vectors in each

{x4i]i =1,... ,m} can be viewed as a single point image. We will think of the index: as taking values

in the Cartesian produd®@4t x P42 x ... x PAm  0y,1y,...,D;,0i41,... , Dy, Where the subscripts

of the individual projective image spaces. This is aindicate the image the coordinate came from. An
D = """, D, dimensional differentiable manifold individual image vectox”i can be thought of as a
whose local inhomogeneous coordinates are jusvector inH* whose non-imageé-components van-
the combined pixel coordinates of all the image ish.
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Since the coordinates of each image are onlycoordinates. Similarly we can define the projective
defined up to scale, the natural definition of the and fully projective joint image$Z® and FPZ*
equivalence relation~’ on H® is ‘equality up as the images of the projective world spgee in
to individual rescalings of the component images’: the projective and fully projective joint image spaces
(x4t oo xAn)T o (A x4 A xA)T for P and FP* under the projective and fully pro-
all {\; #0}. So long as none of th&?: vec- jective joint projections. (EquivalentlyPZ® and
tors vanish, the equivalence classes of are m- FPI* are the projections af“ to P* and FP<).
dimensional subspaces ®i* that correspond ex- If the (D 4+ m) x (d + 1) joint projection ma-
actly to the points ofP4 x --- x P4m. However  tix P2 has rank less thai + 1 it will have a non-
when some of the“! vanish the equivalence classes trivial kernel and many world points will project to
are lower dimensional Subspaces that have no COlthe same set of image points, SO unique reconstruc-
responding point P4 x ... x P4 We will  tion will be impossible. On the other handBf* has
call the entire stratified set of equivalence classesankd-+1, the homogeneous jointimagé will be a
fully projective joint image space 7P“. Thisis g1 dimensional linear subspacef andP? will
basically P41 x ... x P4~ augmented with the pe a nonsingular linear bijection frofi® onto Z°.
lower dimensional product spacgs' x --- x P4 gimilarly, the projective joint projection will define
for each proper subset of imagés..,j. Most g nonsingular projective bijection frof® onto the
world points project to ‘regular’ points ofP“ in 4 dimensional projective spacBZ® and the fully
P4 x ... x P4, but the centres of projection projective joint projection will be a bijection (and at
prOjeCt into lower dimensional fragmentsﬁfpa. most points a diﬁeomorphism) fro® onto FPZ™

A set of perspective projections inta projec-  jn FP*. Structure inP* will be mapped bijectively
tive imagesP“i defines a uniqugoint projection g projectively equivalent structure IRZ<, SoPZ®
into the fully projective joint projective image space will be ‘as good as’P® as far as projective recon-
FP?. Given an arbitrary choice of scaling for the struction is concerned. Moreover, projection from
homogeneous representati@®;: i = 1,... ,;m} P to the individual images is a trivial throwing
of the individual image projections, the joint projec- away of coordinates and scale factors, so structure in
tion can be represented as asingle+m) x (d+1) Pz has a very direct relationship with image mea-

jOint projection matrix surements.
Pl Unfortunately, althouglPZ“ is closely related to
PO = CHE e the images it is not quite canonically defined by the

a

physical situation because it moves when the indi-
vidual image projection matrices are rescaled. How-
which defines a projective mapping between the un-ever, the truly canonical structure — the fully pro-
derlying projective spaceB* andP®. A rescaling jective joint imageFPI“ — has a complex strat-
{P4i} — {)\; P2} of the individual image projec- ified structure that is not so easy to handle. When
tion matrices does not change the physical situatiorrestricted to the product spad@’! x ... x P4m,
or the fully projective joint projection otFP%, but  FPZ? is equivalent to the projective spag¥ with
it doeschange the joint projection matriP; and  each centre of projection ‘blown up’ to the corre-
the resulting projections fror{® to H® and from  sponding image spad@“:. The missing centres of
P*toP<. An arbitrary choice of the individual pro- projection lie in lower strata ofFP“. Given this
jection scalings is always necessary to make thinggzomplication, it seems easier to work with the sim-
concrete. ple projective spac®Z® or its homogeneous repre-
Given a choice of scaling for the components of sentativeZ® and to accept that an arbitrary choice
P&, the image ofH® in H® under the joint projec- of scale factors will be required. We will do this
tion P¢ will be called thehomogeneous joint im-  from now on, but it is important to verify that this
ageZ“. This is the set of joint image space points arbitrary choice does not affect the final results, par-
that are the projection of some point in world space:ticularly as far as numerical methods and error mod-
{P& x* € H*| x® € H*}. InZ%, each world point els are concerned. It is also essential to realize that
is represented by its homogeneous vector of imagealthoughfor any one pointhe projection scale fac-

A
p;m
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tors can be chosen arbitrarily, once they are chosesome other world spacg® , the projection matrices
they apply uniformly to all other pointsno matter  (and hence the basis vectors Z“) must change
which scaling is chosen, there is a strong coherenceaccording taPg — f’g, =Py A’ to compensate.
between the scalings of different pointd central  The new basis vectors are a linear combination of the
theme of this paper is that the essence of projectivenld ones so the spad@Z® they span is not changed,
reconstruction is the recovery of this scale coherencéut the individual vectorsire changed: all we can
from image measurements. hope to recover from the images is the geometric lo-
cation of PZ%, not its particular basis.
But how can we specify the location &Z“ ge-
5 The Joint Image Grassmannian ometrically? We originally defined it as the span
Tensor of the columns of the joint projectio®y, but that
is rather inconvenient. For one thirRZ“ depends
We can view the joint projection matri@>  only on the span and not on the individual vectors,
(with some choice of the internal scalings) in two SO it is redundant to specify every componenif.
ways: (i) as a collection ofm projection ma- What is worse, the redundant components are ex-
trices from P¢ to the m imagesP4i; (i) as a actly the things that can not be recovered from image
set ofd + 1 (D + m)-component column vec- Measurements. It is not even clear how we would
tors {P%a =0,...,d} that span the joint im- USea‘span’even if we did manage to obtain it.
age subspaceZ® in H. From the second Algebraic geometers encountered this sort of

point of view the images of the standard basisproblem long ago and developed a useful par-

{(10---0)T,(01---0)7,... ,(00---1)T} for H® tial solution calledGrassmann coordinates(see
(i.e. the columns ofP%) form a basis forZ® and a  appendix A). Recall thafa---c] denotes anti-
set of homogeneous coordinates’|a = 0,... ,d} symmetrization over all permutations of the in-
can be viewed either as the coordinates of a poindices a---c. Given k + 1 independent vectors
x® in P or as the coordinates of a poilR2x® {x¢|i=0,... ,k} inad+ 1 dimensional vector

in Z* with respect to the basigP¥|a = 0,... ,d}.  spaceH?, it turns out that the antisymmetric+ 1
Similarly, the columns ofP® and the(d + 2)"¢  index Grassmann tensorx® - = x...x%]
column ZZ:O P& form a projective basis foPZ* uniquely characterizes thle+ 1 dimensional sub-
that is the image of the standard projective basisspace spanned by the vectors and (up to scale) does
{(10---0)7,...,(00---1)",(11---1) "} for P, not depend on the particular vectors of the subspace
This means thaany reconstruction iP® can be  chosen to define it. In fact a poigt lies in the span
viewed as reconstruction i®Z® with respect to a  if and only if it satisfiesx/@0ery+1] = 0, and un-
particular choice of basis thereThis is important ~ der a(k + 1) x (k + 1) linear redefinitionA’; of the
because we will see that (up to a choice of scale facbasis element$x{ }, x? % is simply rescaled by
tors)PZ¢ is canonically defined by the imaging situ- Det(A). Up to scale, the components of the Grass-
ation and can be recovered directly from image mea-mann tensor are thé + 1) x (k + 1) minors of the
surementsln fact we will show that the information (d + 1) x (k + 1) matrix of components of the{.
in the combined matching constraints is exactly the The antisymmetric tensors are global coordinates
location of the subspacBZ® in P%, and this is ex- for the £ dimensional subspaces in the sense that
actly the information we need to makecanonical each subspace is represented by a unique (up to
geometric reconstruction @“ in PZ* from image  scale) Grassmann tensor. However the parameteri-

measurements zation is highly redundant: for < k < d — 2 the
By contrast we can not hope to recover the ba-k + 1 index antisymmetric tensors have many more
sis in P or the individual columns oP¢ by im-  independent components than there are degrees of

age measurements. In fact any two worlds thatfreedom. In fact only the very special antisymmet-
project to the same joint image are indistinguish- ric tensors that can be written in the above ‘simple’
able so far as image measurements are concernetbrm xglo .- -xZ’“] specify subspaces. Those that can
Under an arbitrary nonsingular projective transfor- are characterized by the quadracassmann sim-

mationx® — %% = (A~1)%, x* betweenP® and  plicity relations x% % xbobxl = @,



22 Chapitre 3. Contraintes d’'appariement et I'approche tensorielle

In the present case thit+ 1 columns ofP§ spec- image locations are locally parameterized by the
ify the d dimensional jointimage subspa®&€®. In-  ((D +m) — (d + 1)) x (d 4+ 1) matrices, or equiva-
stead of antisymmetrizing over the image space indently by givingd+1 (D+m)-component spanning
dicesa we can get the same effect by contracting basis vectors ifP* modulo(d + 1) x (d + 1) linear
the world space indiceswith thed+ 1 dimensional  redefinitions). The overall scale factor bf© >
alternating tensor. This gives thie+ 1 index anti-  has already been subtracted from this count, but
symmetricjoint image Grassmanniantensor it still contains them — 1 arbitrary relative scale

factors of them images. Subtracting these leaves

Iaoal---ad = 1 Pao Poq . Pad saoal---ad X K

(@+n! a0 a1 aq the Grassmann tensor (or the equivalent matching
N Pgao P .. Pgd} constraint tensors) withD +m —d — 1) (d + 1) —
m + 1 physically meaningful degrees of freedom.
Although we have defined the Grassmann tensor irThis agrees with the above degree-of-freedom count
terms of the columns of the projection matrix ba- based on projection matrices.
sis for PZ?, it is actually an intrinsic property of
PZ that defines and is defined by it in a manner
completely independent of the choice of basis (up to
scale). In fact we will see that the Grassmann tensor, . , :
. . . Suppose we are given a set of image points
contains exactly the same information as the com-__"; " .
, . : {x?|i=1,...,m} that may correspond to an un-
plete set of matching constraint tensors. Since th

. . . %nown world pointx® via some known projection
matching constraints can be recovered from image

matriceng‘i. Can the world poink® be recovered,
measurements, the Grassmann tensor can be too. .
and if so, how?

As a simple test of plausibility, let us verify that ~ As usual we will work projectively in homo-
the Grassmann tensor has the correct number ofeneous coordinates and suppose that arbitrary
degrees of freedom to encode the imaging geomenonzero scalings have been chosen forstfe and
try required for projective reconstruction. The ge- P4:, The image vectors can be stacked into a
ometry of anm camera imaging system can be D +m component joint homogeneous image vector
specified by giving each of the: projection map-  x“ and the projection matrices can be stacked into a
pings modulo an arbitrary overall choice of projec- (D + m) x (d + 1) component joint homogeneous
tive basis in?. Up to an arbitrary scale factor, a projection matrix, wheref is the world dimension
(Di + 1) x (d + 1) projection matrix is defined by andD = > D, is the sum of the image dimen-
(D; + 1)(d + 1) — 1 parameters while a projective sions.

6 Reconstruction Equations

basis inP* has(d + 1)(d + 1) — 1 degrees of free- Any candidate reconstructior® must project to
dom. Them camera projective geometry therefore the correct point in each image:*i ~ P2} x%. In-
has serting variableg\;| i = 1,... ,m} to represent the

m unknown scale factors gives homogeneous equa-

Z((Di +1)(d+1) — 1) — ((d+1)?=1) tions P4 x* — \; x4 = 0. These can be written as
1 asingle(D +m) x (d+1+m) homogeneous linear

= D+m—-d—-1)d+1)—m+1 system, théasic reconstruction equations
independent degrees of freedom. For example <4 0 ... o x*
11m — 15 parameters are required to specify the 0 x* ... o0 -\
geometry ofm 2D cameras viewing 3D projective Pg . ) ) ) A2 | =0
space [13]. : ' E : :
The antisymmetric Grassmann ten$8f "“¢ has 0 0 .o xAn -~ )\
(™) linearly independent components. However "

the quadratic Grassmann relations reduce the numAny nonzero solution of these equations gives a re-
ber ofalgebraicallyindependent components to the constructed world poink® consistent with the im-
dimension(D+m—d—1)(d+1) of the space of pos- age measurements?:, and also provides the un-
sible locations of the joint imagg&® in P~. (Joint  known scale factor§)\;}.
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These equations will be studied in detail in the This construction is important because although
next section. However we can immediately remarkneither the coordinate systemf* nor the columns
that if there are less image measurements than worldf P¢ can be recovered from image measurements,
dimensions D < d) there will be at least two more the joint imageZ® canbe recovered (up to an arbi-
free variables than equations and the solution (if ittrary choice of relative scaling). In fact the content
exists) can not be unique. So from now on we re-of the matching constraints weciselythe location
quire D > d. of 7% in ‘H*. This gives a completely geometric

On the other hand, if there are more measure-and almost canonical projective reconstruction tech-
ments than world dimension®( > d) the system nique inZ“ that requires only the scaling of joint
will usually be overspecified and a solution will exist image coordinates. A choice of basisift is nec-
only when certain constraints between the projectionessary only to map the construction back into world
matricesP/ and the image measurememnt$ are  coordinates.
satisfied. We will call these constraintsatching Recalling that the joint image can be located by
constraints and the inter-image tensors they gener-giving its Grassmann coordinate tendst’ and
atematching tensors The simplest example is the that in terms of this a point lies in the joint image if
epipolar constraint. and only ifI [*%7 x% — 0, the basic reconstruction

It is also clear that there is no hope of a unique system is equivalent to the followirjgint image re-
solution if the rank of the joint projection matrR% construction equations
is less thand + 1, because any vector in the kernel
of P& can be added to a solution without changing m
the projection at all. So we will also require the joint Tlod. <Z Ai XAJ> =0
projection matrix to have maximal ranke. d + 1). =1
Recall that this implies that the joint projectid?f;
is a bijection fromP* onto its image the joint im-
agePZ? in P“. (This is necessary but not always
sufficient for a unique reconstruction).

In the usual 3B-2D case the individual projec-
tions are3 x 4 rank 3 matrices and each has a one
dimensional kernel: the centre of projection. Pro- There is yet another form of the reconstruction
vided there are at least two distinct centres of pro-equations that is more familiar and compact but
jection among the image projections, no point will slightly less symmetrical. For notational conve-
project to zero in every image and the joint projec- nience suppose that’ # 0. (We use component
tion will have a vanishing kernel and hence maximal 0 for normalization. Each image vector has at least
rank. (It turns out that in this cadeank(P$) = 4is  one nonzero component so the coordinates can be

This is a redundant system of homogeneous linear
equations for the\; given thel “%*7 and thexi.

It will be used in section 10 to derive implicit ‘re-
construction’ methods that are independent of any
choice of world or joint image basis.

alsosufficientfor a unique reconstruction). relabelled if necessary so thaf: # 0). The pro-
. - L At ; A; oy oA
Recalling that the joint projection columns JECtion etguatlonsPa Xt = A x can be SO|(YEd
{P%a=0,...,d} form a basis for the homoge- for the 0™ component to give\; = (Pg’ x*)/x".

neous joint imag&® and treating thec’ as vectors Substituting back into the projection equations for
in 4 whose other components vanish, we can inter-the other components yields the following constraint
pret the reconstruction equations as the geometricafauations fox® in terms ofx" andP:

statement that the space spanned by the image vec-

tors {x*|i = 1,... ,m} in H* must intersecz®. (X" Py —xMPR)x*=0  Ai=1....D;

At the intersection there is a point @{“ that can

be expressed(i) as a rescaling of the image mea- (Equivalentlyx?i ~ P4ixa impliesx/4: P2 xa =
surements) , \; x4 (ii) as a point off® with co- 0, and the constraint follows by setting; = 0;).
ordinatesx® in the basis{P%|a =0, ... ,d}; (iii) Each of these equations constraitfsto lie in a hy-

as the projection int@® of a world pointx® under  perplane in thel-dimensional world space. Com-
P&, (Since’H® is isomorphic taZ® underP¢, the  bining the constraints from all the images gives the
last two points of view are equivalent). following D x (d + 1) system ofreduced recon-
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struction equations. struction matrix vanish. These minors are exactly
the matching constraints.
x0 P — x4 Py In either case each of the minors involvesd 1
: x*= 0 (world-space) columns and some selectiorl &f 1
x0m PAm _ xAm pOn (Ai=1....Dy) (image-space) rows of the combined projection ma-

trices, multiplied by image coordinates. This means

Again a solution of these equations provides thethat the constraints will be polynomialsg| tensors)
reconstructed homogeneous coordinates of a world the image coordinates with coefficients that are
point in terms of image measurements, and again théd+1) x (d+1) minors of the(D+m) x (d+1) joint
equations are usually overspecified when> d. projection matrixP¢. We have already seen in sec-
Providedx? £ 0 the reduced equations are equiv- tion 5 that these minors are precisely the Grassmann
alent to the basic ones. Their compactness makegoordinates of thgoint imageZ*, the subspace of
them attractive for numerical work, but their lack homogeneous jointimage space spanned by the

of symmetry makes them less suitable for symboliccolumns ofPg. The complete set of these defines
derivations such as the extraction of the matchingZ” in @ manner entirely independent (up to a scale

constraints. In practice both representations are usd@ctor) of the choice of basis If*: they are the only
ful. quantities thatould have appeared if the equations

were to be invariant to this choice of basis (or equiv-
alently, to arbitrary projective transformations of the

7 Matching Constraints world space).
Each of the(d +m + 1) x (d +m + 1) minors of

Now we are finally ready to derive the constraints the basic reconstruction system contains one column
that a set of image points must satisfy in order tofrom each image, and hence is linear in the coordi-
be the projections of some world point. We will as- nates of each image separately and homogeneous of
sume that there are more image than space dimerdegreem in the combined image coordinates. The
sions (O > d) (if not there are no matching con- final constraint equations will be linear in the co-
straints) and that the joint projection mati#X' has  ordinates of each image that appears in them. Any
rank d + 1 (if not there are no unigue reconstruc- choice ofd+m + 1 of the D +m rows of the matrix
tions). We will work from the basic reconstruction specifies a minor, so naively there a(gé?:ﬁl) dis-
equations, with odd remarks on the equivalent re-tinct constraint polynomials, although the simple de-
duced case. gree of freedom count given above shows that even

In either case there arB — d — 1 more equa- in this naive case only) — d of these can be alge-
tions than variables and the reconstruction systeméraically independent. However the reconstruction
are overspecified. The image points must satisfymatrix has many zero entries and we need to count
D — d additional independent constraints for there more carefully.
to be a solution, since one degree of freedom is lost Each row comes from (contains components
in the overall scale factor. For example in the usualfrom) exactly one image. The only nonzero entries
3D—2D case there arkn — 3 additional scalar con- in the imagei column are those from imagstself,
straints: one for the first pair of images and two moreso any minor that does not include at least one row
for each additional image. from each image will vanish. This leaves omly- 1

An overspecified homogeneous linear system ha®f the m + d + 1 rows free to apportion. On the
nontrivial solutions exactly when its coefficient ma- other hand, if a minor contains only one row from
trix is rank deficient, which occurs exactly when some image — say the?: row for some particular
all of its maximal-size minors vanish. For generic values ofi and A; — it will simply be the product
sets of image points the reconstruction systems typof +x“: and anm — 1 image minor because: is
ically have full rank: solutions exist only for the the only nonzero entry in its imagé column. But
special sets of image points for which all of the exactly the samém — 1)-image minor will appear
(d+m+ 1) x (d +m + 1) minors of the basic in several othern-image minors, one for each other
(or (d+ 1) x (d + 1) minors of the reduced) recon- choice of the coordinatel; = 0,... ,D;. At least



Papier : The Geometry of Projective Reconstruction 25

one of these coordinates is nonzero, so the vanishinghosen arbitrarily from any of the images, ... , &,

of the D; + 1 m-image minors is equivalent to the up to the maximum oD; + 1 indices from each im-

vanishing of the singlém — 1)-image one. age. (NB: thex?: stand form distinct vectors whose
This allows the full set ofm-image matching non< components vanish, not for the single vector

polynomials to be reduced to terms involving at x® containing all the image measurements. Since

mostd + 1 images. € + 1 because there are only I%°% js already antisymmetric and permutations

d + 1 spare rows to share out). In the standardthat place a nor-index onx?: vanish, it is enough

3D—2D case this leaves the following possibilities to antisymmetrize separately over the components

(¢t #35#k#£1=1,...,m) (i) 3rows each from eachimage).

in images: and j; (i) 3 rows in image:, and 2 This is all rather intricate, but in three dimensions

rows each in imageg andk; and (i) 2 rows each the possibilities are as follows (£ j # k # | =
in images:, j, k andl. We will show below that ;|

these possibilities correspond respectively to funda- ’
mental matricesi . bilinear two image constraints),
Shashua’s trilinear three-image constraints [19], and
a new quadrilinear four-image constraint. For 3 di- [1AiBidjAx yCiyBiyBil  —
mensional space this is the complete list of possi-
bilities: there areno irreducible k-image matching
constraints fok > 4.

We can look at all this in another way. Consider These represent respectively the epipolar constraint,
thed +m +1 (D + m)-component columns of the  Shashua'’s trilinear constraint and the new quadrilin-
reconstruction system matrix. Temporarily writing ear four image constraint.
x¢ for the image: column whose only nonzero en-
tries arex, the columns ar§P%|a =0,... ,d}
and {x{*|i=1,... ,m} and we can form them
into ad + m + 1 index antisymmetric tensor

., M)

1[ABiA;B; xCigGil — o

I[AiAjAkAz XBiXBjXBkXBl] =0

We will discuss each of these possibilities in detail
below, but first we take a brief look at the constraints
that arise from theeducedreconstruction system.
(o0 g B B Each row of this system is linear in the coordinates
Py Pyixyt - x". Up to scale, the compo-  of one image and in the corresponding rows of the
nents of this tensor are exactly the possille-m + joint projection matrix, so eactd + 1) x (d + 1)

1) x (d +m + 1) minors of the system matrix. The minor can be expanded into a sum of degdee 1
termx{ vanishes unless is one of the components polynomial terms in the image coordinates, with
A;, so we need at least one index from each image(d +1) x (d + 1) minors of the joint projection
in the index setv, ... , aq, b1, ... , Bm- IfONlyON€  matrix (Grassmann coordinates BEZ®) as coeffi-
component from imageis presentin the setf; say,  cients. Moreover, any term that contains two non-
for some fixed value of3;), we can extract an over- ,eroth coordinates from the same image (day2 0

all factor of xP as above. Proceeding in this way gng B; # 0) vanishes because the rdW): appears
the tensor can be reduced to irreducible terms of th§yjice in the corresponding coefficient minor. So

[0 ag B Bj By] ; . . . .
form Py™ - P x;"x;7 ---x, ", These contain  gach term is at most linear in the non-zeroth coordi-

anything from2 to d + 1 distinctimages, j,... ,k. nates of each image. A is the total number of rows
The indicesay, ... , aq are an arbitrary choice of from the i image in the minor, this implies that
indices from images, j,... ,k in which each im-  {he zeroth coordinate® appears eithek; or k; — 1

age appears at least once. Recalling that up to scalgmes in each term to make up the total homogeneity
the components of the joint image Grassmanniaryf k. in the coordinates of thé® image. Throw-

120 are justPy™ --- P5*), and dropping the re- ing away the nonzero overall factors (0 )ki—1
dundant subscripts on tbm§1 we can write the final leaves a constraint polynomial linear in the coordi-

constraint equations in the compact form nates of each image and of total degree at ndast,
lAid - AvaB ( BiscBy | 3 Bil _ o v_vith (d + 1) x (d + 1.) minors of the joint'projec-
tion matrix as coefficients. Closer inspection shows
wherei, j, ... , k contains betweed andd + 1 dis-  that these are the same as the constraint polynomials

tinct images. The remaining indices -- G can be  found above.
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7.1 Bilinear Constraints it was generated by thé — 4 = 2 six dimensional
constraint covectora,, andv,, for Z% in section 3.

Now we restrict attention to 2D images of a 3D . . :
The bilinear constraint equation

world and examine each of the three constraint types
in turn. First consider the bilinear joint image Grass-
mannian constrairit51¢1 52025 A1 5 A2] — 0 where

as usual *»? = L PoPJPIPJ eo. Recalling
that it is enough to antisymmetrize over the compo-
nents from each image separately, the epipolar con
straint becomes

A pBipC
0= (5A1B101X 1Pa1Pbl>'
AspBapC bed
: (sAQBQCQX 2P02pd2> g™

can be interpreted geometrically as follows. The du-
alizatione g x“ converts an image point into

A1 TBICIB:Ca A] _ g covariant coordinates in the image plane. Roughly
speaking, this represents the point as the pencil of

Dualizing both sets of antisymmetric indices by con- linés through it: - for any two lineds and my4

tracting with e 4, 5,0, €4,5,c, gives the epipolar through x#, the tensorljzmc, is proportional to

constraint the equivalent but more familiar form:  €apcx™. Any covariantimage tensor can be ‘pulled
back’ through the linear projectioR? to a covari-

0 = Faax ant tensor in 3D space. An image lidg pulls
T A1 1B B back to the 3D plané, = 1,P through the pro-
T (EAlBlClX ‘PP ) ' jection centre that projects toathe line. The tensor

. (EAQBQCQXAQPCBQP%) gabed eapc x pulls back to the 2 index covariant tensor
X[p = eapox* PPPS . This is the covariant repre-
where the3 x 3 = 9 component bilinear constraint sentation of a line in 3D: the optical ray througH.
tensor ofundamental matrix F 4, 4, is defined by  Given any two linesc(,; andyy,; in 3D space, the
requirement that they intersectis;, y.q e%°? = 0.

Ay XA2

F = 1lg € T B1C1B2Co . . . .
A1dz = 7 CAL1B1C S A2BCh So the above bilinear constraint equation readly
_ 1 B pCi the standard epipolar constraing. the requirement
— 147 5A1B101Pa Pb : . . .
that the optical rays of the two image points must
. <€AQBQCQPCBQP52) gabed intersect. Similarly, thé 4, 4, tensor really is the
usual fundamental matrix. Of course this can also
[B101B20 — oy eM1BiCigA2 B0 be illustrated by explicitly writing out terms.

Equivalently, the epipolar constraint can be de-

rived by direct expansion of thé x 6 basic recon- 7.2 Trilinear Constraints

struction system minor Now consider the trilinear, three image Grassman-
nian constrainfl [F1C15283 xA1xAaxAsl — 0. This
P4 x4 0 . . :
Det a -0 corresponds to & x 7 basic reconstruction minor
P4 0 x™ . o
a formed by selecting all three rows from the first im-

age and two each from the remaining two. Restrict-
ing the antisymmetrization to each image and con-
tracting withe 4, 5, ¢, gives the trilinear constraint

Choosing the imagé rows and column and any
two columnsa and b of P gives a3 x 3 sub-
determinanteAlBlClelPflel. The remaining
rows and columns (for image and the remain- xAixlAz G 4 BallBs xAs] — ¢

ing two columnsc and d of P, say) give the
factor 5A23202xA2PCB2P52 multiplying this sub-  where the3 x 3 x 3 = 27 component trilinear con-
determinant in the determinantal sum. Antisym- straint tensoiG 4, 243 is defined by

metrizing over the possible choices @ftthroughd

. i . . G A4z — 1z
gives the above bilinear constraint equation. When =4 2 EA1B1Cy
there are only two imageg, can also be written as = L (E Ao, PP Pbcl> pAz pAs gabed
the inter-image part of thB“ (six dimensional) dual
FA1A2 — iEAlBICIAQBQCQIBlclBQCQ' This is Why IAlB1A2A3 — G01A2A3 EclAlBl

I B1C1 A2 A3
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TlA2B21x4s for somex“i-dependent tensa4252]
- . . . (and similarly withT¢, for the dual form). By fix-
D_uallzmg the image 2 _and 3 indices b_y contracting ing suitable values o4, Bs] or Cs, these equations
With € 4, 5,C, €435, gIVes the constraint the alter- - .o e ysed transfer points from images 1 and 2

native form to image 3,i.e. to directly predict the projection in
= [ 3 of a 3D point whose projections in images
0 = €Ay BoCy EAaBaC 'GA Bo B3 'XA1XA2XA3 Image : . |
e ' 1 and 2 are known, without any intermediate 3D re-
= 70 <€A13101XA1PaB 1P1?1). construction step
-(EAQBQCQXA2Pf2> (a AsBs 03XA3P§33> gabed The trilinear constraints can be interpreted ge-

ometrically as follows. As above the quantity
These equations must hold for 8lix 3 = 9 values  €apc x* PPPY represents the optical ray through
of the free indice; andC;. However wherCy is ~ x* in covariant 3D coordinates. For agy* € P4
projected along theC direction orCj is projected  the quantitye spc x*y®P¢ defines the 3D plane
along thex® direction the equations are tautolog- through the optical centre that projects to the image
ical because, for example., s,c, x42x% = 0.  line throughx* andy“. All such planes contain the
So there are actually onl§ x 2 = 4 linearly in-  optical ray ofx#, and asy” varies the entire pencil
dependent scalar constraints amongihe 3 = 9 of planes through this line is traced out. The con-
equations, corresponding to the two image 2 direc-Straint then says that for any plane through the opti-
tions ‘orthogonal’ tox*? and the two image 3 di- cal ray ofx42 and any other plane through the op-
rections ‘orthogonal’ tax3. However, each of the tical ray ofx43, the 3D line of intersection of these
3 x 3 = 9 constraint equations arg# = 27 com-  planes meets the optical rayof'’.
ponents of the constraint tensor are ‘activated’ for The line of intersection always meets the optical
somex“i, so none can be discarded outright. rays of bothx4? andx“s because it lies in planes

The constraint can also be written in matrix containing those rays. If the rays are skewveryline

notation as follows &.f. [19]). The contraction through the two rays is generated as the planes vary.
xA1G 4, 4243 has free indicesd, 45 and can be The optical ray througl“: can not meet every such
viewed as & x 3 matrix [G x1], and the fragments line, so the constraint implies that the optical rays
€ 4,8,0, X2 and e, 5,0, x5 can be viewed as of x2 andx“s can not be skew. In other words
3 x 3 antisymmetric ‘cross product’ matricéss]| ., the image 1 trilinear constraint implies the epipolar
and[xs], (Wherex x y = [x], y for any 3-vector ~constraint between images 2 and 3.
y). The constraint is then given by tBex 3 matrix Given that the rays o&4? andx“3 meet (say, at
equation

2If x41 andx“? arenot matching points, the transfer equa-
tions trace out an entire line of mutually inconsistent ‘solutions’
[x2], [Gx1] [x3] = Ogzxay as[A2Ba] or C; vary. For fixedx”! andanyline 14, there is a
‘solution’ x*3 (x1,14,) ~ la, Ga, 243 x41, This is just
The projections along:ér (on the left) andxs (on the intersection of the image 3 epipolar linexof! with the
the right) vanish identically, e} again there are onIyimage 3 epipolar line of the intersection bf, and the image
4 linearly independent equations. 2 epipolar line ofx*1, i.e. the transfer of the only point ohy,

The trilinear constraint formula thatcould be a correct match. In general, lag, traces out the
the pencil of lines througk“2 the corresponding ‘solutions’

x“3 trace out the entire epipolar line af** in image 3. The
line of ‘solutions’ collapses to a point only wheri'? lies on the
. . L epipolar line ofx*1. For reliable transfer the links, should
also implies that for all values of the free indices meet the epipolar line ak*! reasonably transversally and if

<A1y [A2 GAle][Bg xAsl — 0

[A2Bs] (or dually Cs) possible should pass close to the image 3 epipole. This can be
arranged by projecting the free indé% along (an approxima-
x4~ xAixle gy Pl tion to) the image 3 epipoles2.

Similarly, x*2 could be predicted as the intersection of the
epipolar lines ofk“1 andx“2 in P43, This intersection always

. L A exists, but it is not structurally meaningful st andx“2 do
More precisely, fomatchingx”t andx”2 the quan- o correspond. The moral is that it is dangerous to use only

tity xA1x[42 GAIBQ]A3 can always be factorized as someof the available equations for transfer.

A1 A Bo A
~  ECyAuBy X 1X2GA1 2A3
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some poink®), as the two planes through these rayslinear constraint is more powerful than the epipolar
vary their intersection traces out every line throughones, but this is not really so. Given a triple of im-
x not in the plane of the rays. The only way that age points{x?:|i =1,...,3}, the three pairwise
the optical ray ofx”! can arrange to meet each of epipolar constraints say that the three optical rays
these lines is for it to pass througt? as well. In must meet pairwise. If they do not meet at a single
other words the trilinear constraint for each image point, this implies that each ray must lie in the plane
implies that all three optical rays pass through theof the other two. Since the rays pass through their re-
same point. Thus, the epipolar constraints betweerspective optical centres, the plane also contains the
images 1 and 2 and images 1 and 3 also follow fromthree optical centres, and is therefore thiéocal
the image 1 trilinear constraint. plane. But this is impossible in general: most im-
The constraint tensor G4, 4242 — age po'ints simply dq not lie on the trifocal lines (the
€A BLCy IB1014245 treats image 1 specially. prOJecfuon_s of the t_rlfocal planes). _ So for gene_ral
The analogous image 2 and image 3 ten_matchlngilmage points the three gplpolar constraints
sors GA2A3A1 = eano, 182024541 gng together |mpl3_/ that t_he_ three optlca_l rays meeF _at a
Ga M = eqpo, 15304142 gre linearly  Unique 3D pomt. Thls is enough to imply the trilin-
independent OGAlAzAg and give further linearly —€&r constralnt_s. Since we knoyv that. oy —3 =3 _
independent trilinear constraints aalixAzx4s,  Of the constraints are algebraically independent, this
Together, the 3 homogeneous constraint tensors s expected.
contain3 x 27 = 81 linearly independent com- Similarly, the information contained in just one
ponents (including 3 arbitrary scale factors) and of the trilinear constraint tensors is generically>
naively give3 x 9 = 27 trilinear scalar constraint 2m — 3 = 3 linearly independent constraints, which
equations, of which3 x 4 = 12 are linearly is enough to imply the other two trilinear tensors as
independent for any given tripke1 x42x43, well as the three bilinear ones. This explains why
However, although there are dimear relations  most of the early work on trilinear constraints suc-
between the x 27 = 81 trilinear and3 x 9 = 27 cessfully ignores two of the three available tensors
bilinear matching tensor components for the three[19, 7]. However in the context of purelinear re-
images, the matching tensors are certainlyaige-  construction all three of the tensors would be neces-
braically independent of each other: there are manysary.
guadraticrelations between them inherited from the
guadratic simplicity constraints on the joint image
Grassmannian tensor. In fact, we saw in section
5 that the simplicity constraints reduce the number7.3 Quadrilinear Constraints
of algebraically independent degrees of freedom of
170722 (and therefore the complete set of bilinear ginajly, the quadrilinear, four image Grassmannian
and trilinear matching tensor components) to only sonstraini [B: B2B3B1 xA1xA24Asx Al — ( corre-
1lm — 15 = 18 form = 3 images. _Similarly, sponds to al x 8 basic reconstruction minor that
there are only2m — 3 = 3 algebraicallyindepen-  sejects two rows from each of four images. As usual
dent scalar constraint equations amonglihearly e antisymmetrization applies to each image sepa-

independens x 4 = 12 trilinear and3 x 1 = 3bi-  r5tely, but in this case the simplest form of the con-
linear constraints on each matching triple of points. giraint tensor is just a direct selection 3 = 81
One of the main advantages of the Grassmann forgomponents of the Grassmannian itself

malism is the extent to which it clarifies the rich al-
gebraic structure of this matching constraint system.
The components of the constraint tensors are essen- HA1424341 = A1424344
tially just Grassmann coordinates of the joint image, — L paplplspii gobed
and Grassmann coordinates afe/ayslinearly in-
dependent and quadratically redundant.
Since all three of the epipolar constraints follow Dualizing the antisymmetric index paifsl; B;| by
from a single trilinear tensor it may seem that the tri- contracting withe 4, 5,c, fori = 1,... ,4 gives the
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guadrilinear constraint linesly, andly, are the projection of some unique
0 — ¢ . . . . 3D line: simply pull back the image lines to two
A1B1C1 T A2 B2Ch T A3 B3Cs = AaBaCa 3D planesly, P2 andl,, P22 through the centres
cxArxAaxAsxAs [ B1B2B3 Ba of projection and intersect the planes to find the 3D
line 1y, = 14,14, Pf;ng]‘?.
= & (sAlBlclelel) <5A23202xA2PbBQ)- However for three or more images of a line there

5 5 are trilinear matching constraints as follows [7]. An
'(€A33303XA3PC 3) (5A4B4C4XA4Pd4> e® image line is the projection of a 3D line if and only
if each point on the 3D line projects to a point on

- 4 _
This must hold for each of the" = 81 values of o image line. Writing this out, we immediately

C1C,C3Cy . But again the constraints withi; along

) ‘ e see that the lineély,|i = 1,... ,m} correspond to
the directionx™ foranyi = 1,... .4 vanish iden- 5 3p jine if and only if them x 4 reconstruction
tically, so for any given quadruple of points there equati

A , _ _ quations
are only2* = 16 linearly independent constraints
among thed* = 81 equations. 14, P4
Together, these constraints say that for every pos- : x4 — 0
sible choice of four planes, one through the optical 1 f’Am
A'm a

ray defined by“: for eachi = 1,... , 4, the planes

meet in a point. By fixing three of the planes and pgye alinei(e.a 2D linear space) of solutionsc® +
varying the fourth we immediately find that each of /,ya for some solutions? % ye.

the optical rays passes through the point, and hence There is a 2D solution space if and only if the co-
that they all meet. This brings us back to the two andefficient matrix has rank—2 = 2, which means that
three image sub-cases. _ every3 x 3 minor has to vanish. Obviously each mi-
Agiln, there is nothing algebraically new here. nor is a trilinear function in threé,,’s and misses
The 3° = 81 homogeneous components of the gyt one of the columns d2. Labelling the miss-

dent of each other and of thex 3 x 27 = 324 gquations like

homogeneous trilinear an@l x 9 = 54 homoge-

neous bilinear tensor components; and 2he= 16 14, L, La, (Pg‘ng‘QPg‘?’ Eabcd) —0

linearly independent quadrilinear scalar constraints

are linearly independent of each other and of the These simply require that the three pulled back
linearly independent x 3 x 4 = 48 trilinear and planeSIAng‘l, 1A2P&42 and1A3Pg‘3 meet in some

6 x 1 = 6 bilinear constraints. However there are common 3D line, rather than just a single point.
only 11m — 15 = 29 algebraically independent  Note the geometry here: each lihg pulls back to
tensor components in total, which gi%en — 3 = ahyperplane ifP® under the trivial projection. This

5 algebraically independent constraints on each 4- restricts to a hyperplane iRZ®, which can be ex-
tuple of points. The quadrilinear constraint is al- pressed a$,, P2 in the basisP for PZ*. There
gebraically equivalent to various different combina- are2m — 4 algebraically independent constraints for
tions of two and three image constraints. For exam-;; images: two for each image except the first two.
ple five scalar epipolar constraints will do: take the There arenoirreducible higher order constraints for
three pairwise constraints for the first three imagesjines in more than 3 images,g.there is no analogue
then add two of the three involving the fourth im- of the quadrilinear constraint for lines.

age to force the optical rays from the fourth image By contracting with a finaP2, the constraints can

to pass through the intersection of the correspondingalso be written in terms of the Grassmannian tensor
optical rays from the other three images. as

i i i aA1 Al A
7.4 Matching Constraints for Lines 1y, La, 1y, T 4224%8 = 0

It is well known that there is no matching constraint for all «. Choosingx from images 1, 2 or 3 and con-
for lines in two images. Any two non-epipolar image tracting with an image 1, 2 or 3 epsilon to produce
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a trivalent tensorGAiAﬂ'Ak, or choosinga from a  irreducible constraints — and correspondingly sim-

fourth image and substituting the quadrivalent tensorple interpretations of the matching tensors’ content
HA:4:4:41 reduces the line constraints to the form — for an image point against two lines containing

M it and four non-corresponding image lines that inter-
243

1A2 1A3 l[A1 GBl] = 0 sect in 3D:
AyAsAsAs  _
1A1 1A2 1A3H s =0 XA1 GA1A2A3 1A2 143 =0
These formulae illustrate and extend Hartley’s ob- HAAA A, V1Y = 0

servation that the coefficient tensors of the three-

im_age Iine_constraint; are equivalent to those of the; g Matching Constraints for k-Subspaces

trilinear point constraints [7]. Note that although all

of these line constraints atglinear, some of them More generally, the projections offadimensional

do involvequadrivalent point constraint tensors. subspace ind dimensions are (generically) di-

Sincea can take any oBm values4;, for each  mensional image subspaces that can be written as

triple of lines andm > 3 images there are very antisymmetricD; — k index Grassmann tensors

naively 3m trilinear constraints of the above two Xa4,.-5;--c;- The matching constraints can be built

forms. However all of these constraints are de-by selecting anyl + 1 — k of these covariant in-

rived by linearly contractingd underlying world  dices from any set, j, ... , k of image tensors and

constraints withP2’s, so at most4 of them can contracting with the Grassmannian to ledvdree

be linearly independent. For matching images indices:

of lines this leavesi(’;) linearly independent con-

straints of which only2m — 4 are algebraically in- 0 = Xp,..B,C;B; """ XA ByChEp

dependent. _ JorranAse B A By

The skew symmetrization in the trivalent tensor

based constraintimmediately implies tivee trans-  pya1izing each covariant Grassmann tensor gives an

fer equation equivalent contravariant form of the constraint, for
oA image subspaces”i"; defined by the span of a

Ly ~ Lag gy Ga, ™27 set of image points

This can be used to predict the projection of a 3D  _ yorax[AiBiAgBe 3 CiEi | 3 CiEil

line in image 1 given its projections in images 2

and 3, without intermediate 3D reconstruction. Note As usual it is enough to antisymmetrize over the
that line transfer from images land2to image 3 iSindices from each image Separate|y. Each set
most simply expressed in terms of the image 3tri|in-Aj ---B;C;--- E; is any choice of up td; + 1

ear tensoiG 4,'?, whereas the image 1 or image indices from imageg, j =i, ... , k.

2 tensorsG 4, 4243 or G 4,143 are the preferred
form for point transfer.

It is also possible to matclfi) points against
lines that contain them an@) distinct image lines
that are known to intersect in 3D. Such constraintsOur formalism also works for 2D projective images
might be useful if a polyhedron vertex is obscured of a 2D space. This case is practically important
or poorly localized. They are most easily derived because it applies to 2D images of a planar surface
by noting that both the line reconstruction equationsin 3D and there are many useful plane-based vision
and the reduced point reconstruction equations aralgorithms. The joint image of a 2D source space
homogeneous ir®, the coordinates of the intersec- is two dimensional, so the corresponding Grass-
tion point. So line and point rows from several im- mannian tensor has only three indices and there are
ages can be stacked into a single 4 column matrixonly two distinct types of matching constraint: bi-
As usual there is a solution exactly whenalk 4  linear and trilinear. Let indices and A; represent
minors vanish. This yields two particularly simple 3D space and thé" image as usual, and indices

7.6 2D Matching Constraints & Homogra-
phies
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A = 0,1, 2 represent homogeneous coordinates orlose their free indices. In particular, when all of the

the source plane. If the plane is givenpyx® = 0, cameras are 1D there are no bilinear or trilinear ten-
the three index epsilon tensor on it is proportional tosors and the only irreducible matching constraint is
p.c®“¢ when expressed in world coordinates, so thethe quadrilinear scalar:

Grassmann tensor becomes

0 = HA1A2A3A4XA1XA2XA3XA4

Ia,@w = 1 Pe Pﬁ P’Y 5ABC
st At BLC — (€A1B1 xA1 PaBl) (EA232 xA2 PbBQ> .

~ 4 p.PyPIP] el ., .,
o . - 3 . <€A3Bg x4 p! 3> (€A4B4 A Pd4> gabed
This yields the following bilinear and trilinear
matching constraints with free indices respectively This says that the four planes pulled back from the

Cy andC1C5C3 four image points must meet in a 3D point. If one of
the cameras is 2D and the other two are 1D a scalar
0 = pa <5A13101 x4 PbBlel) trilinear constraint also exists.

. As pB2 abed
(%BQCQX Pd>€ 7.8 3D to 2D Matching

B B .
0 = pa <€A13101 xMPy 1) (€A23202 xA2P; 2>~ It is also useful to be able to match known 3D struc-
A B bed ture to 2D image structure, for example when build-
3 aoc . . .
: (€A33303 x® Py ) € ing a reconstruction incrementally from a sequence

of images. This case is rather trivial as the ‘con-
The bilinear equation says thatx"* is  gtraint tensor is just the projection matrix, but for
the image of the intersection of optical comparison it is perhaps worth writing down the
ray of x4 with the plane p,;: x%  ~ equations. For an image poist' projected from
(pa €A Bc, PE'POT P2 sade) x4, In aworld pointx® we havex? ~ P2 x* and hence
fact it is well known that any two images of a plane the equivalent constraints
are projectively equivalent under a transformation
(homography)x?2 ~ H%? x1. In our notation xMPIx* =0 = eapox'Px" =0

the homography is just There are three bilinear equations, only two of which

are independent for any given image point. Simi-
larly, a world linely,; (or dually,11*}) and a corre-
sponding image liné, satisfy the equivalent bilin-
ear constraints

Ay _ BipC: . pA bed
H)? = pa-eapo, PP -Py2 e

The trilinear constraint says that any three image
lines through the three image points't, x42 and
x“43 always meet in a point when pulled back to 1, PA1
the planep,. This implies that the optical rays of [@ "]
the three points intersect at a common point on theor dually
plane, and hence gives the obvious cyclic consis-
tency conditionEl’j! H4? ~ H! (or equivalently
H)! H{> H ~ &7 ) between the three homo- Each form contains four bilinear equations, only two
graphies. of which are linearly independent for any given im-
age line. For example, if the line is specified by giv-
7.7 Matching Constraints for 1D Cameras  ing two points on i1’ ~ x[*yl, we have the two

_ _ _ scalar equationky P4 x® = 0 andly P2 y?® = 0.
If some of the images are taken with one dimen-

sional ‘linear’ cameras, a similar analysis applies
but the corresponding entries in the reconstruction
equations have only two rows instead of three. Con-There is still one aspect af*° "4 that we have not
straints that would require three rows from a 1D im- yet seen: the Grassmannian tensor also directly con-
age no longer exist, and the remaining constraintdains theepipoles In fact, the epipoles are most

=0 < P e =0

1L, P21 = 0

7.9 Epipoles
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naturally viewed as the first order term in the se-8 Minimal Reconstructions and
guence of matching tensors, although they do not Uniqueness
themselves induce any matching constraints.
Assuming that it has rank, thed x (d+1) projec-
tion matrix of ad— 1 dimensional image af dimen-
sional space defines a uniquentre of projection
e;% by Pg‘i e;% = 0. The solution of this equation is
given (.f. section 8) by the vector af x d minors
of P2, i.e.

The matching constraints found above are closely
associated with a set ahinimal reconstruction
techniques that produce candidate solutions®
from minimal sets ofl image measurements (three
in the 3D case). Geometrically, measuring an image
coordinate restricts the corresponding world point to
a hyperplane irP®. The intersection of any inde-
pendent hyperplanes gives a unique solution candi-
datex?, so there is a minimal reconstruction tech-
The projection of a centre of projection in another nique based on any set@independent image mea-

a A; C; ~aai-a
€ ~ €., Pyl Pgretttd

image is arepipole surements. Matching is equivalent to the require-
" ment that this candidate lies in the hyperplane of
el ~ eac Pod PR PO ghom each of the remaining measurements. d linea-

surements are not independent the corresponding

Recognizing the factor of 4i4:5Ci we can fix ~ minimal reconstruction technique will fail to give a

the scale factors for the epipoles so that unigue candidate, but so long as the images contain
someset ofd independent measurements at least one
e = % EA,B,.C, 1 A5AiBi-Ci of the minimal reconstructions will succeed and the
TAABCi _ o Aj gAiBiCi overa_tll reconstruct!on solution WI|| be unlq_ue (orfall_
to exist altogether if the matching constraints are vi-
olated).

Thed-dimensional joint image subspafg® of P

passes through thécadimensional projective sub- Algebraically, we can restate this as follows. Con-
spacex”i = 0 at thejoint image epipole sider a generat x (k + 1) system of homogeneous

linear equations with rank. Up to scale the sys-
tem has a unique solution given by the + 1)-
e’ (eiAlv e 0, e veiAm)T component vec?or df x k mingrs of thz sl)(]/stem 2na—
trix3. Adding an extra row to the system destroys the
As usual, an arbitrary choice of the relative scale fac-so|ytion unless the new row is orthogonal to the ex-
tors is required. isting minor vector: this is exactly the requirement
that the determinant of theg + 1) x (k + 1) matrix
vanish so that the system still has raik With an
overspecified rank system: any choice df rows
gives a minor vector; at least one minor vector is
nonzero by rankeness; every minor vector is or-
thogonal to every row of the system matrix by non-

Counting up the components of t{#&) quadri-
linear, 3(;) trilinear, (") bilinear andm(m — 1)
monolinear (epipole) tensors for images of a 3D
world, we find a total of

<3ZL> — 31. (T) 1 27, 3<m> rank{k + 1)-ness; and all of the minor vectors are
3 equal up to scale because there is only one direc-
1 9. <’m> + 3-m(m—1) tion orthogonal to any giveh indepeno!ent rows. In
2 other words the existence of a solution can be ex-

linearly independent components. These are linearly  3proof. By the rankk condition the vector of minors does
equivalent to the complete set 612") linearly inde-  not vanish. Adding anyk + 1)** row vectorv to the system
pendent components &<, so the joint image 9ves a(k+1) x (k+1) matrix. By the usual cofactor expansion,

. fiteet the determinant of this matrix is exactly the dot productvof
Grassmannian tensor can be reconstru rly with the vector of minors. The determinant vanishes whés

given the entire set of (appropriately scaled) match-chosen to be any of the existing rows of the matrix, so the minor
ing tensors. vector is orthogonal to each row.
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pressed as a set of simple orthogonality relations orwith indices[B; - - - Byy---0A; - - - Ax], project the
a candidate solution (minor vector) produced from solution to some imagkto get
any set oft independent rows.

We can apply this to th&l+m) x (d+m) minors
of the(D +m) x (d +m + 1) basic reconstruction ¢ he constraint is to hold, this must be propor-
system, or equivalently to thé x d minors of the  tional toxCi. If [ is one of the existing images, (
D x (d + 1) reduced reconstruction system. The g4yyx4: is already in the antisymmetrization, so if

situation is very similar to that for matching con- \ye extend the antisymmetrization @ the result
straints and a similar analysis applies. The result iSyy st vanish:T [C1BiBrr-0 xAi ... xA — 0. If

thatifs,7,... ,kisaset o2 < m' < d distinct im-

[ is distinct from the existing images we can explic-

ages and;,... , d is any selection off —m’indices iy add x4 to the antisymmetrization list, to get
from imagesi, j,... ,k (@t mostD; — 1 from any  [[CiBi-Bry-6 Ai . AkxAll — .
one image), there is a pair of equivalent minimal re-  gimjjarly, the minimal reconstruction solution for
construction techniques foar* € P* andx® € P*: 3p |ines from two images is just the pull-back

Xa ~ Pa[BiBj"'Bk"/"'(S XAiXAj . XAk} lab ~ 1A11A2 P,[/il PZ?Q

x¢ ~ I a[B;Bj---Byy---d XAiXAj . XAk]

or in contravariant form
where 1%~ 14,14, P?IPZ?Q gabed
palorod = L pot... pod gaarad This can be projected into a third image and dualized

: : _ to give the previously stated line transfer equation
In these equations, the right hand side has tenso- g 3 y g

rial indices [B;--- Byy---6A;--- Ap] in addition 14, ~ 14,14, - €a,5,0, PP PP g0bd
to a or a, but so long as the matching constraints Lo 1o G o ArA2
hold any value of these indices gives a vector par- A1 7A2 A3
allel to x* or x (i.e. for matchingimage points  More generally, the covariant form of thé-
the tensorPeBiBryd xAi ... x4l can be fac- subspace constraint equations given in section 7.5
torized asx® TIBi~Brr-04i-Al for some tensors generates basic reconstruction equations Afati-
x® and T). Again it is enough to antisymmetrize mensional subspaces of ti¢ image or the world
over the indices of each image separately. Forspace by dropping one index; from the contrac-
2D images of 3D space the possible minimal re-tion and using it as the, of a set ofc+1 free indices
construction techniques aR¢[P11 52 xAixA2land ... oy, designating the reconstructddsubspace
palBiB2Bs xAix A2y As] in P45. To reconstruct thé-subspace in world co-

. A BBInC ordinates, the projection tensdp$;’ corresponding
X"~ (EAlBlcl x PP 1)' to the free indices must also be dropped, leaving free
, <€A23202 xA2 P%) gabed world indicesag - - - a.

a A C A C .
x5~ (EAlBlclx IPb1)<€Aszch QPCQ)' 9 Grassmann Relations between
: <5A3B303 xAs Pff) gabed Matching Tensors

These correspond respectively to finding the inter-The components of any Grassmann tensor must sat-
section of the optical ray from one image and theisfy a set of quadratic ‘simplicity’ constraints called
constraint plane from one coordinate of the secondthe Grassmann relations In our case the joint im-
one, and to finding the intersection of three con-age Grassmannian satisfies
_stralnt planes from one coordinate in each of three _ {oo-aa-1l60 1 fo-Bas1]
images. 1

To recover the additional matching constraints ~ _ 1 Z(_l)alao---ad_l,@a I 8o Ba—1Bas1-Bapa
that apply to the minimal reconstruction solution d+2 =
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Table 1: The Grassmann identities between the matching tensors of two and three images.

0.4, = Faa, 1™ [111,11122]

04142 Fp, B, Fo,0, eP101A1 gB2C242 1 9 gy 41 o A2 [112,11222]

04, Fa,4, €172 — €4,850, €17 €3 [111,22233]

04 4, €8sy €152 Ga, % 1 e Fy 4, 111, 11223]

042 4, €458,05 €172 Ga, M2 +en B0 €157 Gu, 115 [111, 12233]

054243 Fp,p, Go, 224 eB101A1 _ g 42 G Aids | 5, A2 o,C2 G, M1 [112,11223]

o €a38;0; Ga, P Gp, P2 —e1M2 ey, 0, Ga, 1P (112, 11233]
—Fu,c, €228 Fp g4,

0%, Faa; G, 2™ +ea,3,0, €37 €1 [112,11333]

Ay €38;05 Ga, P3G 2, P10 —F g 4, G, P72 [112, 12233]
404,72 Fay0, Ga, P12 + 64,8 €152 Faya,

0f1 4252 G, P82 G o, 208 4 e3B1 Fy 0, €924252 4 54 B 042 €72 [112,12333]

042 4, €43B5Cy €27 Ga, 205 —Fy, g, Fe,a, eP20242 [112, 22233]

0424, Faya, Ga, % + Fa,a, €372 — 64,2 F a0, €37 [112,22333]

oM A2BaAsBs — Gp 4243 G, PP B1C1A — G, M1 gCataB g s [123,11123]
_G03A1A2 ECgAng 8132

05 BedsBs = G, B Gy, PoAs — Gy, P1Be Gy, P24 — F g 4, G, P02 €CoeBs [123,11223)

B B1A C2 B B C1B B2 A
_6142 2G02 1 SGAl 2 3+6A1 1GA2 1 3GCI 243

Mechanically substituting expressions for the vari- sumed to be normalized as in their above definitions,
ous components df*°"*< in terms of the matching in terms of an arbitrary choice of scale for the un-
tensors produces a long list of quadratic relations bederlying image projections. In practice, these scale
tween the matching tensors. For reference, table factors must often be recovered from the Grass-
gives a (hopefully complete) list of the identities that mann relations themselves. Note that with these
can be generated between the matching tensors afonventions,F 4,4, = F4,4, and G4, 424 =
two and three images ih = 3 dimensions, modulo —GA1A3A2. For clarity the free indices have been
image permutation, traces of identities with covari- displayed on the (zero) left-hand side tensors. The
ant and contravariant indices from the same imagelabels indicate one choice of image numbers for the
and (anti-)symmetrization operations on identitiesindices of the Grassmann simplicity relation that
with several covariant or contravariant indices from will generate the identity (there may be others).

the same image. (For examplg, 4, G a,

AsAs -
= As an example of the use of these identities,

A AxAsz ,
2F 4,4, €372 andF 454, G,)*7* = Ofollowre- G | 4245 follows from linearly fromF 4, 4,, F A, 4,
spectively from tracingl 12, 22233] and symmetriz- 5 the corresponding epipoles’?, e; A1 ande;4?

ing [112,11333] ). The constraint tensors are as- by applying[112, 11333] and[112, 22333]
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10 Reconstruction in Joint Image equations. Note that since the equations are alge-
Space braically redundant it is only necessary to apply a
subset of at least: — 1 of them to solve for then
We have argued that multi-image projective recon-scale factors. The optimal choice of equations prob-
struction is essentially a matter of recovering a co-ably depends on the ease and accuracy with which
herent set of projective scale factors for the mea-the various matching tensor components can be esti-
sured image points, that it canonically takes place inmated.
the joint image spacfP®, and that reconstruction in Recovery of the scale factors locates the recon-
world coordinates is best seen as a choice of basis istructed joint image point® unambiguously in the
the resulting joint image subspagy . To empha- subspacé”Z®. Its coordinates in any chosen basis
size these points it is interesting to develop ‘recon-(i.e. with respect to any given choice of the basis-
struction’ techniques that work directly in joint im- vector columns of the joint projection matriR$)
age space using measured image coordinates, wittsan easily be obtained, if required. Although this
out reference tany 3D world or basis. process is arguably too abstract to be called ‘recon-
First suppose that the complete set of matchingstruction’, all of the relevant structure is certainly
tensors between the images has been recovered. present in the joint image representation and can
is still necessary to fix an arbitrary overall scale fac- easily be extracted from it.
tor for each image. This can be done by choosing Given an efficient numerical technique for the res-
any coherent set of relative scalings for the matchingolution of sets of bilinear equations and a sufficient
tensors, so that they verify the Grassmann simplic-number of matching points, it would also be possible
ity relations as given above. Then, since the com-to solve the above equations simultaneously for the
ponents of the joint image Grassmann terE%f 7 vector of matching tensor components and the vec-
can be recovered directly from the matching tensorstor of scale factors, given the measured image co-
the location of the joint imag®Z“ has been fixed.  ordinates as coefficients. Algebraic elimination of
Now consider a matching set of image pointsthe scale factors from these equations should ulti-
{x41, ..., x4} with arbitrary relative scalings. As mately lead back to the various matching constraints
discussed in section 6, the matching constraints ar¢modulo probably heavy use of the Grassmann rela-
equivalent to the requirement that there be a rescaltions). Elimination of the matching tensors (mod-
ing of the image points that places the joint imageulo the matching constraints viewed as constraints
space vectod ;" ; A; x“¢ in the joint imagePZ®.  on the matching tensor components) for sufficiently
Expressed in terms of the Grassmannian, this bemany matching points would lead to (high degree!)
comes thgoint image reconstruction system basic reconstruction methods for the recovery of the
m scale factors directly from measured image coordi-
I [of. (Z \; xAi]> =0 nates.
i=1 Geometrically, the reconstruction process can be
This is a redundant set of homogeneous multilin-pictured as follows. Each image point is ;-
ear equations in the Grassmannieitf 7, the im-  codimensional subset of it®;-dimensional image,
age pointsx?i, and the scale factors;, that can  so under the trivial projection it can be pulled back
be used to ‘reconstruct’ the scale factors given theto a D;-codimensional subspace of the joint image
Grassmannian and the image measurements. spaceP?. Intersecting the subspaces pulled back
These equations can be reexpressed in terms dfom the different images results in gm — 1)-
the matching tensors, in much the same way as thelimensional projective subspace7@f. This is pre-
Grassmann simplicity relations can. The types ofcisely the set of all possible rescalings of taé:.
constraint that can arise for 2D images of 3D spaceThe joint imagePZ intersects this subspace if and
are shown in table 2. The left hand sides are zeroonly if the matching constraints are satisfied, and
tensors and the labels give index image numberghe intersection is of course the desired reconstruc-
that will generate the equation. The numerical co-tion. So the problem of multi-image projective re-
efficients are valid only for correctly scaled match- construction from points can be viewed as the search
ing tensors. Permuting the images generates furthefior the (d + m — 1)-dimensional subspace @



36 Chapitre 3. Contraintes d’'appariement et I'approche tensorielle

Table 2: The five basic types of reconstruction equation for a point in the joint image.

0.4, = (Fa,4, X))\ + (e4,8,0, €172 xC2) Ny [11122]
04243 = (Ga, 21 xM)\ — (€1 xA2) Ay + (€142 xM3) A3 [11123]
0%t 4, = (ea;B,0y G, xO)AL + (ea,B,0 Ga, PP xP2) Ny — (Faya, x19) A3 [11223]
042 4s s — (ea,po, HEA2A41 xC)) | 4 (G A1 xA2) ), [11234]
—(Ga, M xA3) N3 + (G, 27 xM)\y
041 A2 A Auds — (FAadsAads y A1)\ (HAIAsAAs gda)) | (HAIA2 A4S As) )\ [12345]

_(HA1A2A3A5 XA4)/\4 4 (HA1A2A3A4 XA5))\5

that contains (or comes closest to containing) a giverremains to be done on the practical aspects, particu-
set of (m — 1)-dimensional joint-image-point sub- larly on error models [17, 4, 20] and the recovery of
spaces, followed by an arbitrary choice (the scaleEuclidean structure [17].
factors) of ad-dimensional subspace (the joint im-  Given the complexity and algebraic redundancy
age) of thgd+m—1)-dimensional space that meets of the trilinear and quadrilinear constraints it is cer-
each joint-image-point subspace transversally. Theainly legitimate to ask whether they are actually
reconstruction of lines and higher dimensional sub-likely to be usefulin practice. | think that the an-
spaces can be viewed in similarly geometric terms. swer is a clear ‘yes’ for the trilinear constraints and
the overall joint image/Grassmannian picture, but
) the case for the quadrilinear constraints is still open.
11 Perspectives The principal application of the matching tensors
must be for token matching and verification. The tri-
The theoretical part of the paper is now finished, butjinear constraints can be used directly to verify the
before CIOSing it may be worthwhile to reflect a lit- correspondence of a triple of points or lines, or in-
tle on our two principal themes: projective recon- directly to transfer a hypothesized feature location
struction and the tensor calculus. We will take it for to a third image given its location in two Others’ in
granted that the projective and algebraic-geometricy hypothesize-and-test framework. Image synthesis
approaches to vision are here to stay: the ‘unrea{e.g.image sequence compression and interpolation)

sonable efficacy of mathematics in the physical sci-is |ikely to be another important application of trans-
ences’ can only lead to an increasing mathematizafer [10].

tion of the field. Fundamental matrices can also be used for these
applications, but because the higher order con-
11.1 Matching & Reconstruction straints ‘holistically’ combine data from several im-

ages and there is built-in redundancy in the con-
Clearly visual scene reconstruction is a large andstraint equations, it is likely that they will prove
complex problem that is not going to be ‘solved’ by less prone to mismatches and numerically more sta-
any one contribution, so we will restrict ourselves to ble than a sequence of applications of the epipo-
a few technical remarks. To the extent that the probdar constraint. For example Shashua [19] has re-
lem can be decomposed at all, the most difficult partgported that a single trilinear constraint gives more
of it will probably always be the low level feature reliable transfer results than two epipolar ones, and
extraction and token matching. 3D reconstruction Faugeras and Mourrain [6] have pointed out that bi-
seems relatively straightforward once image tokendinear constraint based transfer breaks down when
have been put into correspondence, although muckhe 3D point lies in the trifocal plane or the three op-
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tical centres are aligned, whereas trilinear transferffundamental or trilinear constraints. Also, different
continues to be reasonably well conditioned. trilinear tensors are required for point transfer and
When there are four images the quadrilinear con-line transfer.
straint can also be used for point matching and trans- Unfortunately, it turns out that the above linear
fer, but the equations are highly redundant and itestimation techniques (particularly that for the fun-
seems likely that bilinear and trilinear methods will damental matrix) are numerically rather poorly con-
prove adequate for the majority of applications. Theditioned, so that the final estimates are very sensi-
trilinear constraint is nonsingular for almost all situ- tive to measurement errors and outliers. Moreover,
ations involving points, provided the optical centres even in the case of a single fundamental matrix there
do not coincide and the points avoid the lines passis a nonlinear constraint that can not be expressed
ing between them. within the linear framework. The quadratic epipo-
The most important failure for lines is probably lar relationF 4, 4, e;? = 0 implies the cubic con-
that for lines lying in an epipolar plane of two of straintDet(F) = 0. If this constraint is ignored,
the images. In this case the constraints mediated byne finds that the resulting estimateskovfand the
trivalent tensors are vacuous (although there is stillepipoles tend to be rather inaccurate [12]. In fact,
enough information to reconstruct the correspond-the linear method is often used only to initialize non-
ing 3D line unless it lies in the trifocal plane or the linear optimization routines that take account of the
optical centres are aligned) and those mediated byonlinearity and the estimated measurement errors
quadrivalent tensors are rank deficient. But givenin the input data.
the linear dependence of the various line constraints This leads to the following open question:
it is not clear that the quadrivalent ones have any adWhen several matching tensors are being esti-
vantage over an equivalent choice of trivalent ones. mated, to what extent is it possible or necessary to
A closely related issue is that of linear versus [@ke account of the quadratic constraints between
them? The full set of quadratic relations is very

higher order methods. Where possible, linear for- o _
mulations are usually preferred. They tend to becomplex and it is probably not practical to account
for all of them individually: it would be much sim-

simpler, faster, better understood and numerically

more stable than their nonlinear counterparts, and'€" Just to work directly in terms of the 3D joint

they are usually much easier to adapt to redundant™@ge geometry. Moreover, many of the relations
data, which is common in vision and provides in- depend on the relative scaling of the constraint ten-
creased accuracy and robustness. On the other hang"s and the recovery of these further complicates

nonlinear constraints can not be represented accuN€ issue (it is a question of exactly which combi-
rately within a linear framework. nations of components need to be fixed to ensure

This is especially relevant to the estimation of consistency and numerical stability). On the other

the matching tensors. We have emphasized that thB2nd: €xperience with the fundamental matrix sug-
matching tensor components and constraint eo|uages_'[s that it is dangerous to |gnore.the constrgmts
tions are linearly independent butuadratically ~ Entrely. Some at least of them are likely to be im-
highly dependent. It is straightforward to provide PO"ant in any given situation. Our current under-
linear minimum-eigenvector methods to estimate: Standing of these matters is very sketchy: essentially

the 9-component fundamental matrix from at least 82!l We have is afevad hoccomparisons of particular
pairs of corresponding points in two images [11, 12]; echniques.

each of the three linearly independent 27-component As a final point, a few people seem to have been
trilinear tensors from at least 7 triples of points in hoping for some ‘magic’ reconstruction technique
three images; and the 81-component quadrilineathat completely avoids the difficulties of image-to-
tensor from at least 6 quadruples of correspondingmage matching, perhaps by holistically combining
points in four images [20]. For complex applications data from a large number of images (or a single
several of these tensors might be needed, for examdense image sequence). The fact that the matching
ple a fundamental constraint might provide initial constraints stop at four images (or equivalently three
feature pairings that can be used to check for cortime derivatives) does not preclude this, but perhaps
responding features in a third image using furthermakes it seem a little less likely. On the other hand,
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the simplicity of the jointimage picture makes incre- ple vector calculations in a single Euclidean space.
mental recursive reconstruction techniques that cordt is only too easy to writex' x = 1 in a projective
rectly handle the measurement errors and constrainspace where no transpose (metric tensor) exists, or a
geometry seem more likely {.[16]). meaningless ‘epipolar equatioh’ F x = 0 wherel

is actually the 3-component vector of an image line
(rather than an imagpoint) and x belongs to the
wrong image for the fundamental matfx (which

This paper is as much about the use of tensors aghould have been transposed in any case).
a vehicle for mathematical vision as it is about im-  T0 avoid this sort of confusion, it is essential to
age projection geometry. Tensors have seldom beeHS€ @ notation that clearly distinguishes the space
used in vision and many people appear to be rathefnd covariant/contravariant type of each index. Al-
tensor-phobic, so it seems appropriate to say a feWhough it can not be denied that this sometimes leads
words in their favour: Don't panic? [1]. to rather baroque-looking formulae — especially
First of all, whatis a tensor? — It is a collec- when there are many indices from many different
tion (a multidimensional array) of components that SPaces as in this paper — it is much preferable to
represent a single geometric object with respect idhe alternatives of using either no indices at ali,or
some system of coordinates, and that are intermixed> @ndk for everything, so that one can never quite
when the coordinate system is changed. This immeS€€ Whatis supposed to be happening. Itisimportant
diately evokes the two principal concerns of tensor"Ot to be fooled into thinking that tensor equations
calculus: (i) to perform manipulationabstractlyat ~ &re intrinsically difficult just because they have in-
the object level rather than explicitly at the compo- dices. For simple calculations the indexed notation
nent level; andji) to ensure that all expressions are IS N0t significantly more difficult to use than the tra-
properlycovariant(i.e. have the correct transforma- ditional index-free one, and it becomesichclearer
tion laws) under changes of basis. The advantagegd more powerful in complex situations. For a vi-
are rather obvious: the higher level of abstractionSually appealing (but typographically inconvenient)
brings greater compactness, clarity and insight, andicterial notation, see the appendix of [18].
the guaranteed covariance of well-formed tensorial Simultaneously with the work presented in this
expressions ensures that no hidden assumptions agmper, at least two other groups independently con-
made and that the correct algebraic symmetries angterged on parts of the constraint geometry from
relationships between the components are automatieomponent-based points of view: Faugeras & Mour-
cally preserved. rain [6] using the Grassmann-Cayley algebra of
Vectors are the simplest type of tensor and theskew linear forms, and Werman & Shashua [22] us-
familiar 3D vector calculus is a good example of ing Grobner bases and algebraic elimination theory.
the above points: it is much simpler and less errorBoth approaches make very heavy use of computer
prone to write a single vectorinstead of three com- algebra whereas all of the calculations in the present
ponents(z!, 22, 2%) and a symbolic cross product paper were done by hand, and neither (notwithstand-
z = x x y instead of three equations = 2%y3 — ing the considerable value of their results) succeeded
23y?, 22 = 3yt — 2y and2? = 2'y? — 2%y, in obtaining anything like a complete picture of the
Unfortunately, the simple index-free matrix-vector constraint geometry. My feeling is that it is per-
notation seems to be difficult to extend to higher- haps no accident that in each of the three categories:
order tensors with the required degree of flexibil- level of geometric abstraction, efficiency of calcula-
ity. (Mathematicians sometimes define tensors agion, and insight gained, the relative ordering is the
multilinear functionsT(x,... ,z) wherex, ...,z same: tensor calculus Grassmann-Cayley algebra
are vectors of some type and the result is a scalar;> elimination theory.
but this notation becomes hopelessly clumsy when it Elimination-theoretic approaches using resul-
comes to inter-tensor contractions, antisymmetrizatants and Gobner bases seem to be intrinsically
tion and so forth). In fact, the index-free notation component-based. They take no account of the
becomes as much a dangerous weapon as a usefidnsorial structure of the equations and therefore
tool as soon as one steps outside the realm of simmake no use of the many symmetries between them,

11.2 Tensors vs. the Rest
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so even when the coordinate systems are carefullyora. The fact that the algebra has a stratified tenso-
adapted to the problem they tend to carry a signifi-rial structure is usually hidden in the definitions of
cant amount of computational redundancy. Wermarthe basic product operations, but it becomes a cen-
& Shashua [22] suggest that an advantage of suclral issue as soon as geometric invariance is called
approaches is the fact that very little geometric in-into question.

sight is required. Unfortunately, one might also sug- In summary, my feeling is that the tensorial ap-
gest that very little geometric insight gmined the  proach is ultimately the most promising. The in-
output is a complex set of equations with no very dexed notation is an extraordinarily powerful, gen-
clearly articulated structure. eral and flexible tool for the algebraic manipula-

The Grassmann-Cayley algebra [6, 2] is spiri- tion of geometric objects. It displays the under-
tually much closer to the tensorial point of view. lying the structure and covariance of the equations
Indeed, it can be viewed as a specialized index-very clearly, and it naturally seems to work at about
free notation for manipulating completely antisym- the right level of abstraction for practical calcula-
metric covariant and contravariant tensors. It Sup_tionS: neither so abstract nor so detailed as to hide
ports operations such as antisymmetrization over inthe essential structure of the problem. Component-
dices from several tensors (wedge product), conbased approaches are undoubtedly useful, but they
tractions over corresponding sets of covariant andere probably best reserved urdfter a general ten-
contravariant antisymmetric indices (hook product), sorial derivation has been made, to specialize and
and contravariant-covariant dualization (sometimessimplify a set of abstract tensorial equations to the
used to identify the covariant and contravariant alge-Particular application in hand.
bras and then viewed as the identity, in which case As an example of this, A+ 1 index antisymmet-
the hook product is replaced by the join product). fic tensor representing fadimensional subspace of
Given the connection with Grassmann coordinates@ d dimensional projective space has (veryvesy)
the Grassmann-Cayley algebra can be viewed as & + 1)¥+1 components, but onl(ﬁjﬂ) of these are
calculus of intersection and union (span) for projec-linearly independent owing to antisymmetry. The
tive subspaces: clearly a powerful and highly rele-independent components can easily be enumerated
vant concept. It is likely that this approach would (the indicesigiy - --ix for 0 < ip < i3 < ... <
have lead fairly rapidly to the full Grassmannian i < d form a spanning set) and gathered into an
matching constraint geometry, notwithstanding theexplicit ({71) component vector for further numer-

relative opacity of the initial component-oriented ical or symbolic manipulation. In fact, these com-
formulations. ponents span exactly one tensorial stratum of the

Despite its elegance, there are two problems withCrassmann-Cayley algebra.

the Grassmann-Cayley algebra as a general formal- It is perhaps unfortunate that current computer
ism. The first is that it is not actually very general: 2/9€Dra systems seem to have very few tools for

it is good for calculations with linear or projective Manipulating general tensorial expressions, as these

subspaces, but it does not extend gracefully to moré(vogld greatly streamline the derivation and special-
complex situations or higher-degree objects. For ex/Zalion processes. However, there does not appear to

ample quadric surfaces are representedyoyimet- be any se.ri(_)usT obstacle to theldevelopment pf such
ric tensors which do not fit at all well into the an- f[ools and it is likely that they will become available
tisymmetric algebra. Tensors are much more flex-IN the near future.

ible in this regard. The second problem with the

Grassmann-Cayley algebra is that it is often infuri- 12 Summary

atingly vague about geometric (covariance) issues.

Forms of different degree with indices from differ- Given a set of perspective projections into pro-

ent spaces can be added formally within the algebrajective image spaces, there is a 3D subspace of
but this makes no sense at all tensorially: such obthe space of combined image coordinates called the
jects do not transform reasonably under changes ojointimage. This is a complete projective replica of
coordinates, and consequently do not have any cleahe 3D world expressed directly in terms of scaled
geometricmeaning, whatever the status of the alge-image coordinates. It is defined intrinsically by the
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physical situation up to an arbitrary choice of some mation on our notation. For more details on using
internal scalings. Projective reconstruction in the tensor calculus for projective space see [9, 18].
joint image is a canonical process requiring only a
rescaling of the image coordinates. A choice of ba-
sis in the joint image allows the reconstruction to be
transferred to world space. A vector spaceH“ is a space on which addition and
There are multilineamatching constraints be-  scaling of elements are definellk® + py® is in H®
tween the images that determine whether a set of imfor all scalars\ and i and elementx® andy® of
age points could be the projection of a single world 4. The span of a set{e{,... ,e{} of elements
point. For 3D worlds only three types of constraint of #“ is the vector space of linear combinations
exist: the epipolar constraint generated by the fun-zle¢ + --- + xkez of elements of the set. A min-
damental matrix between pairs of images, Shashua'$mal set that spans the entire space is callbdsis
trilinear constraints between triples of images and aand the number of elements in the set isdiraen-
new quadrilinear constraint on sets of correspondingsion of the space. Given a basfe{, ... ,e4} for a
points from four images. d dimensional vector spack®, any elemeni® of
Moreover, the entire set of constraint tensors forthe space can be expressed:&s? + - - - + x4 and
all the images can be combined into a single com-associated with the coordinate vectat, . .. ,2%).
pact geometric object, the antisymmetric 4 index |t is helpful to view the superscript as anab-
joint image Grassmanniantensor. This can be re- stract index [18], i.e. an abstract label or place-
covered from image measurements whenever the inholder denoting the space the object belongs to.
dividual constraint tensors can. It encodes preciselyHowever given a choice of basis it can also be
the information needed for reconstruction: the lo- thought of as a variable indexing the coordinate vec-
cation of the joint image in the space of combined tor that represents the object in that basis.
image coordinates. It also generates the matching For every vector spack® there is a dual vector
constraints for images of lines and a seti@himal space of linear mappings di“, denotedH,. An
reconstruction techniquesclosely associated with elementl, of H, acts linearly on an element* of
the matching constraints. Structural constraints onye to produce a scalar. This action is denoted sym-
the Grassmannian tensor produce quadratic identiboncauy by 1,x* and calledcontraction. Any ba-
ties between the various constraint tensors. sis{e{,... ,e%} for H* defines a uniqueual basis
{es,. .. ,el} for H, with ele = &%, whered! is
1 wheni = j and 0 otherwise. Thé&" coordinate
of x* in the basis{ef} is justz’ = e x*. If el-

This work was supported by the European Com_ements ofH* are represented in the 'Pasﬁs?} as
munity through Esprit programs HCM and SEC- d index column vectors, elements &, in the dual
o LT i
OND and benefited from discussions with many col-bas'_s{eq} beha}ve liked index row vectors. an
leagues. The notation and the tensorial treatmenfraction is theanUSt the d?lt pr?duct of theccl:oordlnate
N ... a ... a f—
of projective space are based on Roger Penrose¥eCtOrs:(u1 eq + j“éea)(x et Jix €q) =
approach to relativistic spinors and twistors [18], %1 & T *- + ua 7. Contraction involves a sum

which partly derives (I believe) from Hodge & Pe- over coqrdlngtes.bu';]we do not epr|C|tI.y V‘I’”tt)e Ith?
doe’s excellent treatise on algebraic geometry [9]_summat|on signs: whenever a superscript label also

Without these powerful tools this work would not 2PPears as a subscript a summation is implied. This
have been possible.

A.1 Vectors and Tensors

Acknowledgements

is called theEinstein summation convention The
order of terms is unimportanti, x* andx® u, both
denote the contraction of the dual vectgrwith the
A Mathematical Background vectorx®.
Suppose we change the basis?f according
This appendix provides a very brief overview of the to e — &} = Zj e AJ; for some matrixA7;.
linear algebra and projective geometry need to un-To keep the resulting abstract element’ef the
derstand this paper, and a little background infor-same, coordinate vectors must transform inversely
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according tor’ — &' = Y, (A™!)"; 7. To pre- TP 4 Tbe* — T 4 T — T js an antisym-

serve the relationg}, & = ¢, the dual basis must metric 3 index tensor. A group of indices (anti-

also transform ag! — & = S A—l)z‘j el . Fi- )symmetric if (anti-)symmetrization over them does

nally, to leave the abstract element of the dual spac&©t change the tensof: - - ) and[. - -] are also used

the same, dual coordinate vectors must transform a9 denote this, for exampﬁé‘g‘zz]) e Hl 4 is an-

wp — U =Y uy AJ;. Because of the transfor- tisymmetric inab and symmetric ired. Permutation

mations of their coordinates under changes of basis¢f (anti-)symmetric indices changes at most the sign

vectorsx® are calleccontravariant and dual vectors ~ Of the tensor.

u, are calleccovariant. In d dimensions antisymmetrizations over more
An elementx® of H® can also be viewed as a lin- than d indices vanish: in any basis each index

ear mapping on elements &, defined byu,x?, in must take a di;tinct va_llue betwednand d._ Up
other words as an element of the dual of the dual of® SCalé there is a unique annsym'metrlﬂ;:mddex
1. For finite dimensional spaces every linear map-tensore™ E_H[alagmad}: choosinge ¢ =
ping onH, can be written this way, so there is a T1 IN Some basis, all other components afé

complete symmetry betweér® andH,: neither is or O(;l“inder a change of basis the _components
‘more primitive'. of ¢ are rescaled by the determinant of the

transformation matrix. There is a corresponding
dual tensoreq,ay.-ay € Hajaz--ay) With cOMpo-
nents+1 or 0 in the dual basis. €4,4,...q, de-
fines a volume element oft{*, giving the vol-
ume of the hyper-parallelepiped formed Byec-

It is possible to take formal (‘tensor’ or ‘outer’) tors X¢, .. X% AS €qyap0y XJ1 - X5%. The de-
products ofn-tuples of elements of vector spaces, terminant of a linear transformatioli¢ on H* can
for example a formal elemerf®, = x* y4 z,  pe defined Sk €arap-ay TO - - T8 ghib2-ba, and
can be made from elements’, y*, z, of vector  this agrees with the determinant of the matrix of
spacesi”, H*' and*,. The vector space of linear T in any coordinate basis. A contravariant anti-
combinations of such objects (for different choices symmetrick index tensorTl®: ! has a covariant
of x*, y* andz,) is called the tensor product space antisymmetricd — & index dual (+T)q,,,..a, =
HA, = H* ® HA ® Ho. When there are several % € agbr-by bi-br ConversewTZlmak —
distinct copies of{* we use distinct letters to denote _ ’(*T)karl--’-bd gbret1baarar A tensor and its
them,e.g.H% . = H*®@H’®@H,. contains two copies
of H°. Elements of a tensor product space are calle
tensorsand can be thought of as multidimensional
arrays of components in some chosen set of bases. )
Under changes of basis each of the indices must b&-2 Grassmann Coordinates

transformed individually. Antisymmetrization and duality are important in
There are a number of important generic opera-the theory of linear subspaces. Consider a set
tions on tensors. A set of tensors can be contractedv{, ... ,v{} of k independent vectors spanning a
together over any appropriate subset of their indicesdimensional subspace of H%. Given some choice
for exampleug, x® € Hy, u, TP, x¢ € HE. Self  of basis the vectors can be viewed as column vec-
contractionsT% ... € H""... are calledtraces tors and combined into a singlex k matrix. Any
A group of indices can béanti-)symmetrized by  set{as, ... ,a} of k distinct rows of this matrix de-
averaging over all possible permutations of their po-fines ak x k& submatrix whose determinant iga k
sitions, with an additional minus sign for odd permu- minor of the original matrix. Up to a constant scale
tations during antisymmetrization. Onindicés,-)  factor these minors are exactly the components of
denotes symmetrization arfd- -] antisymmetriza- the tensorn® o = V[lal-"VZk}. If the original
tion. For exampleT(®) = (T + T**) and  vectors are independent thex k matrix has rank:
Tl = 2(T* — T") can be viewed as symmetric and at least one of the x k minors (and hence the
and antisymmetric matrices, afi**?l = &(T®°—  tensorxe ) will not vanish. Conversely, if the

Any nonzero element ¢, defines al—1 dimen-
sional subspace df{® by the equations,x* = 0,
and conversely any — 1 dimensional subspace de-
fines a unique element @{, up to scale.

1
(d—k)!
ci}lual contain the same information and both hé@e
Independent components.
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tensor vanishes the vectors are linearly dependent. These relations obviously hold for any tensor of the
A vector x? lies in the subspaCE if and onIy if form Vlal ... Vzk} because one of the vectors must
all of the(k+1) x (k+1) minors of thed x (k+1)  appear twice in an antisymmetrization. What is less
matrix whose columns are” and thev{ vanish. In  obvious is that they do not hold for any tensor that
tensorial terms:x® is an element ob if and only  can not be written in this form.
if $lor-a x9l = 0. So no two distinct subspaces  Although their redundancy and the complexity of
have the sam&““*. Under ak x k linear redef-  the Grassmann relations makes them rather incon-
inition v — v{ = ., A;/v{ of the spanning vec- venient for numerical work, Grassmann coordinates
tors, thek x k minors are simply a constant factor are a powerful tool for the algebraization of geomet-
of Det(A;”) different from the old ones by the usual ric operations on subspaces. For example the union
determinant of a product rule. So up to scafe of two independent subspaces is jhst 01 bi]
is independent of the set of vectors3hchosen to  and dually the intersection of two (minimally) inter-
span it. secting subspaces gy, ...q, [y, ..5,]-
A subspaceX can also be defined as the null
space of a set off — k independent linear forms

{ul*l ... udl, ie. as the set ok® on which all A.3  Projective Geometry
of theu}, vanish:u}, x* = 0. Theu), can be viewed  Gjven ad + 1 dimensional vector spack® with

, p
as a(d — k) x d matrix of row vectors. Arguments ,onzero elements® andy® (a =0, ... , d), we will
analogous to those above show that the covarianfyrite x* ~ y* and say thak® andy® areequiva-
az'ﬂ?ymmectirlcd — k index tensor¥,, ., .a;, =  |ent up to scalevhenever there is a nonzero scalar

ap,, " Ug, 1S independent (up to scale) of the \ such thatx® = A y®. Thed dimensionalpro-
{u!} chosen to characteriZé and defines as the jective spaceP” is defined to be the set of nonzero
set of points for whichZ,, ..., x* = 0. We elements of{* under equivalence up to scale. When
use the same symbol fal,, . ..., andX* % pe- ~ we writex® € P* we really mean the equivalence
cause up to scale they turn out to be mutually dual:class{\ x*| A # 0} of x* under~.

Yapiraq ~ % Eajr-agbi by bk In particu- The span of any + 1 independent representa-
lar a hypersurface can be denoted eithenpyr by  tives {x§,... ,x}} of points inP* is ak + 1 di-
uloraa-1], mensional vector subspace Af that projects to a

Hence, up to scalg,;* " and its duabl,, . ...,  Well-definedk dimensional projective subspace of
are intrinsic characteristics of the subspatende-  P¢ called the subspadarough the points. Two in-
pendent of the bases chosen to span it and uniqueldependent points define a one dimensional projec-
defined by and defining it. In this sense the antisym-tive subspace called a projective line, three points
metric tensors provide a sort of coordinate system ordefine a projective plane, and so forth. The vector
the space of linear subspaces?of, calledGrass-  subspaces df(® support notions of subspace dimen-
mann coordinates sion, independence, identity, containment, intersec-

Unfortunately, only very special antisymmetric tion, and union (vector space sum or smallest con-
tensors specify subspaces. The spacé dfimen-  taining subspace). All of these descend to the pro-
sional linear subspaces of&dimensional vector jective subspaces @“. Similarly, linear mappings
space is onlyk (d — k) dimensional, whereas the between vector spaces, kernels and images, injectiv-
antisymmetrick index tensors hav(é,j) independent ity and surjectivity, and so on all have their coun-
components, so the Grassmann coordinates are materparts for projective mappings between projective
sively redundant. The tensors that do define subspaces.
spaces are callesimple because they satisfy the fol- ~ Tensors or{* also descend to projective tensors
lowing complex quadratiGrassmann relations defined up to scale o®*. Elementsu, of the
T P e S R projectiye ver_siorTPa o_f th_e dual spacé, defir_1e

d — 1 dimensional projective hyperplanes?i via
or in terms of the dual u,x® = 0. The duality ofH* andH, descends to
a powerful duality principle between points and hy-

Sy 1ag 42 =0 perplanes orP? andP,,.
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More generally the antisymmetrie + 1 index v 4 uyu/, the most general redefinition of tles and
contravariant and — & index covariant Grassmann v's that leaves unchanged up to scale is
tensors or{* definek dimensional projective sub-
spaces of®. For example given independent points ( ua ua ) . A( ua ua )(1/)‘ 0 /)
x%, y® andz® of P the projective tensaxl*y®! de- va va va va 0 1/A
fines the line througlx® andy® andx!“y’z) defines  \yheren is an arbitrary nonsingula® x 2 matrix and
the plane througlx?, y* andz?. Similarly, in 3D a P\, X'} are arbitrary nonzero relative scale factors.
line can be represented dually as the intersection of gincew, andv 4 are independent epipolar lines
two hyperplanesi, v, while a point requires three  gng there is only a two parameter family of these,
u, VW In 2D asingle hyperplane, suffices for 5y other choicdiy, ¥4 must be a nonsingular lin-

aline, and two are required for a poin, v;). Dual- - ear combination of these two, and similarly fes
ization gives back the contravariant representationgngy ,,. Hence the only possibilities are:

e.g.x% = u,v, e® are the coordinates of the inter-

section of the two lines, andv, in 2D. ( uy ) A ( uy )
A d dimensional projective space can be thought va va
of as ad dimensional affine spaced. a Euclidean
. . . u 4/ ’ u 4/
space with points, lines, planes, and so on, but no ( v ) — A ( v )

origin or notion of absolute distance) with a num-

ber of ideal points added ‘at infinity’. Choosing for nonsingular2 x 2 matricesA andA’. Then
a basis forH®, any representativ® of an ele-

mentP® with z° # 0 can be rescaled to the form g _ ( 0 1 ) <UA/ >
aar = (ua va
(1,2%,...,2%)T. This defines an inclusion of the ( ) -1 0/ \va
affine spacgz!,... ,z%) in P2, but thed — 1 di- (0 1\ ., [ uu
mensional projective subspace ‘at infinity’ of ele- - (uA VA ) A (_1 0> A <VA,>

ments of P¢ with z° = 0 is not represented. Un-

der this inclusion affine subspaces (lines, planes, etcpince the covectoras, v, anduy, vy are inde-
become projective ones, and all of affine geometrypendent, forF to remain unchanged up to scale we
can be transferred to projective space. However promust have

jective geometry is simpler than affine geometry be- 0 1 0 1

cause projective spaces are significantly more uni- AT < 10 > A~ ( 10 >

form than affine ones — there are far fewer special

cases to consider. For example two distinct linesUsing the2 x 2 matrix identity

always meet exactly once in the projective plane,

whereas in the affine plane they always meeatept A = —Det (A) < 0 1 )A—T( 0 1 >
when they are parallel. Similarly, there are natu- -10 -10

ral transformations that preserve projective SrUCtUre o find thatA’ ~ A up to scale. Defining\/\ to

(i.e. that map lines to lines, preserve INtersections gqa the difference in scale, the result follows.
and so) that are quite complicated when expressed

in affine space but very simple and natural in projec-  (2) Given any factorizatio® 44 = us var —

tive terms. The 3D->2D pinhole camera projection VA u defining a 4D subspacg® of 1 via

is one of these, hence the importance of projective A
() (R ) o

eometry to computer vision.
g y p va \FY XA/

L and any pair{P2, P2’} of rank 3 projection ma-
B Factorization of the Fundamen- trices with dis{tinct cent}res of projection compatible
tal Matrix with F 4 4 in the sense thaf 44 P2P{" xx = 0
for all x* € H“, there is a fixed rescalingA, \'}
This appendix proves two claims made in section 3.that make<“ coincide with the image df(® under
(1) Given the factorizatio¥ 4, = us va —  the joint projection(A P2 X PA)T,
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If the compatibility condition holds for akk®, the
symmetric part of the quadratic forii, 4 PAP;Y
must vanish. Expandin§ and for clarity defining
u, = ug P4, ), = uy PY, v, = va P4, and
v/ = v P4 we find:

U, v+ viu—veu, —u, vy, = 0

Since both projections have rank 3 none of the pulled
back covectorai,, u/,, v,, v, vanish, and since the
pairsug 4 v4 anduy £ vy are independent,
u, % v, andu, ¢ v/, are independent too. Con-

tracting with any vectox® orthogonal to botha,
andu, we find that

(Vi x")up — (vox*)uy, = 0

Either there is som&® for which one (and hence

both) of the coefficientsv, x* and v/, x* are
nonzero — which implies thati, ~ ul, — or
both coefficients vanish for all suck®. But in
this case we could conclude thej and v/, were
in Span(u,,u,) and sincev, is independent of
u, and v, of u), thatv, ~ u, andv) ~ u,.

Substituting back intdF immediately shows that

Au,up — XN vevy = 0 with nonzero) and)\, and

hence thatu, ~ v,. So this branch is not pos-

[3]

[4]

[5]

[6]

[7]

sible and we can conclude that for some nonzero [8]

Aand XN, Au, + XN u, = 0. Similarly, u v, +
w' v!, = 0 for some nonzerg andy’. Substituting
back intoF gives (A/\N — /1) (ugvy + veup) =
0, so up to scale{u, '} ~ {\,X'}. The rescal-
ing {P4, P4’} — {AP4, X P4’} then takes the
projection of anyx® to a vector lying inZ<:

uq4 Uy )\].);'14 a
V4 Var N ng x
B Au, + N u, o 0 a0
T UavetxNv, ) T o)t T
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Abstract

We describe work in progress on a numerical library for estimating multi-image matching
constraints, or more precisely the multi-camera geometry underlying them. The library will
cover several variants of homographic, epipolar, and trifocal constraints, using various differ-
ent feature types. It is designed to be modular and open-ended, so) theiv(feature types
or error models,i{) new constraint types or parametrizations, aiig few numerical reso-
lution methods, are relatively easy to add. The ultimate goal is to provide practical code for
stable, reliable, statistically optimal estimation of matching geometry under a choice of robust
error models, taking full account of any nonlinear constraints involved. More immediately,
the library will be used to study the relative performance of the various competing problem
parametrizations, error models and numerical methods. The paper focuses on the overall de-
sign, parametrization and numerical optimization issues. The methods described extend to
many other geometric estimation problems in visiew, curve and surface fitting.
Keywords: Matching constraints, multi-camera geometry, geometric fitting, statistical estima-
tion, constrained optimization.

1 Introduction and Motivation

This paper describes work in progress on a numerical library for the estimation of multi-image
matching constraints. The library will cover several variants of homographic, epipolar, and trifocal
constraints, using various common feature types. It is designed to be modular and open-ended, so
that new feature types or error models, new constraint types or parametrizations, and new numerical
resolution methods are relatively easy to add. The ultimate goal is to provide practical code for
stable, reliable, statistically optimal estimation of matching geometry under a choice of robust error
models, taking full account of any nonlinear constraints involved. More immediately, the library is
being used to study the relative performance of the various competing problem parametrizations,
error models and numerical methods. Key questions inclugjehov much difference does an
accurate statistical error modehake; {i) which constraint parametrizationsnitialization methods
and numerical optimization schemedfer the best reliability/speed/simplicity. The answers are
most interesting fonear-degeneratgroblems, as these are the most difficult to handle reliably.
This paper focuses on architectural, parametrization and numerical optimization issues. | have tried
to give an overview of the relevant choices and technology, rather than going into too much detail
on any one subject. The methods described extend to many other geometric estimation problems,
such as curve and surface fitting.

After motivating the library and giving notation in this section, we develop a general statistical
framework for geometric fitting i§2 and discuss parametrization issue§3n§4 summarizes the
library architecture and numerical techniquégs discusses experimental testing, §6cdconcludes.

This paper appeared in SMILE'98, European Workshop on 3D Structure from Multiple Images of Large-scale Envi-
ronments, Springer LNCS, 1998. The work was supported by Esprit LTR projg@atCi .
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Why study matching constraint estimation? — Practically, matching constraints are central
to both feature grouping and 3D reconstruction, so better algorithms should immediately benefit
many geometric vision applications. But there are many variations to implement, depending on
the feature type, number of images, image projection model, camera calibration, and camera and
scene geometry. So a systematic approach seems more appropriate #thhaotase-by-case
one. Matching constraints also have a rather delicate algebraic structure which makes them difficult
to estimate accurately. Many common camera and scene geometries correspond to degenerate cases
whose special properties need to be detected and exploited for stability. Even in stable cases it is
not yet clear how best to parametrize the constraints — usually, they belong to fairly complicated
algebraic varieties and redundant or constrained parametrizations are required. Some numerical
sophistication is needed to implement these efficiently, and the advantages of different models and
parametrizations need to be studied experimentally: the library is a vehicle for this.

It is also becoming clear that in many cases no single model suffices. One should rather think
in terms of a continuum of nested models linked by specialization/generalization relations. For
example, rather than simply assuming a generic fundamental matrix, one should use inter-image
homographies for small camera motions or large flat scenes, affine fundamental matrices for small,
distant objects, essential matrices for constant intrinsic parameters, fundamental matrices for wide
views of large close objects, lens distortion corrections for real imagfes,ldeally, the model
should be chosen to maximize the statistically expected end-to-end system performance, given the
observed input data. Although there are many specific decision criteria (ML, AIC,.BIQ, the
key issue is always thieias of over-restrictive models versus thariability of over-general ones
with superfluous parameters poorly controlled by the data. Any model selection approach requires
several models to be fitted so that the best can be chosen. Some of the models must always be
inappropriate — either biased or highly variable — so fast, reliable, accurate fitting in difficult
cases is indispensable for practical model selection.

Terminology and notation: We use homogeneous coordinates throughout, with upright bold
for 3D quantities and italic bold for image ones. Image projections are descrilied Byperspec-
tive projection matrices P, with specialized forms for calibrated or very distant cameras. Given
m images of a static scene, our goal is to recover as much information as possible about the camera
calibrations and poses, using only image measurements. We will call the recoverable information
the inter-image geometryto emphasize that no explicit 3D structure is involved. The ensemble of
projection matrices is defined only up to a 3D coordinate transformation (projectivity or similarity)

T: (Py,...,P,)— (PiT,...,P,T). We call such coordinate freedorgauge freedoms So
our first representation of the inter-image geometry ipragection matrices modulo a transfor-
mation group. In the uncalibrated case this givesdmn parameter representation with gauge
freedoms, leaving1m — 15 essential d.o.f. £ 7, 18,29 for m = 2, 3,4). In the calibrated case
there are&sm — 7 essential degrees of freedom.

Any set of four (perhaps not distinct) projection matrices can be combined to fonateh-
ing tensor [14, 5] — a multi-image object independent of the 3D coordinates. The possible
types are:epipolese;; 3 x 3 fundamental matrices F;j; 3 x 3 x 3 trifocal tensors Gz?k ; and
3 x 3 x 3 x 3 quadrifocal tensors H7*', Their key property is that they are the coefficients
of inter-imagematching constraints — the consistency relations linking corresponding features
in different images.E.g, for imagesz, ’, "’ of a 3D point we have the 2-imaggpipolar con-
straint =" F ' = 0; the 3-imagetrinocular constraint which can be written symbolically as
[2']x (G -x)[z"]x = 0 where[z ]« is the matrix generating the cross prodiet] .y = z A y;
and a 4-imagejuadrinocular constraint. The matching tensors also characterize the inter-image
geometry. This is attractive because they are intimately connected to the image measurements —
it is much easier to get linearized initial estimates of matching tensors than of projection matrices.
Unfortunately, this linearity is deceptive. Matching tensors are not really linear objects: they only
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represent a valid, realizable inter-image geometry if they satisfy a set of nonlinear algehrsig-
tency constraints These rapidly become intractable beyond 2—3 images, and are still only partially
understood [4, 14, 5, 9, 6]. Our second parametrization of the inter-image geometmascisng
tensors subject to consistency constraints

We emphasize that camera matrices or matching tensors are only a means to an end: it is the
underlying inter-image geometry that we are really trying to estimate. Unfortunately, this is abstract
and somewhat difficult to pin down because it im@ntrivial algebraic variety — thereare no
simple, minimal, global parametrizations.

2 Optimal Geometric Fitting

2.1 Direct Approach

Matching constraint estimation is an instance ofastract geometric fitting problem which

also includes curve and surface fitting and many other geometric estimation problems: estimate the
parameters of a modeldefining implicit constraintg; (x;, u) = 0 on underlying features;, from

noisy measurements of the features. More specifically we assume:

1. There are unknowfrue underlying features xX; and an unknowrtrue underlying model
u which exactly satisfy implicitnodel-feature consistency constraintg;(X;,a) = 0. (For
matching constraint estimation, these ‘features’ are actually ensembles of several correspond-
ing image ones).

2. Each underlying featurg; is linked to observations, or other prior information by an
additive posterior statistical error measure p;(x;) = p;(x;|x;). For examplep; might
be (robustified, bias correcte@psterior log likelihood. There may also be model prior
pprior(u). These distributions are independent.

3. The model parametrizatianmay itself be complexg.g.with internal constraint&(u) = 0,
gauge freedomstc

4. We want to findoptimal consistent point estimates(x;, i) of the true underlying modei
and featurex;

(X4,...,0) = arg min <ppri0r(u) + Zpi(xi\&) ci(x;,u) =0, k(u) = 0)

Consistentmeans thatx;, i) exactly satisfy all the constraintptimal means that they

minimize the total error over all such estimat&aint estimatemeans that we are attempting

to “summarize” the joint posterior distributigrix;, . . . , u|x;, ... ) with just the few numbers

(Xiy ... ,0).
We call this thedirect approach to geometric fitting because it involves direct numerical optimiza-
tion over the “natural” variablegx;, u). Its most important characteristics aré) If gives exact,
optimal results — no approximations are involveii) I produces optimal consistent estimatgs
of the underlying features;. These are useful whenever the measurements need to be made coher-
ent with the model. For matching constraint estimation such feature estimates are “pre-triangulated”
or “implicitly reconstructed” in that they have already been made exactly consistent with exactly
one reconstructed 3D featureiii X Natural variables are used and the error function is relatively
simple, typically just a sum of (robustified, covariance weighted) squared devidtions x; ||?.
(iv) However, a sparse constrained nonlinear optimization routine is required: the problem is large,
constrained and usually nonlinear, but the features couple only to the model, not to each other.
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As an example, for the uncalibrated epipolar geometry: the “features” are pairs of correspond-
ing underlying image point$z;, «/); the “model” u is the fundamental matri¥' subject to the
consistency constraintet(F) = 0; the “model-feature constraints” are the epipolar constraints
z/F x/ = 0; and the “feature error modep;(x;) might be (a robustified, covariance-weighted
variant of) the squared feature-observation distghee- z|? + ||z’ — z/||%.

2.2 Reduced Approach

If explicit estimates of the underlying features are not required, one can attempt to replace step 4
above with an optimization over alone:

4'. Find anoptimal consistent point estimatea of the true underlying modéi

k(u) = O>

Here, thereduced error functions p;(u|x;) are obtained by freezing and eliminating the
unknown features from the problem using eith&yppint estimates

a = arg min (pprior(u) + Zpi(u\gi)
i

Xi(x;;,u) = arg min (p;(x[x;) | ¢i(xi,u) = 0)

of x; givenx; andu, with p;(ulx;) = pi(xi(x;,u)|x;); or (i) marginalization with respect to;:

it )

pi(u|x;) = e (i, u)=0 pi(x;|x;) dx;. These two methods are not equivalent in general, although
their answers happen to agree in the linear/Gaussian limit. But both represent reasonable estimation
techniques.

We call this thereduced approachto geometric fitting, because the problenvésiuced to
one involving only the model parametens The main advantage is that the optimization is over
relatively few variablesi. The constraintg; do not appear, so a non-sparse and (perhaps) uncon-
strained optimization routine can be used. The disadvantage is that the reduggdi¢@sseldom
available in closed form. Usually, it can only be evaluated to first order in a linearized + central
distribution approximation. In fact, the direct method (witlirozen, and perhaps limited to a sin-
gle iteration) is often the easiest way to evaluate the point-estimate-based reduced cost. The only
real difference is that the direct method explicitly calculates and applies feature udstateghile
the reduced method restarts each time feome x,. But the feature updates are relatively easy to
calculate given the factorizations needed for cost evaluation, so it seems a pity not to use them.
The first order reduced cost can be estimated in two ways, ei)rgiréctly from the definition
by projectingx; Mahalanobis-orthogonally onto the local first-order constraint surtfaeeg—}‘z .
dx; = 0; or (i) by treatingc; = c;(x;,u) as a random variable, using covariance propagation
w.r.t. x; to find its covariance, and calculating té-like variablec] Cov(c;)~tc;. In either case
we obtain thegradient weighted least squaresost functiont [13]

-1
-1
_ T ( de; (d%ps dc; T .
plu) = ) ¢ (dxz (dxg dx, Ci

1

(57; ,ll)

This is simplest for problems with scalar constrairEsg. for the uncalibrated epipolar constraint
we get the well-known form [10]

W=y (z] F a;)’
u =
P z] F Cov(z!) FTz, + z!" FT Cov(z;) F z/

i o

LIf any of the covariance matrices is singular (which happens for redundant constraints or homogenesy)sttata
matrix inverses can be replaced with pseudo-inverses.
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2.3 Robustification — Total Distribution Approach

Outliers are omnipresent in vision data and it is essential to protect against them. In general, they
are distinguished only by their failure to agree with the consensus established by the inliers, so
one should really think in terms drfilier or coherencedetection. The hardest part is establishing

a reliable initial estimatei,e. the combinatorial problem of finding enough inliers to estimate the
model, without being able to tell in advance that tleginliers. Exhaustive enumeration is usually
impracticable, so one falls back on either RANSAC-like random sampling or (in low dimensions)
Hough-like voting. Initialization from an outlier-polluted linear estimate is seldom completely
reliable.

Among the many approaches to robustness, | prefer M-like estimators and particuladiathe
distribution approach: hypothesize a parametric form for th&l observation distribution —

i.e. including both inliers and outliers — and fit this to the data using some standard criterion,
e.g.maximum likelihood. No explicit inlier/outlier decision is needed: the correct model is located
simply because it provides an explanation more probable than randomness for the coherence of
the inlier$. The total approach is really just classical parametric statistics with a more realistic
or “robust” choice of parametric family. Any required distribution parameters can in principle be
estimated during fittingg.g. covariances, outlier densities). For centrally peaked mixtures one can
view the total distribution as a kind of M-estimator, although it long predates these and gives a much
clearer meaning to the rather arbitrary functional forms usually adopted for them. As with other M-
like-estimators, the estimation problem is nonlinear and numerical optimization is required. With
this approach, both of the above geometric fitting methods are ‘naturally’ robust — we just need to
use an appropriate total likelihood.

Reasons for preferring M-like estimators over trimmed ones like RANSAC’s consensus and
rank-based ones like least median squares incluidep the extent that the total distribution is
realistic, the total approach is actually the statistically optimal oinepily M-like cost functions
are smooth and hence easy to optimizie) the ‘soft’ transitions of M-like estimators allow better
use of weak ‘near outlier’ data,g. points which are relatively uncertain owing to feature extraction
problems, or “false outliers” caused by misestimated covariances or a skewed, biased, or badly
initialized model; {v) including an explicit covariance scale makes the results more reliable and
increases thexpectedreakdown point — ‘scale free’ rank based estimators can not tell whether
the measurements they are including are “plausible” or mtal{ of these estimators assume an
underlying ranking of errors ‘by relative size’, and none are robust against mismodelling of this
— rank based estimators only add a little extra robustness against the likelilsoaror size
assignment.

3 Parametrizing the Inter-image Geometry

As discussed above, what we are really trying to estimate isrifee-image geometry — the

part of the multi-camera calibration and pose that is recoverable from image measurements alone.
However, this is described by a nontrivial algebraic variety — iti@asimple, minimal, concrete,

global parametrization. For example, the uncalibrated epipolar geometry is “the variety of all ho-
mographic mappings between line pencils in the plane”, but it is unclear how best to parametrize
this. We will consider three general parametrization strategies for algebraic varigtiestupdant
parametrizations with internal gauge freedonis; fedundant parametrizations with internal con-
straints; {ii) overlapping local coordinate patchédathematicallythese are all equivalent — they

only differ in relative convenience and numerical properties. Different methods are convenient for

2If the total distribution happens to be an inlier/outlieixture — e.g. Gaussian peak + uniform background —
posterior inlier/outlier probabilities are easily extracted as a side effect.
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different uses, so it is important to be able to convert between them. Even the numerical differences
are slight for strong geometries and careful implementations, but for weak geometries there can be
significant differences.

3.1 Redundant Parametrizations with Gauge Freedom

In many geometric problemaybitrary choices of coordinatesare required to reduce the problem
to a concrete algebraic form. Such choices are cajledge freedoms— ‘gauge’ just means
coordinate system. They are associated with an intexyraimetry or coordinate transformation
group and its representations. Formulae expressed in gauged coordinates reflect the symmetry by
obeying well-defined transformation rules under changes of coordinaelsy belonging to well-
defined group representations. 3D Cartesian coordinates are a familiar example: the gauge group is
the group of rigid motions, and the representations are (roughly speaking) Cartesian tensors.

Common gauge freedoms include) 8D projective or Euclidean coordinate freedoms in re-
construction and projection-matrix-based camera parametrizatiifsarifitrary homogeneous-
projective scale factors; andij choice-of-plane freedoms inomographic parametrizations of
the inter-image geometry. These latter represent matching tensors as products of epipoles and inter-
image homographies induced by an arbitrary 3D plane. The gauge freedom is the 3 d.o.f. choice of
plane. The fundamental matrix can be writtenfas~ | e |« H wheree is the epipole andd is
any inter-image homography [11, 3]. Redefining the 3D plane chafhés H + e a' for some
image line 3-vectow. This leavesF' unchanged, as do rescalings— \e, H — pH. So there
are3+ 1+ 1 gauge freedoms in thie+ 3 x 3 = 12 variable parametrizatiof” ~ F (e, H ), leaving
the correctl2 — 5 = 7 degrees of freedom of the uncalibrated epipolar geometry. Similarly [8], the
image(1, 2, 3) trifocal tensorG can be written in terms of the epipolég’, e”) and inter-image
homographies H', H") of image 1 in images 2 and 3

G~eoH' -H e withfreedom (H,) — (H,)+(5)a’

The gauge freedom corresponds to the choice of 3D plane and 3 scale d.o.f. — the relative scaling
of (e/, H') vs. (e”, H") being significant — so the 18 d.o.f. of the uncalibrated trifocal geometry
are parametrized by + 3 + 9 + 9 = 24 parameters modul® + 1 + 1 + 1 = 6 gauge freedoms.
For calibrated cameras it is useful to place the 3D plane at infinity so that the resulting absolute
homographies are representedby3 rotation matrices. This gives well-known 6 and 12 parameter
representations of the calibrated epipolar and trifocal geometries, each with just one redundant scale
dof:E~[e]xR,G ~ e ®R"— R' ®e". All of these homography + epipole parametrizations
can also be viewed as projection matrix based ones, in a 3D frame where the first projection takes
the form(I3.3|0). The plane position freedoma corresponds to the 3 remaining d.o.f. of the 3D
projective frame [8]. These methods seem to be a good compromise: compared to ‘free’ projections,
they reduce the number of extraneous d.o.f. from 15 to 3. However their numerical stability does
depend on that of the key image.

Gauged parametrizations have the following advantagdsthdy are very natural when the
inter-image geometry is derived from the 3D onig) they are close to the underlying geometry,
so it is relatively easy to derive further properties from them (projection matrices, reconstruction
methods, matching tensorsijj Y a single homogeneous coordinate system covers the whole variety;
(iv) they are numerically fairly stable. Their main disadvantage is that they include extraneous,
strictly irrelevant degrees of freedom which have no effect at all on the residual error. Hence,
gauged Jacobians are exactly rank deficient: specially stabilized numerical methods are needed to
handle them. The additional variables and stabilization also tend to make gauged parametrizations
slow.
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3.2 Constrained Parametrizations

Another way to define a variety is in terms obnsistency constraintsthat “cut the variety out

of” a larger, usually linear space. Any coordinate system in the larger space then parametrizes
the variety, but this is an over-parametrization subject to nonlinear constraints. Points which fail

to satisfy the constraints have no meaning in terms of the varéfching tensors are the most

familiar example. In the 2- and 3-image cases a single fundamental matrix or trifocal tensor suffices
to characterize the inter-image geometry. But this is a linear over-parametrization, subject to the
tensor’s nonlinear consistency constraints — only so is a coherent, realizable inter-image geometry
represented. Such parametrizations are valuable because they are close to the image data, and (in-
consistent!) linear initial estimates of the tensors are easy to obtain. Their main disadvantages are:
(i) the consistency conditions rapidly become complicated and non-obvigusie(representation

is only implicit — it is not immediately obvious how to go from the tensor to other properties of

the geometry such as projection matrices. The first problem is serious and puts severe limitations
on the use of (ensembles of) matching tensors to represent camera geometries, even in transfer-type
applications where explicit projection matrices are not required. Three images seems to be about the
practical limit if a guaranteed-consistent geometry is required, although — at the peril of a build-up

of rounding error — one can chain together a series of such three image solutions [12, 15, 1].

For the fundamental matrix the codimension is 1 and the consistency constr&n{#s) = 0
— this is perhaps the simplest of all representations of the uncalibrated epipolar geometry. For the
essential matri¥ the codimension is 3, spanned either by the requiremeni#isitould have two
equal (which counts for 2) and one zero singular values, or by a local choice of 3 of the 9 Demazure
constraints EE" — Jtrace(EET)) E = 0 [4]. For the uncalibrated trifocal tense¥ we locally
need26 — 18 = & linearly independent constraints. Locally (only!) these can be spanned by the 10
determinantal constraint—aé}f’—3 det(G -x) = 0 — see [6] for several global sets. For the quadrifocal
tensor H the codimension i80 — 29 = 51 which is locally (but almost certainly not globally)
spanned by tha! - 3 - 3 = 54 determinantal constrainthetij(Hijkl) = 0 + permutations.

Note that the redundancy and complexity of the matching tensor representation rises rapidly as
more images or calibration constraints are added. Alsostraint redundancyis common. Many
algebraic varieties require a number of generators greater than their codimension. Intersections
of the minimal number of polynomiallcally give the correct variety, but typically have other,
unwanted components elsewhere in the space. Extra polynomials must be included to suppress
these, and it rapidly becomes difficult to say which sets of polynomials are globally sufficient.

3.3 Local Coordinate Patches / Minimal Parametrizations

Both gauged and constrained parametrizations are redundant and require specialized numerical
methods. Why not simplify life by using minimal set of independent parameter® — The

basic problem is that no such parametrization can cover the whole of a topologically nontrivial
variety without singularities. Minimal parametrizations are intrinsicélgal: to cover the whole

variety we need several such partially overlapping ‘local coordinate patches’, and also code to select
the appropriate patch and manage any inter-patch transitions that occur. This can greatly complicate
the optimization loop.

Also, although infinitely many local parametrizations exist, they are not usually very ‘natural’
and finding one with good properties may not be easy. Basically, starting from some ‘natural’
redundant representation, we must either come up with some inspired nonlinear change of variables
which locally removes the redundancy, or algebraically eliminate variables by brute force using
consistency or gauge fixing constraints. For example, Lugtngl [10] guaranteelet(F) = 0
by writing each row of the fundamental matrix as a linear combination of the other two. Each
parametrization fails when its two rows are linearly dependent, but the three of them suffice to
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cover the whole variety. In more complicated situations, intuition fails and we have to fall back on
algebraic elimination, which rapidly leads to intractable results. Elimination-based parametrizations
are usually highly anisotropic: they do not respect the symmetries of the underlying geometry. This
tends to mean that they are messy to implement, and numerically ill-behaved, particularly near the
patch boundaries.

The above comments apply only édgebraically derived parametrizations. Many of the nu-
merical techniques for gauged or constrained problems eliminate redundant vaniaisiescally
to first order, using the constraint Jacobians. Such local parametrizations are much better behaved
because they are always used at the centre of their valid region, and because stabilizing techniques
like pivoting can be usedlt is usually preferable to eliminate variables locally and numerically
rather than algebraically.

4 Library Architecture and Numerical Methods

The library is designed to be modular so that different problems and approaches are easy to im-
plement and compare. We separai¢thie matching geometry type and parametrizatidin;e@ch
contributing feature-group type, parametrization and error moiiélttfe numerical optimization
method, and its associated linear algebig; the search controller (step acceptance and damping,
convergence tests). This decomposition puts some constraints on the types of algorithms that can
be implemented, but these do not seem to be too severe in practice. Modularization also greatly
simplifies the implementation.

Perhaps the most important assumption is the adoption throughout of a “square root” or nor-
malized residual vector based framework, and the associated use of Gauss-Newton techniques.
Normalized residual vectorsare quantitiese; for which the squared norrfe;||> — or more gen-
erally a robust, nonlinear functiop;(||e;||>) — is a meaningful statistical error measurg.g.
ei(x;) = Cov(gi)*é(xi — x;). This allows a nonlinear-least-squares-like approach. Whenever
possible, we work directly with the residualand its Jacobiarie rather than withj|e||2, its gra-

dient %‘1”2) = e'3¢ and its Hessiariﬂé”xieﬁ = eTg—fﬁ + j—f{Tg—f{. We use theGauss-Newton
approximation, i.e. we discard the second derivative teaﬁ% in the Hessian. This buys us
simplicity (no second derivatives are needed) and also numerical stability because we can use sta-
ble linear least squaresmethods for step prediction: by default we U@ decomposition with
column pivoting of 9¢, rather than Cholesky decomposition of the normal majfixde. This is
potentially slightly slower, but for ill-conditioned Jacobians it has much better resistance to round-
ing error. (The default implementation is intended for use as a reference, so it is deliberately rather
conservative). The main disadvantage of Gauss-Newton is that convergence may be slow if the
problem has botlarge residualandstrong nonlinearity— i.e. if the ignored Hessian terng—ig

is large. Howevergeometric vision problems usually have small residualshe noise is usually

much smaller than the scale of the geometric nonlinearities.

4.1 Numerical Methods for Gauge Freedom

The basic numerical difficulty with gauge freedom is that because gauge motions represent exact
redundancies that have no effect at all on the residual error, in a classical optimization framework
there is nothing to say what they should be: the error gradient and Hessian in a gauge direction both
vanish, so the Newton step is undefined. If left undamped, this leddsg® gauge fluctuations

which can destabilize the rest of the system, prevent convergence tests from opetatifigere

are two ways around this problem:

1. Gauge fixing conditionsbreak the degeneracy by addiagificial constraints. Unless we are
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clever enough to choose constraints that eliminate variables in closed form, this reduces the problem
to constrained optimization. The constraints are necessarily non-gauge-inviegiamin-tensorial

under the gauge group. For example, to fix the 3D projective coordinate freedom, Hartley [8] sets
P, = (I3.3]0) and)_, e"Hji = 0 whereP, = (H|e). Neither of these constraints is tensorial —

the results depend on the chosen image coordinates.

2. Free gauge methods— like photogrammetricfree bundle ones — leave the gauge free to

drift, but ensure that it does not move too far at each step. Typically, it is also monitored and
reset “by hand” when necessary to ensure good conditioning. The basic toaéardeficient

least squaresmethods €.g. [2]). These embody some form of damping to preclude large fluctu-
ations in near-deficient directions. The populegularization method minimizeg|residual|? +

\?||step siz¢? for some small > 0 — an approach that fits very well with Levenberg-Marquardit-

like search control schemes. Alternativeljasic solution— a solution where certain uncontrolled
components are set to zero — can be calculated from a standard pivoted QR or Cholesky decom-
position, simply by ignoring the last few (degenerate) columns. One can also find vectors spanning
the local gauge directions and treat them as ‘virtual constraints’ with zero residual, so that the gauge
motion is locally zeroedHouseholder reduction, which orthogonalizes the rows §§ w.r.t. the

gauge matrix by partial QR decomposition, is a nice example of this.

4.2 Numerical Methods for Constrained Optimization

There are at least three ways to handle linear constraints numericaliyin{inate variables using

the constraint JacobianijXintroduceLagrange multipliers and solve for these toaiji() weighting
methodstreat the constraints as heavily weighted residual errors. Each method has many variants,
depending on the matrix factorization used, the ordering of operat@ins,As a rough rule of

thumb, for dense problems variable elimination is the fastest and stablest method, but also the most
complex. Lagrange multipliers are slower because there are more variables. Weighting is simple,
but slow and inexact — stable orthogonal decompositions are needed as weighted problems are
ill-conditioned.

For efficiency, direct geometric fitting requires a sparse implementation — the features couple
to the model, but not to each other. The above methods all extend to sparse problems, but the
implementation complexity increases by about one order of magnitude in each case. My initial
implementation [16] used Lagrange multipliers and Cholesky decomposition, but | currently prefer
a stabler, faster ‘multifrontal QR’ elimination method. There is no space for full details here, but it
works roughly as follows (NB: the implementation orders the steps differently for efficiency): For
each constrained system, the constraint Jacog;-’r(aiss factorized and the results are propagated to
the error Jacobiaﬁg. This eliminates thelim(c) variables best controlled by the constraints from
%, leaving a ‘reduceddim(e) x (dim(x) — dim(c)) least squares problem. Many factorization
methods can be used for the elimination and the reduced problem. | currently use column pivoted
QR decomposition for both, which means that the elimination step is essentially Gaussian elimina-
tion. All this is done for each feature system. The elimination also carriegﬁrm)lumns into the
reduced system. The residual error of the reduced system can not be reduced by ckabging
it is affected by changes i acting via these reduce%ﬁ columns, which thus give contributions

to an effective reduced error Jacobig%{ul) for the modelu. (This is the reduced geometric fit-

ting method’s error function). The resulting model system is reduced against any model constraints
and factorized by pivoted QR. Back-substitution through the various stages then gives the required
model update and finally the feature updates.
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4.3 Search Control

All of the above techniques are linear. For nonlinear problems they must be used in a loop with
appropriate step damping and search control strategies. This has been an unexpectedly troublesome
part of the implementation — there seems to be a lack of efficient, reliable search control heuristics
for constrained optimization. The basic problem is that the dual goals of reducing the constraint
violation and reducing the residual error often conflict, and it is difficult to find a compromise that is
good in all circumstances. Traditionallypanalty function [7] is used, but all such methods have a
‘stiffness’ parameter which is difficult to set — too weak and the constraints are violated, too strong
and the motion along the constraints towards the cost minimum is slowed. Currently, rather than
a strict penalty function, | use a heuristic designed to allow a reasonable amount of ‘slop’ during
motions along the constraints. The residual/constraint conflict also afftapsdamping — the

control of step length to ensure acceptable progress. The principléudtaegion — a dynamic

local region of the search space where the local function approximations are thought to hold good —
applies, but interacts badly witjuadratic programming based step prediction routines which try

to satisfy the constraints exactly no matter how far away they are. Existing heuristics for this seemed
to be poor, so | have developed a new ‘dual control’ strategy which damps the towards-constraint
and along-constraint parts of the step separately using two Levenberg-Marquardt parameters linked
to the same trust region.

Another difficulty is constraint redundancy. Many algebraic varieties require a number of
generators greater than their codimension to eliminate spurious components elsewhere in the space.
The corresponding constraint Jacobians theoretically have +agkdimension on the variety,
but usually rank> codimension away from it. Numerically, a reasonably complete and well-
conditioned set of generators is advisable to reduce the possibility of convergence to spurious solu-
tions, but the high degree of rank degeneracy on the variety, and the rank transition as we approach
it, are numerically troublesome. Currently, my only effective way to handle this is to assume known
codimensiorn- and numerically project out and enforce only thetrongest constraints at each it-
eration. This is straightforward to do during the constraint factorization step, 1orec&nown.

As examples: the trifocal point constraints’ |« (G - z)[z” ]x = 0 have rank 4 in(z, 2, ")

for most invalid tensors, but only rank 3 for valid ones; and the trifocal consistency constraints
dd—; det(G - ) = 0 have rank 10 for most invalid tensors, but only rank 8 for valid ones. In both
cases, overestimating the rank causes severe ill-conditioning.

4.4 Robustification

We assume that each feature haseatral robust cost functiom;(x;) = p;(||ei(x;)||?) defined

in terms of a covariance-weightetbrmalized residual error e;(x;) = e;(x;|x;). This defines

the ‘granularity’ — entire ‘features’ (for matching constraints, ensembles of corresponding image

features) are robustified, not their individual components. The robuspgasusually some M-

estimator, often a total log likelihood. For a uniform-outlier-polluted Gaussian it has the form

p(z) = —2log (e */% + j3), wheref3 is related to outlier density. Typically)(z) is linear near

0, monotonic but sublinear for > 0 and tends to a constant at— oo if distant outliers have

vanishing influence. Hencg, = d—g decreases monotonically foandp” = % is negative.
Robustification can lead to numerical problems, so care is needed. Firstly, since the cost is

often nonconvex for outlying points, strong regularization may be required to guarantee a positive

Hessian and hence a cost reducing step. This can slow convergence. To partially compensate for this

curvature, and to allow us to use a fma” Gauss-Newton step calculation while still accounting for

robustness, we define a weighted, rank-one-correeffettive residual e = %e and effective

Jacobian ¢ = \/p' (I — Ter ee’) 92 wherea = RootOf(1a? — a — %’,/HeHz). These definitions
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Figure 1: Ground feature residuals for strong and near-coplanar epipolar geometries.

ensure that to second orderdranddx and up to an irrelevant constant, the true robust st +

%dxH?) is the same as the n&’ effective squared errdfe + %dx”? l.e. the same stegx

is generated, so if we use effective quantities, we need think no further about robtistdess

the \/p’ weighting is the first order correction, and theterms are the second order one. Usually

o — 0 for distant outliers. Since the whole feature system is scale¢/by this might cause
numerical conditioning or scaling problems in the direct method. To avoid this, we actually apply
the /p’-weighting at the last possible moment — the contribution of the feature to the model error
— and leave the feature systems themselves unweighted.

5 Measuring Performance

We currently test mainly on synthetic data, to allow systematic comparisons over a wide range of
problems. We are particularly concerned with verifying theoretical statistical performance bounds,
as these are the best guarantee that we are doing as well as could reasonably be expected. Any
tendency to return occasional outliers is suspect and needs to be investigated. Histograms of the
ground-truth-feature residual (GFR) have proven particularly useful for this. These plot fre-
quencyvs. size of the total squared deviation of thmund truthvalues of the noisy features used

in the estimate, from the estimated matching relations. This measuresomaigtenthe estimated
geometry is with the underlying noise-free features. For weak feature sets the geometry might still
be far from the true one, but consistency is the most we can expect given the data. In the linear
approximation the GFR ig?2 distributed for any sufficient model and number of features, where

is the number of d.o.f. of the underlying inter-image geometry. This makes GFR easy to test and
very sensitive to residual biases and oversized errors, as these are typically proportional to the num-
ber of features: and hence easily seen against the fixddackground fom > v. For example,

fig.1 shows GFR histograms for the 7 d.o.f. uncalibrated epipolar geometry for direct and reduced
F-matrix estimators and strong and weak (1% non-coplanar) feature sets. For the strong geometry
both methods agree perfectly with the theoretigaldistribution without any sign of outliers, so

both methods do as well as could be hoped. This holds for any number of points from 9 to 1000 —
the estimated geometry (error per point) becomes more accurate, but the total GFR error stays con-
stant. For the weak geometry both methods do significantly worse than the theoretical limit — in
fact they turn out to have a small but roughly constant residual peopointrather than in total —

with the direct method being somewhat better than the reduced one. We are currently investigating
this: in theory it should be possible to get near the limit, even for exactly singular geometries.

i ”p—l,l le[> < —1 the robust Hessian has negative curvature and there is no real solutienifopractice we limit
a < 1 — e to prevent too much ill-conditioning. We would have had to regularize this case away anyway, so nothing is
lost.
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6 Summary

We have described work in progress on a generic, modular library for the optimal nonlinear estima-
tion of matching constraints, discussing especially the overall approach, parametrization and numer-
ical optimization issues. The library will cover many different constraint types & parametrizations
and feature types & error models in a uniform framework. It aims to be efficient and stable even
in near-degenerate case&sg. so that it can be used reliably for model selection. Several fairly
sophisticated numerical methods are included, including a sparse constrained optimization method
designed fodirect geometric fitting . Future work will concentrate mainly or) {mplementing and
comparing different constraint types and parametrizations, feature types, and numerical resolution
methods; andii() improving the reliability of the initialization and optimization stages, especially

in near-degenerate cases.
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Abstract is largely cosmetic: feature positions could equally
. o _ well be used. Our method spans the gap between
We introduce a finite difference expansion for closely jhfinitesimal [17, 2] and discrete approaches: only

spaced cameras in projective vision, and use it to derive; o ¢ the cameras need coincide and our differ-
differential analogues of the finite-displacement projec-

tive matching tensors and constraints. The results aré:j‘n,ce expansmqs are short, finite polynomials not in-
simpler, more general and easier to use tRatiom & finite Taylor series.

Heyden’s time-derivative based ‘continuous time match-  This section gives motivation and previous work,
ing constraints’. We suggest how to use the formalism§2 reviews discrete matching constrairit3 reviews

for ‘tensor tracking’ — propagation of matching relations gnd critiques,&str('jm & Heyden’s differential ap-
against a fixed base image along an image sequence. We.qach 4 introduces our difference formalism and
relate this to nonlinear tensor estimators and show howdifferential matching tensor§5 derives various dif-

‘unwrapping the optimization loop’ along the sequence . . . .
allows simple ‘linearn point’ update estimates to con- ferential matching constraints, arié summarizes

verge rapidly to statistically near-optimal, near-consistent2nd concludes.

tensor estimates as the sequence proceeds. We also give\otivation: Theoretically, “nothing is gained”

guidelings as to when diﬁerenge expansion is likely to beby a differential approach: the same underlying ge-

worthwhile as Compared toad!screte appr,oaCh' ometric constraints and image error models apply

Keywords: Matching ConStra'me Mat‘_:h'ng Tensors, in poth differential and discrete approaches. How-

Image Sequences, Tensor Tracking, Difference Expang, o small displacements are practically common

sion. (e.g.video sequences) and have special properties
that make purpose-built methods desirable:

1 Introduction (+) Feature correspondences much easier so
more data is available, especially with region based

This paper studiesdifferential matching con-  (‘direct’, ‘least squares’, ‘intensity based’) ap-
straints — limiting forms of ordinary multi-image  Proaches.

matching constraints [5, 7, 8, 12, 15], when some(+) Differential problems are oftetess nonlinear

of the image projections nearly coincide. We intro- than discrete ones, as nonlinear geometry (rotations,
duce a finite difference based formalism that is easycalibration, matching tensor consistency) can be lo-
to use and covers most aspects of projective multi-cally linearized and included in the initial linear es-
image geometry: matching constraints and tensorstimation for improved stability. Simpler models can
feature transfer, reconstruction. Modulo suitable im-be used, and local minima may be less of a problem.
age rectification (fixation, dominant plane stabiliza- (—) Small motion linearization is only aapprox-

tion [9, 10]), the results extend to admall trans- imation. It has limited validity and introduces
lation geometriesj.e. whenever some of the cam- bias/truncation error.

era centres are near-coincident on the scale of th€—) The additional correspondences are ofteloaf
scene. For convenience we will often express resultsjuality: they may add a lot of computation but rela-
in terms of feature displacements (‘flow’). But this tively little precision.

This paper appeared in ICCV’99. The work was supported by(__) Signal-to-noise ratiois lower with S_ma” mo-
Esprit LTR project CUMULL. | would like to thank P. Anandan 0N, SO fewer parameters can be estimated accu-
and T. Viéville for useful discussions. rately €.g. SFM, perspective) and error modelling
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is more critical: bias, outliers, linearization error. determinants built from 4 rows taken from 2—4 pro-
Given that geometric constraints are known to jection matrices. The determinants can be arranged

improve robustness and efficiency even for smallinto 4 types ofmatching tensot, depending on how

motion (.f. ‘Geometrically Constrained Multiphoto many rows are taken from each image. It will be

Matching’ [3]), it seems worthwhile to develop the useful to view the tensors as multi-index, multilin-

matching constraint formalism in this direction. We ear forms in the components of 4 (possibly repeated)

will also link our differential matching constraints projection matrices. Symbolically:

to the local linearization used in nonlinear estima-

tors for the discrete case, so a better understand- el = e1,1,1,2) epipole

ing of differential case may lead to better estima- Fio F(1,1,2,2) fundamental matrix

tors for the d'lscrete one. Another mo_nvanon was to T 2 T(1,1,2,3) trifocal tensor

Qevelop r_outlnes foma‘Fchlng constraint tracklng Q1234 Q(1,2,3,4) quadrifocal tensor

i.e. updating the matching geometry along an image

sequence from linear change estimates, rather than @)

wastefully recalculating it from scratch each time, or

using the image tracks only to get correspondence

between the two widely-spaced end images.

where,e.g.F(1,1’,2,2") stands for & x 3-matrix-
Valued quadrilinear forni (P, P}, Py, PY) in the
four projection matricesP;, P}, P2, P), and the
Previous Work: There are many papers on all fndamental matri¥ 12 (P, P2) is the result of sub-
aspects of optical flow — see [4] for references — gtjtuting P! = P, andP, = P, into this. As
but here we will focus on differential analogues of mutilinear forms in four projections, the compo-
the uncalibrateddiscrete matching constraints. The pents ofe(-), F(-), T(-) are simple, fixed linear com-
key contributions on this are by M‘/llle & Faugeras pination€ of those ofQ(:). When their arguments
[16, 17] for the two image case aActrom & Hey-  are repeated as shown abosg), F(-), T(-) contain
den [1, 2] for the multi-image one. We will returnto exactly the same information as the corresponding
the Astrom-Heyden approach below. Other relatedygrsion ofQ(-), in a more compact, easier-to-use

work includes [13, 6, 14]. form. Even when the arguments are not repeated,
e(-),F(:), T(-) are automatically symmetric in the
2 Discrete Matching Constraints arguments shown as repeatedy.e(1,1’,1”,2) and

F(1,1,2,2") are symmetric under all permutations

In homogeneous coordinates, imades3 x 4 pro-  of the threePy’s and twoPy's.

jection matrixP;. The imagex; of a 3D pointX Given the tensors, the matching constraints we
is )\2 X; = PZ X. The scale factorg‘i are called will differentialize below can be written SymbOIi'
projective depthsGatherm image projections ok cally as:
into a big3m x (4 + m) matrix [15]:

x{ F12Xo = 0 epipolar constraint
P, x4 0 --- 0 X Xo A (T -x1) Axg = 0 trifocal point constraint
?2 0 ?(2 0 _')‘1 —0 (1) I3 (T#3 Aly) I3 = 0 trifocal line constraint
Iy (T#3-x1) I3 = 0 trifocal point-line const.

P, 0 0 - Xn —Am

_ _ _ Here, x; (I;) denote corresponding image points

As there is a solution, the matrix has ragk3 + m,
i.e.all ofits (4 + m) % (4 + m) minors must vanish. Tensorsare just multi-index arrays of components. They

E di d si lifvi . ‘epipolar’. ‘trif are not intrinsically difficult to handle, but lie outside the usual
xpanding and simplifying gives ‘epipolar’, ‘trifo- matrix-vector notation. For simplicity I'll display results as ma-

cal' and ‘quadrifocal’multi-image matching con-  trices whenever possible, and switch into indexed notation [15]
straintslinking corresponding points; in 2,3,4 im-  when matrix notation is too weak. For calculations | tee-
ages. Similar constraints exist for 3 images of a |ine_sor_diagrams— ‘circuit diagrams’ that show graphically which
and for 2 images of a line plus 1 image of a point 'nd'ZCTes are connected. e

. . . ) . ey are contractions d(-) against image tensors —
on it. Each constraint is multilinear in the 2-4im- ¢ g F,;(1,1/,2,2) = leacn enr Q°PEF(1,1/,2,2))

age features involved, with coefficients that &se4 [15]. -
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(lines) in imaged, and A or [-] denotes vector- This approach is certainly powerful, but | feel
vector or matrix-vector cross product. that it is not “the right thing” for most applications:
Geometrically, the matching constraints express(i) The constraints combine infinitely many feature
3D incidence relations between the optical rays /derivatives and differential matching tensors of ar-
planes pulled back from corresponding image pointsbitrarily high orders, even though the discrete case
/ lines. The matching tensors are a nonlinear encodstops atn = 4 features and tensorsii)(The con-
ing of the camera geometry in image coordinates.straints areextremely complicatedeven form = 3.
They can be estimated “linearly” from image data (iii) It is very difficult to relate them to the discrete
using the matching constraints, but only by:using  case, even though their derivation is almost identi-
a heuristic error modelji§ ignoring nonlinear self-  cal. (v) They depend on the exact form of the cam-
consistency constraintdhat guarantee that the ten- era motion betweetandt + At, whereas we often
sor(s) correspond to some underlying set of projecknow or care only about the cameuasitionsat the
tion matrices. Examples of such constraints includeendpointst andt + At. (v) Many things remain to
Fioel = 0, det(Fi2) = 0, det (TZ?-x;) = 0  be done: lines, transfer, depth recovery, cases where
for all x;, and many more [15]. One advantage of some images are from other, more widely-spaced
the differential approach is that it often allows the camerasetc
consistency constraints and the true statistical error Note that only the geometric path of the camera
model to be locally linearized, so that simple linear matters for the constraints, not its time parametriza-
least squares tensor estimators can take nearly fulion. So they should really be formulated in terms of
account of both. some geometric, parametrization-invariant analogue
of differential equations such aterior differen-
tial systems(c.f. also [13]). This was my first in-
tention, but on reflection it does not solve the main
This section summarizes and critiquelstrom problem, which is simply thatlifferentiation is not
& Heyden's approach to differential multi-image the appropriate tool here.

matching constraints [1, 2]. A moving camera Inapplications, images are alwdysitely (though
with time varying projection matri¥(¢) viewing a  perhaps closely) spaced. What we measure is fea-

3 TheAstrom-Heyden Approach

static scene generates image projectidt$ x(t) = ture positions at these discrete times, and what we

P(t) X. Taylor expand at: use is matching constraints, projection matrices,
etc again at these discrete times. Time derivatives

Pt +At) = PO+ PO At + PP (A1)2+...  never explicitly appear, and if introduced, they are

serve only to re-synthesize the finite-time positions
whereP¥) = %%P, and similarly forx(z + At)  that we actually measure or use. Finite differences
and\(t + At). Substitute into the projection equa- are a more appropriate tool for such discrete-time
tions, truncate at orden, split by powers ofAt, and  problems. Given measurements of some quantity
gather the resulting equations int@@n+1) x (4+  x(t),x(t + At), their finite difference is simply

(m + 1)) matrix AXx = Xx(t + At) — x(t). So we have a finite,
0 0 one term ‘expansionX(t + At) = X(t) + AX
PE1) XE1) 8}) 0 X(O) rather than an infinite Taylor seriegt + At) =
P X X e 0 —A

X(t) + X At + F X At?+. ... If we usex(t + At) in
: : . : : some polynomial expression (matching constraints,
P x(m) x(m=1) . x(0) [\ _\(m) transfer, SFM), difference expansion gives a rela-
tively simple polynomial imAx, while Taylor expan-
As in (1), all maximal minors vanish. Expanding sion a very complicated infinite series int. The
gives multilineardifferential matching constraints Taylor series is ultimately more powerful in that it
involving all of the point derivatives®,... . x(™),  implies values ok for all At. But if we measure and
The coefficients ardifferential matching tensors  usex only atone At as herex At + % XAt2+ ... is
formed from4 x 4 minors of 4 rows of the projection a very complicated way of parametrizing the simple
derivativesP(® ...  P(™), differenceAx.

=0
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In summary,&str('jm & Heyden got an infinite se- in that variable. One can certainly derive expan-
ries of complicated equations rather than a finite sesions for linearly-appearing variables of the form
ries of simple ones simply because they asked fofA + AA+...) - (X+AXx) =~ A-X+ A-Ax+
too much. Their results are like a series solution to aAA - x+ O (A?), whereA stands for other stuff in-
differential equation: they imply the matching con- dependent af’ = x+ Ax and hence\x. But there’s
straints forevery At with any analytic camera mo- really no point. If you already have, Ax and are
tion, whereas in practice we usually only want them trying to calculateA, AA, you might as well just
at the endpoints afne particularAt¢. usex’ in the exact expression. This is simpler, has
less truncation error, and (at least in vision) is un-
likely even to cause problems with numerical loss
of precision: A’s usually scale roughly as measured

Now we begin to assemble the elements of our ﬁ_image differences, which have a minimum relative
nite difference approach to projective vision. First, S'#€ of about 0™ as differences much smaller than

a clarification. We work with projective quantities & PiXel or greater than the image width can not be

expressed in homogeneous coordinateg, image measured. In fact, since we are working to lowest

pointsx, projectionsP. We want to expand projec- n/omam_shmg order il and A is independent of
tive expressions in’, P’ in terms of “nearby” base X+ Invariance unden\x — Ax + ux implies that

quantitiesx, P and “projective differencesAx — A - x must actuallywanish(at least in the zero noise
¥ — x. AP ’: P’ — P. Unfortunately, homogeneous case). Conversely, if you are trying to calculaia
quantities likex, x’ are only defined up to scale, so g/|venA, AA, the equation is linear in eithekx or
differences like<’ — x are not well defined: as their X = X+ AX, S0 you might as well just form the up-
relative scale changes, — x sweeps out the entire date(A + AA +...) and calculate’ directly. This

projective line througt, X'. Nevertheless, if we are €mains true even i depends om, so long as itis
careful about scales, we can still usa = x' —x  independent ok’

to represent the displacement between two projec- FOf €xample, matching constraints and transfer
tive points. Fix the scale ok once and for all. relations are usually linear in each of their image

Under rescalingd — (1 + u)X, Ax changes as features, so there is no real advantage in using im-

AX — Ax+pux ~ Ax+ px+O(uAx). So  age displacements or ‘flow’ for them — one can just

for small rescalings: and displacementax, Axis @S Well use the underlying featuresx'. Arguably,

only defined modulo the approximate affine freedomthis also applies to ‘direct’ (intensity based, opti-
AX — AX + ux. The expressions we need to ex- cal flow) approaches — one can use intensity dif-
pand are always separately homogeneous &md ferences to estimate local correlation shifts just as
x' = x + Ax, so this freedom leads to the following well as image derivaf[ivés Similarly, for epipoles,
importantinvariance principle: The term of lowest nomographies and trifocal tensors, some of the pro-
nonvanishing order in\x is explicitly invariant un- jection matrices appear linearly and there is no real
der shiftsAx — Ax -+ x. We usually work only to advantage in making a difference expansion in these.
this order, so formulae whichseAx are invariant, (More precisely, there is none once the coefficients
and formulae whictcalculateit can do so only up  Multiplying the projection to form the epipolec
to an unknown multiple ok. For example, our for- have been recovered). On the other hand, for linear
mulae for differential matching tensors are defined!€nsor-based parametrizations, the consistency con-
only up to multiples of the underlying base tensor. straints are glways nonlinear and hemtebenefit
In practice, for input data we simply choose simi- from expansion.
lar normalizations fox, x’ so thatyu is small. But We will sometimes need to take differences in
for numerically calculated\'s we always need to several images simultaneoustyg.for eachi, if P,
enforce some sort of normalization condition to re-is near toP; we defineAP; = P, — P;. If there
move the superfluous rescaling degree of freedom. S ae vt the Ta s above. the derivati |
. . . e S Wi e laylor series apove, the aerivatives are only an

A related p_omt Wh!Ch greatly S|mpl!f|es_ many Pf indirect way of synthesizing image displacements, which could
the formulae is thatDifference expansion in a vari- haye been produced more directly using (sub-pixel/multi-scale/
able is only worthwhile if the problem is nonlinear ... )image interpolation.

4 Projective Difference Expansion
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are several projectionP’, P/ near the same base once. We attach primes an\'s to indices rather
projectionP;, each generates its own independentthan whole tensorse(g.F12, €3,), because the lat-
differenceAP;, AP/.

By substituting the updateB, = P, + AP; =

(1 + A)P; into the multilinear matching forms (2)

ter becomes hopelessly confusing when several pro-
jections vary at once.
The differential tensors depend on the normal-

and expanding, we can derive exact finite differenceizations of theAP’s, and are only defined up to
expansions of all the matching tensors. For exampleadmixtures of lower order term®.9. F1no —
for the -2 fundamental matrix

F1/2 = F(ll,l/,2,2)
F((1+A)Py, (1+A)P, Py, Py)

whereAl stands forAPq, etc If only one projec-
tion varies, the full list of such expansion types is:

el =

Fi2
T2

2/
el _—
23 _
Tl

Q1’234

_|_
_|_
_|_
_|_

_|_

2 2 2
€A1 T €r2; t€xsy
Fai2 + Fazio

23 23
TAT + TAy
ep?

A23
Tl

— Q234 | QA1

= F(1,1,2,2) + 2F(A1,1,2,2) + F(A1,Al1,2,2)

®3)

where we define the followindifferential match-

ing tensorshy successively replacing projectioR$

with projection differenced\P = P’ — P:

2

€A1

Fai2

23

TA

A1234
Q

2
€as1

= 3¢(A1,1,1,2)

2F(AL,1,2,2)
2T(A1,1,2,3)
Q(A1,2,3,4)
e(1,1,1,A2)
T(1,1,A2,3)
3e(Al,Al,1,2)
F(AL,AL2,2)
T(A1,AL2,3)
e(A1,Al,AlL?2)

Fia2 + pFio. Saturated differential tensors have
all P’s of a certain type replaced byP’s. They be-
have just like ordinary matching tensors formed with
“projections” AP, e.g. the “fundamental matrix”
Fazio = F(A1, AL, 2,2) satisfiesdet(Fp29) = 0

and has “epipolesé*! ande?,,. But unsaturated
tensors are more common in low order expansions:
these have the same index structure but different
properties.

5 Differential Matching  Con-
straints

Given these expansions, it is very straightforward
to develop differential forms of the various discrete
matching constraints, transfer relatioes;. Simply
take each discrete formula, choose the type of near-
coincidence that should occur between its projection
matrices, substitute the corresponding difference ex-
pansions (and optionally the difference expansions
of the corresponding image features), expand, and
truncate at the desired order.

Note that onlysomeof the projections need be
near coincident, unlikee.g.[2]. In particular, we
are investigating methods fanatching constraint
tracking, i.e. propagating a matching tensor against
a base image along an image sequence by small up-
dates, without having to recalculate it from scratch
at each new image. This sort of approach should
be useful for providing search constraints in geo-
metrically guided feature trackers, as a tensor is
available at each time step. And numerically it
should allow linearized approximations to nonlin-

Very few of these are needed in any one application.£ar €mor models and tensor consistency relations, so
If AP is small, we can truncate the finite differ- that a linearly-estimated tensor converges to a near-
ence expansions at any desired order. The scales GPnsistent, near-optimal estimate as the sequence
the differential tensors were chosen to make the dif-continues. I.e., the usual iterative refinement _Ioop
ference expansions simple, as this is essentially th&r the tensor would be ‘unwrapped along the image
only place they appear. The derivations use the symS€duence’, tracking the moving tensor by a kind of

metry of the formse(-), F(-), T(-). There are anal-

locally-linearized control lawg.f. [13].

ogous expansions when several projections vary at Differential Epipolar Constraint: The simplest
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case is the epipolar constraint between a fixed cam- The Optimization Point-of-View: The above
eraP; and a moving on@-(t). We suppose that discussion should sound very familiar to anyone
we have already calculated the fundamental matrixwho has implemented a nonlinear fundamental ma-
F12 # 0, and want to update it t6,» whereP!,, = trix estimator. In fact, the above;s — F1o update
P5+ AP,. Using (3), and optionally), = X2+ AXa rule is exactly one step of a Sequential Quadratic
and the 1-2 epipolar constrairf F1oxo = 0, the  Programming (SQP) style refinement routine for
first order expansion of the 1-2pipolar constraint F;,, started from the estimaté;». Further itera-

is simply tions could be used to improve the accuracy, if de-
T - . sired. The moral is thaffensor tracking and nonlin-

0 = % Fior X ~ X; (Fi2 + Fia2) X ear tensor refinement are basically the same prob-

~ xlTFm AXg + xlTFlAg Xo lem So the same numerical methods can be used

for both. We also emphasize that there is really no
Using either formF14, can be estimated linearly 5gvantage to using ‘flowAx rather than position
from F12, X1, andx; or X, AXp. Fior canbe recov- v and the differential tensd¥, a» plays exactly the
ered fromF > ~ F12+Fia2. The advantages over game role as a conventional first order model update
direct ‘linear 8 point’ estimation oF 1 are: ) we  AF. The difference expansion merely serves as a

can enforce the consistency constralnt(F) = 0,  systematic way to derive such update equations.
at least to d*‘-order approximation;ii) because of

this, we need only 7 pointsjii) we can use ;s to Differential Trifocal Constraints: First order
pre-calculate approximately statistically optimal er- €xpansion of the 1-23 and 1-2-3 trifocal point,
ror weightings, so the initial linear estimator should !in€ and point-line matching constraints modulo the
have near-optimal accuracy. The linearization of thel=2—3 Ones gives:

consistency constraintet(Fo) = 0 is

(X /\(TA23 Xl)—l—AXQ/\(Tl ))/\Xg ~ 0
trace (cof (F12) F1a2) + det(Fi2) = 0 (4) ( |7 (T A23 A ) + AIT T SN ) ) I 0
2 (11 1 ! 3
T :
wherecof (F12) ~ e%ef is the matrix of_ cofac- 1] (TAB . x) + Al (T2 %) ) I3 ~ 0
tors of F15. Even if Fy3 is inconsistent, this equa- 2 \71 b P

tion enforceslet(F12/) = 0 to first order, and hence
converges rapidly towards consistency.

As expectedF - is only defined up to multi- Iy (TA /\|1 +THEAAL) I3 = 0
ples ofF 5. For example, the error ter®] Fiaz Xo 1) ( X +TEAx )
and the linearized consistency constraint (4) have
such invariances k| F12 x» anddet(F12) are ex-  ag in the two image case, the 27 components of
actly 0. The exact multiple we choose is irrelevant TA23 or T23 can be estimated linearly from the con-
so long as it is small, but some choice is ”eededstramts modulo a multiple oF 3. However this is
to avoid numerical ill-conditioning. In practice, we 4 gross overparametrization as the unknown projec-
constrainF a2 to be orthogonal té 2 as a 9-vector,  ions AP, , AP, have only 12 d.o.f. apiece. We
L.e. trace(F{, F1a2) = 0. Given the above anBlia,  peed to constrain thAT's to respect the constancy

near OP“ma' 7 point’ estimation df a2 reduges 0 of the constanP’s involved. This is possible using
a 9 variable linear least squares problem with 2 lin-;ter_tensor consistency constrainesg. for -|-2 3

ear constraints. Any standard numerical method can,qe either of
be usede.g.Gauss (LU) or Householder (LQ) based
constraint elimination followed by QR decomposi-
tion to solve the reduced least squares problem. (For
7 point RANSAC, the problem becomes a simple €A43B3C3
9 x 9 linear system).

Only the 1-2 and 1Z2%pipolar constraints were where as usudl 2'® ~ T23 + T223, But this whole
used here: the 1-2-&ifocal one will be considered approach seems over-complicated. Given Hhat
below. is actually linear inP5y, we might as well just find a

¢
o

X2/\(TA1 X1—|—T1 Axl)/\ng‘\/

l
o

|3N

TR P Fpics + (a1-81) = 0

TAQ’ A3 TBQB3 C3

e’ + (41-B1) = 0



Papier : Differential Matching Constraints — ICCV’99 67

homography-epipole decomposition [7, 11] 5 €a2pace THEAC% We will silently adopt
whichever form is the most convenient.

23 _ 42 3 a2 3
T =Hi®e —e @H;j Differential Epipolar Constraint: If P; andP,

(T2-x) = (H2|e}) (7% ’8) (H?| ef)T coincide,F, vanishes anéf 1, reduces td e | .
' We relabell” — 2 for clarity, i.e. APy = Py — Py.
and work directly in terms oP; = (H{|e{) for ~ Theexactexpansion of; is

1=1,2,2",3. As always,H — e parametrization of
T (or F) is just a closet form of projective camera Fi2 = Fui +Fia1 + Fiaz
reconstruction, so we might as well do things prop- =0+ [612 L +Fiazy

erly with a clean reconstruction method, followed
by conventional tracking of the moving projection

using the ‘linear 6 point’ DLT estimator (or better).

My experiments suggest that this is not only the eas
iest, but also the stablest and most accurate way t([)16’ 17]:

work — the tensor i®nly useful for the initial re- Nl Fl(;) x; + x| [e2] Axy ~ 0 (5)
construction. l.e., tracking of the trifocal tensor is x

certainly possible, but | have not found any advan-
tage over conventional projection matrix tracking.

The leading term is skew so the epipolar constraint
vanishes to first order. The second order term is
Vieville & Faugeras*first order’ motion equation

whereFS) = 2 (Fi2 +F],) is the symmetric

part of F15 or FyA2;. The constraint uses onkf

o and Ff;’> so it has3 + 6 = 9 linearly independent
5.1 Coincident Images & Degeneracy components, modulo joint overall rescaling and the

Now we study what happens to the differential consistency constraintet(F) = 0 which becomes
matching constraints when more of their images aree?' F3 2 = 0. Like det(Fy) = 0, this is cu-
near-coincident. When some of the cameras (oic in the unknowns. The linearization base point
modulo image rectification, some of their centres) F11 vanishes, so we can no longer linearize the con-
coincide, the discrete matching tensors either vanisisistency constraint and error model. Hence, the dif-

or degenerate to lower degree ones ferential method has about the same degree of com-
plexity and nonlinearity as direct estimationef,.
el =0 Normalizing (Ffj),ef) so that|le?|| = 1, we can
Fiu. =0 recoverF, from
TH = et @) Fio = [e], +F ) ve(FOe "~ (F e e
T = Fapape™?P2C2 = [e]x+(l+eeT)F(S) (I —eeT)

Q1123 — TA412A3 6AlBlCl
(The second form is preferred as it automatically
The corresponding matching constraints also deprojects onte' F (*) e = 0). In generatlet(F () £
generate,e.g. the trifocal point constrainix, A (: it vanishes iff the motion is planar or a parallel
(T123 . X1)/\X3 =0 becomeiXIFlg X2) [XQ ]x =0 twist.
for P3 — P, and vanishes faP3 — P;. Similarly, | have investigated matching and depth recovery
some the differential matching tensors degenerate t@sing this differential approach, but found no prac-
lower degree ones when their base images coincidetical advantage over direct ‘8 point’ estimation of
F12. The accuracy and stability are at best the same,

1 _ aA1 Al . .
e =6 =6 and become worse whenever truncation error in (5)
! . .
Fiai = [ef'] = [ef | is above the noise level.
TiA2 — §lgel? Trifocal Constraints: The differential trifocal
1 1 1
12 __ 1 2 Al12 i i i
T2 = 6/ wed, — T/ constraints remain nondegenerate when two of their

images coincide, but their coefficient tensors sim-
Coincidence also produces redundancies betweeplify. This case is especially interesting because it
various differential tensors,e.g. FA1aa2 = allows us to propagate matches from a base image
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plus the current one to the next image in the se-Here,Tl(23) is the 18 d.o.f. symmetric part af 2
quence. To first order id\, both the 1-42 and  on its two upper indices. The point equation uses 24
1'-1-2 trifocal point, line and point-line matching d.o.f. of T?® plus two epipoles, so it does not seem
constraints reduce to competitive with standard finif€?* estimation. The
line and point-line equations use orly*  e?, e3

T and hence havél8 + 3 + 3 = 24 linear parame-

— (X1 A AXy) (612 AXg) = 0 ters to estimate. The point-line equation is the basis

2

X1 A (TlA12 'Xl) N Xg

of Stein & Shashua’s ‘tensor brightness constraint’
I (TE2AR) 12 = (A Al (IQT el) ~ 0 [14], where the lines are local tangents to the iso-
T/~ AL2 T T 9 intensity contour ak;, displaced by normal flow
(T8 x) 12 - <|1 AXl) <|2 e1> ~ 0 into nearby images 2 and 3. But in this case the
Similarly, the 2—1—constraints become Iine-baseq constrqints are quite iII-cqnditiongd and
they require special motion assumptions which re-
X1 A (THM  x0) Axy 4 (Fra o) (X1 A Ax) " duce the problem to one considered by [6].

—|—<AX1TF12 x2) x] ~ 0
I]— (T2A11 A IQ) Il . ((Il /\All)T F12) A |2 ~ 0 6 COﬂC'USIOnS
17 (TS %) 11— (i AAl) T Fiaxe = 0 We have introduced a finite difference expansion
. . for projective vision problems with near-coincident
All of these are mpdulo the o;dlngryl_l—z_empolar cameras. In contrast tAstrom & Heyden'’s time-
constraint and maintenance of point-line 'nc'dencederivative based approach, it gives fairly manage-

T T Ty, _
A gl Xi) = _Il AhX1 + Al Xt; - do' _ . .able expansions for geometric vision problems like
nce again, the tensor-based parameterization Iﬁ1atching tensors and constraints, transfer and recon-

fea_15|ble but Seems overly complex. A homography"struction. Here, we used it to systematically derive
epipole One 1S preferable, _bUt reduc_:es_the prOb'various differential matching constraints. Basically,
lem to classical reconstruction-reprojection. Thethree cases occur when difference expansion is used:
parametrizgtion can be initializgd using any homog-. For problems linear in the expanded variables, ex-
ra2ph¥ obtained fronfy, '(e.g.Hl = [k ]X2F21 T pansion is possible but redundant. This happens for
e I, for any non-gplpolarll, o, or HYY = most feature-based calculations once the matching
[ef ], F1 + Aef e, in a well-normalized im-  tensors or homographies are knowne-g. feature
age frame). The initiaH — e decompositions are tansfer or reconstruction.
thenT/? = 4/ ®ef —0@HZandTy! = For nonlinear, non-degenerate problems, first
Hy ®e —e @H,. order difference expansion gives a useful lo-
If all three images nearly coincide, the trifocal cal linearization. Consistency-constraint-satisfying,
constraints degenerate further are’é-order 1-1-  statistically-near-optimal tensor update becomes a
1" expansion is needed. For clarity, we renah&l  simple constrained linear least squares problem.
to 2,3 and use our normalization freedom to replaceThis is always equivalent to one step of an iterative
TAZSWith T2 ~ 6{ @ el —e? ® 61 + TA223, nonlinear estimator started from the base tensor.
giving matching constraints: e For nonlinear problems where the expansion base
T case is degenerate, second (or higher) order expan-
XL A <(T123 )+ Ax e —ef AX;) AX 0 gion givesga valid but nonlinéar Iogcal z)arametrizpa-
tion. This may be simpler or less nonlinear than the
original one, but it is not clear that much is really
_ (|1Te12) (LA Alg) ~ 0 gained. So far none of my experiments have shown
any clear advantage for the differential approach in
(T x) 1 — (Agxl) <|1Tef> this case.
Future work will include experimental studies of
+ (llTel2 ) (Al; Xl) constraint tracking in the’22 and 1-+-2 cases, and

T AL+ (Al (1 ef)

%
o
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development of analogous expansions for more confl4] G. Stein and A. Shashua. Model-based brightness
strained problems like calibrated cameras and auto-
calibration.
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Chapitre 4

Reconstruction projective

Ce chapitre dérit trois papiers sur le recouvrememtpartir de plusieurs images projectives
non-calibges, de la gonétrie 3D projective d’'une sre statique et des canas. On suppose que
I'approche tensorielle etrite ci-dessus pour laegirétrie des images multiples est faraile au
lecteur. Sur le plan pratique, on suppose que les primitieesrgtriques 2D (pour la plupart des
points, mais aussi parfois des droites) oejadte extraites des images, et mis en correspondance
entre images.

4.1 Resung de « A Factorization-based Algorithm for Multi-image
Projective Structure and Motion » — ECCV’96

Historique

Ce papier avec Peterrf8RM fut publié a ECCV'96 [ST96]. Il donne une athode de recons-
truction projective multi-images qui se montregrstable en pratique, et qui reste de loin me&a m”
thode grérale peférée pour ce prolkime. Historiquement, elle est uneda, de coller ensemble
des reconstructions partielles 3D obtenues paetpgmfions« estimation des profondeurs projec-
tives» décrites ci-dessus [Tri95]. Mais ellesté vulgari€e comme uneeaggralisation projective de
la méthode de factorisation affine de Tomasi & Kanade [TK92].

M éthode

Supposons qu’on a points 3DX,...X,, visibles dansn images projectives avec des ma-
trices de projectio®P, ... ,P,,. Pour chaque paire, d'imade; et de point 3DX,,, on a un point
imagex;, avec l'équation de projection;, x;, = P; X,,, ou \;;, est la profondeur / facteur @helle
projective correspondant. On peeuriir toutes cegwn équations dans une grande gyst matri-
cielle:

A1Xi1 A2Xiz ... A Xig P,
A21X21 A2 X22 ... AanXop Py (X, X X,)

. . = : 1 Xo o ... n) 4xn
)\ml Xm1 )\mQ Xm2 .- )\mn Xmn (3m)xn Pm (3m) x4

L'essentiel de la rathode est que si on peut retrouver les profondeurs projectjyela matrice des
Xip Xip Serait for&ment —comme leaté droit — de rang 4. On peut toujoursabmposer nuerique-

ment une telle matrice en forme datédroit, par exemple par moyenne de la SV2EOMposition
par Valeurs Singudires). Il y a I'ambigué d’'une transformation legdire4 x 4 non-singulére dans
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cette @fcomposition, mais cette ambitgine fait que re@sSenter I'homographié x 4 libre asso@’
au choix d’'un repre projectif arbitraire : toute factorisati@nrang 4 donne une reconstruction 3D
valable des camras et des points, et ce dans urerepgrojectif.

Pour retrouver les\;,, on applique leséquations d’estimation des profondeurs projectives
[Tri], qui lie les primitives images, leurs profondeurs / facteursctiélle projectives, et les tenseurs
d’'appariement. Il existe des contraintes pour tout type de tenseur, mais ici on ne se servira que de
celles de la matrice fondamentale, qui prennent la forme :

Fij NjpXip) = € A (Aip Xip)

Cette€quation vectorielle impose que les droigspdlaires des deux points correspondantsm€o”
cident, et en plus elle relie les positions relatives de ces points le long ces drigites profondeurs
projectives relatives. Ici c’est seulement les profondeurs projectives qu’on veut, donc oeeut r’
soudre cegquations au moindre caes :

N = & AXip) - (FijXjp) y
v leji Axipl> "

Les matrices fondamentales sont est@sa partir des donges images. On peut fixeethelle);,

de chaque point arbitrairement en une image, puis on emel@Esequations pour retrouver ses
echelles correspondants dans tous les autres images. Une fois ceci fait, on construit la matrice
des \;, X, €t On la factorise pour extraire la reconstruction. En pratique, c’'est aussi important
d'appliquer uneetape de renormalisation nenjue qui est eérite dans le papier, afin de mieux
conditionner le moele du bruit qui est implicite au syste.

Perspective

Il se trouve gu’en pratique cetteatiiode fonctionne &s bien. Elle est certainement parmi les
méthodes les plus stables eepises pour la reconstruction projectiveagcg”sans doute au fait
gu'elle integre d’'une fapn équilibrée toutes les dome’s images la fois. (La plupart des autres
méthodes ne font qu’iegrer les doneés d’'un nombre fixe d'images, ou se basent sur le choix d’'une
«image de eférence> qui n'est pas irgg®e syngtriquement aux autres). Mais cettetimbde a aussi
une faiblesse significative qui limite son application pratique : elle exige la visilgtit’extraction
detousles pointsa reconstruire dan®utesles imagesa utiliser, ce qui n'est gere Ealiste pour
les €quences longues. |l existe plusieursdias de contourner cette limitation fondamentale, mais
aucune solution nette ne segiige pour l'instant. Le profaine de factorisation d’une matrice dont
certaineseléments sont inconnus est important aussi en statistique et en traitement du signal. Il
existe des algorithmes type optimisation noreéine [Wib76, SIR95], mais ils ont besoin d’'une
initialisation approximative de la structure, ce qui n’est pas le cas pour SVD.

Un aspect surprenant de leethode de factorisation projective, c'est sa stabiiiCe aux in-
certitudes des points et des tenseurs dantAvec la nrethode basé sur la matrice fondamentale,
on peut enchaer une bonne vingtaine ou trentainegiiations de profondeur avant que cela nuise
a la pecision des sorties 3D. Je n’'ai pas destbonne explication, mais on peut noter que quand
il y a une €quence d'images avec desogrEtries €pipdlaires similaires entre chaque paire, les
erreurs dans les profondeurs ont une forte tendance de s’annuler entre une image et la prochaine.
Par exemple, si un point estarse trouve un peu trop prochd'epipdle, il donne une profondeur
relative un peu trop petite dans cette image, mais dmmfait une profondeur relative un peu trop
grande dans la prochaine, et les elifhces ont tendanees’annuler.
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4.2 Resung de « Factorization Methods for Projective Structure &
Motion » — CVPR’96

Ce papier fut pubéa CVPR’96 [Tri96a]. Il donne plusieurs raffinements au papiecdatént,
il'y inclut une discussion gliminaire des mthodes de factorisation agéfées (spcialiges au cas
de bas rang) et une comparaison exmentale avec plusieurs autregtimbdes de reconstruction
projectives.

Mais sa contribution la plus importante est I'extension de kthode de factorisation aux
droites. Si on pouvait repsenter chaque droite par deux points 3D le long de la droite, la re-
projection de ces points donnerait deux points images sur chaque droite image, lestaninén”
correspondance entre les images. Quand on ne voit pas de tels petitigpon peut les syrth”
tiser : faire une choix arbitraire de deux points sur la droite dans la prerimage, et on coupe les
droitesepipdlaires de chacun de ces points dans les autres images par les images des droites d’ori-
gine. Ceci donne les points correspondants requis, qui peatrentetonstruits comme des points
normaux pour reconstituer la droiteene 3D. En plus, un tel transfert des points donne automati-
quement les bons facteursedtielle pour la reconstruction projective, sans qu’os &is recouvrir
explicitement. On peut aussi utiliser le tenseur trifocal comme moteur de transfert, poemie m”~
effet. La meéthode inégre des points et des droites dans krm factorisation. Elle marche bien
tant que les droites 3D ne passent pas tras tes centres de projection, et donc éonent, les
droites images somioigrées des droitegpipdlaires. (Dans le cas inverse, I'image d’'une droite est
treés sensible aux perturbations 3D).

4.3 Resung de« Linear Projective Reconstruction from Matching Ten-
sors» —IVC'97

Ce papier fut pubé’en« Image & Vision Computing [Tri97a], apes la publication d'une ver-
sion peéliminairea BMVC’96 [Tri96b]. Le talon d’Achille des rathodes bas=s sur la factorisation
matricielle est qu’elles ne peuvent paset@l des donees manquantes. Dans notre dassles
points 3Da reconstruire doiverdtfe visibles dansutesles images utiliser ... ce qui n’est gre
réaliste en pratique pour lesgiences longues. Alors qu'il existe plusieurs moyens d’esquiver ce
probleéme en pratique [TK92, SIR95, Jac97], on peut souhaiter @tisatiés de reconstruction pro-
jectives qui fonctionnent arhe avec des dorrS manquantes.

Cet article @crit une telle famille de mthodes, qui extraient des matrices de esmprojectives
consistantes directement des tenseurs d’appariement. Les primitives image seesut#iglement
pour estimer les tenseurs, donc les deemimanquantes neggentent aucune difficeltUne fois les
matrices de projection des camas obtenues, les primitives 3D peuveme estinees lirdairement’
partir de leurs projections images respectives. Au coeur dethadé sont lescontraintes de cb-
ture » liant les tenseurs d’appariement et leurs matrices de projectisdragiices. En empilant ces
contraintes (tenseurs) — et sur condition d’avoir choisi deriacompatible leurschelles relatives —
on cée une grande matrice dont I'espace nul est de dimension 4 et contient les 4 colonnes de toutes
les matrices de projection. Les projections ellesmas peuverdtfe obtenues par leedomposition
SVD ou tout autre algorithme permettant deetiminer le noyau d’'une application diaire.

Les @sultats de la ethode sont en pratique plus ou moins bons, mais ils ne sont pas aussi
stables que ceux de la reconstruction par factorisation. En particulieeost®ié quand on inclut
seulement les matrices fondamentales dans les contrahtess les centres optiques sont ali-
gnés. Ceci remsente uechec fondamental de la reséntation de lagpngtrie multi-cangras par
matrices fondamentalesgjd’bien connu dans d’autres circonstanaes[[F94]). Par contre, la re-
construction par factorisation des matrices fondamentalespasstise en éfaut par I'alignement
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des centres, car elledlimine pas les coordomes des points images.
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Abstract

We propose a method for the recovery of projective shape and motion from multiple images
of a scene by the factorization of a matrix containing the images of all points in all views.
This factorization is only possible when the image points are correctly scaled. The major
technical contribution of this paper is a practical method for the recovery of these scalings,
using only fundamental matrices and epipoles estimated from the image data. The resulting
projective reconstruction algorithm runs quickly and provides accurate reconstructions. Results
are presented for simulated and real images.

1 Introduction

In the last few years, the geometric and algebraic relations between uncalibrated views have found
lively interest in the computer vision community. A first key result states that, from two uncalibrated
views, one can recover the 3D structure of a scene up to an unknown projective transformation
[Fau92, HGC92]. The information one needs to do so is entirely contained in the fundamental
matrix, which represents the epipolar geometry of the 2 views.

Up to now, projective reconstruction has been investigated mainly for the case of 2 views.
Faugeras [Fau92] studied projective reconstruction using 5 reference points. Hartley [HGC92]
derives from the fundamental matrix 2 projection matrices, equal to the true ones up to an unknown
projective transformation. These are then used to perform reconstruction by triangulation[HS94].
As for multiple images, most of the current methods [MVQ93, Har93, MM95] initially privilege a
few views or points and thus do not treat all data uniformly.

Recently, multi-linear matching constraints have been discovered that extend the epipolar ge-
ometry of 2 views to 3 and 4 views. Shashua [Sha95] described the trilinear relationships between
3 views. Faugeras and Mourrain [FM95], and independently Triggs [Tri95a] have systematically
studied the relationships betweé&himages. Triggs introduced a new way of thinking about pro-
jective reconstruction. The image coordinates of the projections of a 3D point are combined into
a single “joint image vector”. Then, projective reconstruction consists essentially of rescaling the
image coordinates in order to place the joint image vector in a certain 4-dimensional subspace of
the joint image space called theint image This subspace is characterized by the multi-linear
matching constraints between the views.

The projective reconstruction method we propose in this paper is based on the joint image for-
malism, but it is not necessary to understand this formalism to read the paper. We show that by

*This work was performed within a joint research programme betweeRrsCINPG, INRIA, UJF.
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rescaling the image coordinates we can obtameasurement matrif¢he combined image coor-
dinates of all the points in all the images), which is of rank 4. Projective structure and motion
can then be obtained by a singular value factorization of this matrix. So, in a sense this work can
be considered as an extension of Tomasi-Kanade's and Poelman-Kanade’s factorization methods
[TK92, PK94] from affine to perspective projections.

The paper is organized as follows. (1) We motivate the idea of reconstruction through the
rescaling of image coordinates. Throughout this paper we will restrict attention to the case of
bilinear matching constraints (fundamental matrix), although the full theory [Tri95b] also allows
tri- and quadrilinear matching constraints to be used. (2) We discuss some numerical considerations
and describe the proposed projective reconstruction algorithm. (3) We show results that we have
obtained with real and simulated data. (4) We conclude and discuss several open issues, which will
be part of our future work.

2 Projective Reconstruction from Multiple Views

2.1 The Projective Reconstruction Problem

Suppose we have a setof3D points visible inm perspective images. Our goal is to recover 3D
structure (point locations) and motion (camera locations) from the image measurements. We will
assume no camera calibration or additional 3D information, so we will only be able to reconstruct
the scene up to an overall projective transformation of the 3D space [Fau92, HGC92].

We will work in homogeneous coordinates with respect to arbitrary projective coordinate frames.
Let Q,, be the unknown homogeneous coordinate vectors of the 3D pBintee unknown3 x 4
image projection matrices, angl, the measured homogeneous coordinate vectors of the image
points, wherevp = 1,...,n labels points and = 1,...,m labels images. Each object is defined
only up to an arbitrary nonzero rescalirgg. Q, ~ 1,Q,. The basic image projection equations
say that — up to a set of unknown scale factors —dheare the projections of th@,,:

)\z’pqip = Pi Qp

We will call the unknown scale factors, projective depthst. If the Q, and theqg;, are chosen to
have affine normalization (‘weight’ components equal to 1) and®thare normalized so that the
vectorial part of the ‘weight’ component row has norm 1, the projective depths become true optical
depthsj.e. true orthogonal distances from the focal plane of the camera.

The complete set of image projections can be gathered into a Singbe n matrix equation:

A1t A12di2 0 Apdin P,
A21Q21  A22Q22 - A2,Q2, P,

W = . C . = (@ @ - Q)
)\ml dmi1 )\qum2 e )\mnqmn Pm

Notice thatwith the correct projective depths,,, the3m x n rescaled measurement matrixw

has rank at most 4. If we could recover the depths, we could apply an SVD based factorization
technique similar to that used by Tomasi and Kanade [TK92Mpand thereby recover both 3D
structure and camera motion for the scene. The main technical advance of this paper is a practical
method for the recovery of the unknown projective depths, using fundamental matrices and epipoles
estimated from the image data.

1This is not the same notion as the “projective depth” of Shashua, which is a cross ratio of distances along epipolar
lines [Sha94]
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Taken individually, the projective depths are arbitrary because they depend on the arbitrary scale
factors chosen for thP;, theQ,, and theq;,. However taken as a whole the rescaled measurements
W have a strong internal coherence. The overall scale of each triple of rows and each column of
W can be chosen arbitrarilye . the arbitrary scales of the projectioRs and the 3D point€),),
but once thesen + n overall scales have been fixed there is no further freedom of choice for the
remainingmn — m — n scale factors in\;,. Hence, the projective depths really do contain useful
information.

2.2 Recovery of Projective Depths

Now we will show how the projective depths can be recovered from fundamental matrices and
epipoles, modulo overall row and column rescalings. The point projection equatign = P;Q,

implies that thes x 5 matrix

P; | AipQip P; | P;Q, P;

= = Iixa | Q

( Pj | AjpQip P; | P;Q, P; (Tl Q)
has rank at most 4. Hence, all of fisx 5 minors vanish. We can expand these by cofactors in
the last column to get homogeneous linear equations in the componentgigfand;,q;,. The
coefficients aret x 4 determinants of projection matrix rows. These turn out to be just funda-
mental matrix and epipole components [Tri95a, FM95]. In particulatpif anda’b’c’ are even
permutations oi23 andP¢{ denotes row: of P;, we have:

P? Py
P¢ P!
[Fij]aa/ = sz/ [eij]a = P% (1)
J 7
/ 3
P;j P;

Applying these relations to the thréex 5 determinants built from two rows of imageand three
rows of imagej gives the following fundamental relation between epipolar lines:

(Fijdjp) Ajp = (€45 A dip) Aip )

This relation says two things:

e Equality up to scale: The epipolar line ofy;, in imagei is the line through the corresponding
pointq;, and the epipole;;. This is just a direct re-statement of the standard epipolar constraint.

e Equality of scale factors: If the correct projective depths are used in (2), the two terms
haveexactly the same size- the equality is exact, not just up to scale. This is the new result that
allows us to recover projective depths using fundamental matrices and epipoles. Analogous results
based on higher order matching tensors can be found in [Tri95b], but in this paper we will use only
equation (2).

Our strategy for the recovery of projective depths is quite straightforward. Equation (2) relates
the projective depths of a single 3D point in two images. By estimating a sufficient number of
fundamental matrices and epipoles, we can amass a system of homogeneous linear equations that
allows the complete set of projective depths of a given point to be found, up to an arbitrary overall
scale factor. At a minimum, this can be done with any sehof 1 fundamental matrices that link
them images into a single connected graph. If additional fundamental matrices are available, the
equations become redundant and (hopefully) more robust. In the limit,(all— 1) /2 fundamental
matrices and alln(m — 1) equations could be used to find theunknown depths for each point, but
this would be computationally very expensive. We are currently investigating policies for choosing
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economical but robust sets of equations, but in this paper we will restrict ourselves to the simplest
possible choice: the images are taken pairwise in sequ&hgeeFos, ..., Fu1m.

This is almost certainly not the most robust choice, but it (or any other minimal selection) has
the advantage that it makes the depth recovery equations trivial to solve. Solving the vector equation
(2) in least squares fox;, in terms of);,, gives:

Nip = (eij A dip) - (Fijqjp) iy 3)
leij A aipl?
Such equations can be recursively chained together to give estimates for the complete set of depths
for point p, starting from some arbitrary initial value suchag = 1.

However there is a flaw in the above argument: fundamental matrices and epipoles can only be
recovered up to an unknown scale factor, so we do not actually know the scale factors in equations
(1) or (2) after all! In fact this does not turn out to be a major problem. Itis a non-issue if a minimal
set of depth-recovery equations is used, because the arbitrary overall scale factor for each image can
absorb the arbitrary relative scale of ti@nde used to recover the projective depths for that image.
However if redundant depth-recovery equations are used it is essential to choose a self-consistent
scaling for the estimated fundamental matrices and epipoles. We will not describe this process here,
except to mention that it is based on the quadratic identities between matching tensors described in
[Tri95b].

Note that with unbalanced choices of scale for the fundamental matrices and epipoles, the av-
erage scale of the recovered depths might tend to increase or decrease exponentially during the
recursive chaining process. Theoretically this is not a problem because the overall scales are ar-
bitrary, but it could well make the factorization phase of the reconstruction algorithm numerically
ill-conditioned. To counter this we re-balance the recovered matrix of projective depths after it has
been built, by judicious overall row and column scalings.

2.3 Projective Shape and Motion by Factorization

Once we have obtained the projective depths, we can extract projective shape and motion from the
rescaled measurement matix.
Let
W = U diag(oy,09,...,05) V

be a Singular Value Decomposition (SVD) W, with s = min{3m,n} and singular values; >
o9 > ... > 0 > 0. SinceW is of rank 4, thes; for ¢ > 4 vanish. Thus, only the first 4 columns
(rows) of U (V) contribute to this matrix product. L&J’ (V') the matrix of the first 4 columns
(rows) of U (V). Then,
W = U, ., diag(o1,02,03,04) Vi, =U X V' .
by
Any factorization ofX into two4 x 4 matrices¥’ andX”, ¥ = X'¥”, leads to
W = U/AE/ z/iv/ = UspxaVixn -
U Vv

We can interpret the matri& as a collection ofn. (3x4) projection matrice®; andV as collection
of n 4-vectorsQ,, representing 3D shape :
P,
P,

W =0V = (Ql Q - Qn)4><n 4)
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Equation (4) shows that tHe; and Qp represent at least projective motion and shape, since
]-SiQp = )\ipqip ~Qip -

Unlike the case of orthographic projections [TK92], there are no further constraints &? the
Qp . we canonly recover projective shape and motion. For any non singular projective transforma-
tion Tyys, P, T andT*lQp is an equally valid factorization of the data into projective motion and
shape : R R o

(PiT)(TilQp) =PiQp~qip -
A consequence of this is that the factorizatiorddfs arbitrary. For the implementation, we chose
Y =x=x2= diag(o‘i/Q,05/2,J§/2,0i/2).

3 The Algorithm

Based on the observations made above, we have developed a practical algorithm for projective
reconstruction from multiple views. Besides the major two steps, determination of the scale factors
Aip and factorization of the rescaled measurement matrix, the outline of our algorithm is based on
some numerical considerations.

3.1 Normalization of Image Coordinates

To ensure good numerical conditioning of the method, we work with normalized image coordi-
nates, as described in [Har95]. This normalization consists of applying a similarity transformation
(translation and uniform scalindll; to each image, so that the transformed points are centered at
the origin and the mean distance from the origin/&.

All of the remaining steps of the algorithm are done in normalized coordinates. Since we
actually compute projective motion and shape for the transformed image s, lﬁiQp =
ApTiqip ~ Tiqip, the resulting projection estimat® must be correctedP; = T; 'P;. The
P/ ande then represent projective motion and shape corresponding to the measured image points
Qip-

Our results show that this simple normalization drastically improves the results of the projective
reconstruction.

3.2 Balancing the Rescaled Measurement Matrix

Consider the factorization of the rescaled measurement m&tiix projective motion and shape:

Al1di1 - A2 ApQin ffl

A21Q21  A22Q22 o A2nQ2p Py . . .
S o = (@ Qe e qa)

)\ml am1 )\qum2 to )\mnqmn PAm

Multiplying column ! of W by a non zero scalar, corresponds to multiplying); by ;. Analo-
gously, multiplying the imagé rows (3k — 2,3k — 1, 3k) by a non zero scalar;, corresponds to
multiplying the projection matri®;, by 1. Hence, point-wise and image-wise rescaling$\étlo
not affect the recovered projective motion and shape.

However, these considerations are only valid in the absence of noise. In presence oWioise,
will only be approximately of rank 4, and scalar multiplicationsWfas described aboweill affect
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the results. We therefore aim to improve the results of the factorization by applying appropriate
point- and image-wise rescalings W. The goal is to ensure good numerical conditioning by
rescaling so that all rows and columnsWf have on average the same order of magnitude. To do
this we use the following iterative scheme :

1. Rescale each colunirso thaty">", (w,;)? = 1.
2. Rescale each triplet of row8k — 2,3k — 1, 3k) so thatyr, %%, o w? = 1.
3. If the entries ofW changed significantly, repeat 1 and 2.

Note that, since we work with normalized image coordinajgs it would be sufficient to
balance only then x n matrix (\;,) instead ofW.

3.3 Outline of the Algorithm

The complete algorithm is composed of the following steps.

1. Normalize the image coordinates, by applying transformafions
Estimate the fundamental matrices and epipoles with the method of [Har95].
Determine the scale factokg, using equation (3).
Build the rescaled measurement maiix
BalanceW by column-wise and “triplet-of-rows”-wise scalar mutliplications.
Compute the SVD of the balanced maf\.

From the SVD, recover projective motion and shape.

© N o g > W DN

Adapt projective motion, to account for the normalization transformationsf step 1.

4 Experimental Evaluation of the Algorithm

4.1 Experiments with Simulated Images

We conducted a large number of experiments with simulated images to quantify the performance of
the algorithm. The simulations used three different configurations : lateral movement of a camera,
movement towards the scene, and a circular movement around the scene (see figure 1). In configu-
ration 2, the depths of points lying on the line joining the projection centers can not be recovered.
Reconstruction of points lying close to this line is extremely difficult, as was confirmed by the
experiments, which resulted in quite inaccurate reconstructions for this configuration.

For the circular movement, the overall trajectory of the camera formed a quarter circle, centered
on the scene. For each specific experiment, the trajectory length was the same for all three configu-
rations. Then different viewing positions were equidistantly distributed along the trajectory.

In order to simulate realistic situations, we adopted the following parameters : the camera’s cal-
ibration matrix wasliag(1000, 1000, 1). The scene was composed of points distributed uniformly
in a sphere of radius 100. The distance between the camera and the center of the sphere was 200
(for configuration 2 this was the distance with respect to the viéw

For each configuration, the following experiment was conducted 50 times::

1. Determine at random 50 points in the sphere.
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Figure 1:The 3 configurations for simulation. (1)Lateral movement2) Translation towards the
scene(3) Circular movement.

Project the points into the views.

Add Gaussian noise of level9), 0.5, . .. , 2.0 to the image coordinates.

Carry out projective reconstruction with our algorithm.

o ~ WD

Compute the image distance error of the backprojected points (2D error)
3 Y1 IPiQyp — aipll, wherel|.|| means the Euclidean vector norm.

mn £-1=

6. Align the projective reconstruction with the Euclidean model and compute the distance error
in the Euclidean frame (3D error).

The results of these experiments were analyzed with respect to several variables, as reported in the
following subsections. All values represented in the graphs are the mean result over 50 trials. To
monitor the effect of outliers on the results, we also computed the median values. These gave graphs
similar to those for the means, which we will not show here.

2D errors are given in pixels, whereas 3D errors are given relative to the scene’s size, in percent.

4.1.1 Sensitivity to Noise

Graphs 1 and 2 show the behavior of the algorithm with respect to different noise levels for the three
configurations. For this experiment, reconstruction was done from 10 views.

5 T T T 0.25 T -
configuration 1 —— i configuration 1 ——
configuration 2 —— configuration 2 -~

4+ configuration 3 e 0.2 configuration 3 -=

= =
o
é 3r = 0.15
g
~N © g
[
1 0.05
0 o L L L 0 L L L
0 0.5 1 15 2 0 0.5 1 15 2
noise noise

Graphs 1 and 2: Sensitivity to noise.The 2D error curves for the configurations 1 and 3 are
nearly undistinguishable. 3D error for configuration 2 goes rapidly off scale.

The algorithm performed almost equally well for configurations 1 and 3, whereas the 3D error
for configuration 2 exceeds 100 % for 2.0 pixels noise. Considering the graphs of configuration 2,
we also see that 2D and 3D error are not always well correlated. For configurations 1 and 3, the 2D
error is of the same order as pixel noise. Note also the linear shape of the graphs.
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4.1.2 Number of Views
The image noise for this experiment was 1.0 pixel.

5

0.25

configuration 1 ——
configuration 2 - configuration 2 ——
configuration 3 =

configuration 1 ——

4 b configuration 3 =

o
[N}

o
[
a

2D error [pixel]
relative 3D error [%)]

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
# views # views

Graphs 3 and 4: Behavior with respect to number of views.The 2D error curves for the

configurations 1 and 3 are nearly undistinguishable. The 3D error for configuration 2 lies above 5
%. The curve is thus not visible in the graph.

The graphs show the expected behavior: when more views are used for reconstruction, the
structure is recovered more accurately. Secondly, 2D error augments with increasing number of

views, but shows a clearly asymptotic behavior. 1. Note that the use of 20 views reduces the 3D
error to 50 % of that for 2 views.

4.1.3 Importance of Normalization and Balancing

The error values in the previous graphs were obtained with the algorithm as described in subsection
3.3. To underline the importance of using normalized image coordinates, we also ran the algorithm

using unnormalized ones. The effects of not balancing the rescaled measurement matrix before
factorization were also examined.

5

o
)
a

anci normalization + balancing ——
only normalization -~ only normalization -~
4 only balancing -= only balancing =

normalization + balancing ——

o
)

2D error [pixel]
o
N
(4]

o
o

relative 3D error [%]

0 . . . ) . . .
0 0.5 1 1.5 2 0 0.5 1 15 2
noise noise

Graphs 5 and 6: Influence of normalization and balancing.The results presented here were

obtained for configuration 1. The 2D error curve for “only balancing” goes off scale even for 0.5
pixels noise and the 3D curve is so steep that it is not even visible.

When the image coordinates are not normalized, the error is already off scale for 0.5 pixel noise.
An explanation for this is the bad conditioning of the rescaled measurement matrix (see also next

paragraph). As for balancing, we see that this improves 3D errors up to 20 %, and hence should
always be part of the algorithm.

4.1.4 Robustness of the Factorization

The applicability of our factorization method is based on the rank 4-ness of the rescaled measure-
ment matrixW (in the noiseless case). To test the robustness of this property, we evaluated how
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closeW is to rank 4 in practice. To be close to rank 4, the ratio of the 4th and 5th largest singular
values ,o4 : o5, should be large with respect to the ratio of the 1st and 4th largest,o4. In

the following graphs, these two ratios are represented, for configurations 1 and 2 and for 2 and 20
views. Note that the y-axes are scaled logarithmically.
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Graphs 7 and 8: Ratios of singular values for configuration 1.The graph on the left shows

1
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the situation for 2 views, on the right for 20 views.
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Graphs 9 and 10 : Ratios of singular values for configuration 2The graph on the left shows
the situation for 2 views, on the right for 20 views.

We see that for configuration 1, the matrix is always very close to rankr4 : o4) is lower
than 2, whereaéo, : o5) lies clearly above 100. As for configuration 2, the graphs reflect the bad
performance in 3D reconstructiotu; : o4) is about 10, while for high noise levels or many views
(04 :05)iscloseto 1.

4.2 Evaluation with Real Images

The algorithm has also been tested on several sequences of real images. For 2 of them we show
results.

4.2.1 The House Sequence

Figure 2 shows the first and last image of a sequence of 6 images of a scene with a wooden house.
38 points were tracked over the whole sequence, but only extracted-witlixel accuracy.

To estimate the quality of the projective reconstruction, we aligned it with an approximate
Euclidean model of the scene obtained from calibrated views (see figure 3). Lines have been drawn
between some of the points to aid visualization.

In the side and front views we see that right angles are approximately conserved, and that the
windows are coplanar with the wall. The bumpiness on the left side of the roof is due to the fact
that the roof stands out slightly from the house’s front wall (see figure 2), thus causing occlusion in
the last view of the edge point between roof and wall.
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Figure 2:First and last image of the house sequence and one image of the castle sequence.
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Figure 3: Three views of the reconstructed house. (1)General view”. (2) Side view.(3) Front
view.

4.2.2 The Castle Sequence

28 points have been tracked through the 11 images of the scene shown in the right part of figure 2.
3D ground truth is available, and the reconstruction errors have been evaluated quantitatively. The
projective reconstruction was aligned with the Euclidean model and the resulting RMS error was
4.45 mm for an object size of abo@20mm x 210mm x 280mm. The RMS error of the reprojected
structure with respect to the measured image points was les$ fiapixels.

We also applied a Levenberg-Marquardt nonlinear least-squares estimation algorithm, with the
results of our method as initialization. This slightly improved the 2D reprojection error, however
the 3D reconstruction error was not significantly changed.

5 Discussion and Further Work

In this paper, we have proposed a method of projective reconstruction from multiple uncalibrated
images. The method is very elegant, recovering shape and motion by factorization of one matrix,
containing all image points of all views. This factorization is only possible when the image points
are correctly scaled. We have proposed a very simple way to obtain the individual scale factors,
using only fundamental matrices and epipoles estimated from the image data.

The algorithm proves to work well with real images. Quantitative evaluation by numerical
simulations shows the robustness of the factorization and the good performance with respect to
noise. The results also show that it is essential to work with normalized image coordinates.

Some aspects of the method remain to be examined. In the current implementation, we recover
projective depths by chaining equation (2) for pairs of vién®), (23), ..., (m — 1, m). However,
it would be worth investigating whether other kinds of chaining are not more stable. Furthermore,
uncertainty estimates on the fundamental matrices should be considered when choosing which of
the equations (2) to use. To run the algorithm in practice, it should also be able to treat points which
are not visible in all images. Finally the method could be extended to use trilinear and perhaps even
quadrilinear matching tensors.
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Abstract formation if needed [5, 10, 1]. The key result is
_ . . o that projective reconstruction is the best that can be
This paper describes a family of factorization-based al-qone without calibration or metric information about
gorithms that recover 3D projective structure and mo- o scene, and that it is possible from at least two

tion from multiple uncalibrated perspective images of 3D . f point h . i
points and lines. They can be viewed as generalizationé’IeWS Of poInt-Scenes or three views of finé-scenes

of the Tomasi-Kanade algorithm from affine to fully per- [2, 3,8, 6].

spective cameras, and from points to lines. They make no Most current reconstruction methods either work
restrictive assumptions about scene or camera geometrynly for the minimal number of views (typically
and unlike most existing reconstruction methods they doyyo), or single out a few ‘privileged’ views for ini-

not rely on privileged’ points orimages. All of the avail- yigi7ation before bootstrapping themselves to the
able image data is used, and each feature in each image 'r?lulti-view case [5, 10, 9]. For robustness and ac-
treated uniformly. The key to projective factorization is o

the recovery of a consistent setmbjective depthéscale ~ curacy, there is a need for methods that uniformly
factors) for the image points: this is done using funda-take account of all the data in all the images, without

mental matrices and epipoles estimated from the imagdanaking restrictive special assumptions or relying on
data. We compare the performance of the new techniqueprivileged features or images for initialization. The
with several existing ones, and also describe an approxorthographic and paraperspective structure/motion
imate factorization method that gives similar results to {5ctorization methods of Tomasi. Kanade and Poel-
E\r/[;-b?sslcé:gtonzatmn, but runs much more quickly for ., oy 117 11 partially fulfill these requirements, but
gep L — they only apply when the camera projections are
Keywords: Multi-image Structure, Projective Recon- ; . ) .
. . o well approximated by affine mappings. This hap-
struction, Matrix Factorization. L .
pens only for cameras viewing small, distant scenes,
which is seldom the case in practice. Factorization
1 Introduction methods for perspective images are needed, however
it has not been clear how to find the unknown pro-

There has been considerable progress on scene rigctive scale factors of the image measurements that
construction from multiple images in the last few are required for this. (In the affine case the scales
years, aimed at applications ranging from very pre-aré constant and can be eliminated).

cise industrial measurement systems with several As part of the current blossoming of interest in
fixed cameras, to approximate structure and mo-multi-image reconstruction, Shashua [14] recently
tion from real time video for active robot naviga- extended the well-known two-image epipolar con-
tion. One can usefully begin by ignoring the is- straint to a trilinear constraint between matching
sues of camera calibration and metric structure, ini-points in three images. Hartley [6] showed that this
tially recovering the scene up to an overall projec- constraint also applies to lines in three images, and
tive transformation and only later adding metric in- Faugeras & Mourrain [4] and | [18, 19] completed
that corner of the puzzle by systematically studying

This paper appeared in CVPR’96. The work was supported by, . . . .
an EC HCM grant and INRIA Ririe-Alpes. | would like to the constraints for lines and points in any number

thank Peter Sturm and Richard Hartley for enlightening discus-Of images. A key aspect of the viewpoint presented
sions. in [18, 19] is that projective reconstruction is essen-
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tially a matter of recovering a coherent setpyb- problems.
jective depths— projective scale factors that rep-  Only the speed problem will be considered here.
resent the depth information lost during image pro-SVD is slow because it was designed for general,
jection. These are exactly the missing factorizationfull rank matrices. For matrices of fixed low ramk
scales mentioned above. They satisfy a set of consisias here, where the rank is 3 for the affine method
tency conditions called ‘joint image reconstruction or 4 for the projective one), approximate factoriza-
equations’ [18], that link them together via the cor- tions can be computed in tin@(mnr), i.e. directly
responding image point coordinates and the variougproportional to the size of the input data.
inter-image matching tensors. The Tomasi-Kanade ‘hallucination’ process can
In the MOVI group, we have recently been de- be used to work around missing data [17], as in the
veloping projective structure and motion algorithms affine case. However this greatly complicates the
based on this ‘projective depth’ picture. Several of method and dilutes some of its principal benefits.
these methods use the factorization paradigm1 ana—here is no obvious solution to the error modelling
so can be viewed as generalizations of the TomasiProblem, beyond using the factorization to initial-
Kanade method from affine to fully perspective pro- ize @ nonlinear least squares routine (as is done in
jections. However they also require a depth recoverysome of the experiments below). It would probably
phase that is not present in the affine case. The basiee possible to develop incremental factorization up-
reconstruction method for point images was intro- date methods, although there do not seem to be any
duced in [15]. The current paper extends this in sev-dn the standard numerical algebra literature.
eral directions, and presents a detailed assessment of The rest of the paper outlines the theory of pro-
the performance of the new methods in Comparisoriective factorization for points and lines, describes
to existing techniques such as Tomasi-Kanade facthe final algorithms and implementation, reports on
torization and Levenberg-Marquardt nonlinear leastexperimental results using synthetic and real data,
squares. Perhaps the most significant result in thénd concludes with a discussion. The full theory
paper is the extension of the method to work for linesOf projective depth recovery applies equally to two,
as well as points, but | will also show how the fac- three and four image matching tensors, but through-
torization can be iteratively ‘polished’ (with results ©out this paper | will concentrate on the two-image
similar to nonlinear least squares iteration), and how(fundamental matrix) case for simplicity. The un-
any factorization-based method can be speeded uferlying theory for the higher valency cases can be
significantly for large problems, by using an approx- found in [18].
imate fixed-rank factorization technique in place of

the Singular Value Decomposition. 2  Point Reconstruction
The factorization paradigm has two key attrac-

tions that are only enhanced by moving from the We need to recover 3D structure (point locations)
affine to the projective casé) All of the datain all  and motion (camera calibrations and locations) from
of the images is treated uniformly — there is no needm uncalibrated perspective images of a scene con-
to single out ‘privileged’ features or images for spe- taining n 3D points. Without further information
cial treatment;(ii) No initialization is required and it is only possible to reconstruct the scene up to
convergence is virtually guaranteed by the nature ofan overall projective transformation [2, 8], so we
the numerical methods used. Factorization also hasvill work in homogeneous coordinates with respect
some well known disadvantages: Every primitive to arbitrary projective coordinate frames. L,
must be visible in every image. This is unrealisticin (p = 1,...,n) be the unknown homogeneous 3D
practice given occlusion and extraction and trackingpoint vectorsP; (i = 1, ..., m) the unknowr x 4
failures. Itis not possible to incorporate a full statis- image projections, ans;, the measured homoge-
tical error model for the image data, although someneous image point vectors. Modulo some scale fac-
sort of implicit least-squares trade-aéfmade. Itis  tors \;,, the image points are projected from the
not clear how to incorporate additional points or im- world points: A\, x;, = P;X,. Each object is
ages incrementally: the whole calculation must bedefined only up to rescaling. Thes ‘cancel out’
redone. SVD-based factorization is slow for large the arbitrary scales of the image points, but there is
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still the freedom to: ij arbitrarily rescale each world nonsingular linear transformatioP — P T !,
point X, and each projectio®;; (i) apply an arbi- X — T X, which can be regarded as a projective
trary nonsingulard x 4 projective deformatiorl: transformation of the reconstructed 3D space.
X, — TX,, P; — P;T~!. Modulo changes of the
Aip, the image projections are invariant under both
of these transformations.

The scale factors\;, will be called projective

One practical method of factorizin§V is the
Singular Value Decomposition [12]. This decom-
poses an arbitrary: x [ matrix Wy, of rank r
. . . into a productWy ) = Uy, D« V], where the
depths With correctly normalized points and pro- columns ofVy.., and Uy, are orthonormal bases

Jectlon_s they become true optical depiis, orthog- for the input (co-kernel) and output (range) spaces
onal distances from the focal planes of the cameras, W andD,., is a diagonal matrix of posi
kx1Is rXxr -

(NB: this is not the same as Shashua's proJeCtwetive decreasing ‘singular values’. The decomposi-

depth’ [13]). In_ger?eralern—.l prOJectlve_depths tion is unique when the singular values are distinct,
can be set arbitrarily by choosing appropriate scales

. and can be computed stably and reliably in time
for the X, andP;. However, once this is done the . P . y ) y
remainin 1 1) dear ¢ freedom contain O(klmin(k,l)). The matrixD of singular values
ema g(m'— )(n—1) degrees of freedom conta can be absorbed into eith®ror V to give a decom-
real information that can be used for 3D reconstruc- ... - .
. L osition of the projection/point for®X. (I absorb
tion: taken as a whole the projective depths have ap .

. it into V to form X).

strong internal coherence. In fact, [18, 19] argues
that just as the key to calibrated stereo reconstruc- The SVD has been used by Tomasi, Kanade
tion is the recovery of Euclidean depth, the essenceand Poelman [17, 11] for their affine (orthographic
of projective reconstruction is precisely the recovery and paraperspective) reconstruction techniques. The
of a coherent set of projective depths modulo over-current application can be viewed as a generaliza-
all projection and world point rescalings. Once this tion of these methods to projective reconstruction.
is done, reconstruction reduces to choosing a pro-The projective case leads to slightly larger matrices
jective basis for a certain abstract three dimensional3m x n rank 4 as opposed tn x n rank 3), but
‘joint image’ subspace, and reading off point coor- is actually simpler than the affine case as there is no

dinates with respect to it. need to subtract translation terms or apply nonlin-
ear constraints to guarantee the orthogonality of the
21 FEactorization projection matrices.

Ideally, one would Ilike to find re-
constructions in time O(mn) (the size
of the input data). SVD is a factor of

Gather the point projections into a singler x n
matrix equation:

AM1X11 AM2X12 o An Xin O(min(3m,n)) slower than this, which can be
Aol X271  A22 X2 --- Aop Xon significant if there are many points and images. Al-
W = : : . . though SVD is probably near-optimal for full-rank

matrices, rank matrices can be factorized in ‘out-
put sensitive’ timeO(mnr). | have experimented
P, with one such ‘fixed rank’ method, and find it to be
Py almost as accurate as SVD and significantly faster
- : ( X1 Xy o Xy ) for large problems. The method repeatedly sweeps
P'm the matrix, at each sweep guessing and subtracting
a column-vector that ‘explains’ as much as possible
Hence, with a consistent set of projective depths theof the residual error in the matrix columns. A
rescaled measurement matriXW has rank at most rank » matrix is factorized inr sweeps. When
4. Any rank 4 matrix can be factorized into some the matrix is not exactly of rank the guesses
3m x 4 matrix of ‘projections’ multiplying a1 x n are not quite optimal and it is useful to include
matrix of ‘points’ as shown, and any such factoriz- further sweeps (sa@r in total) and then SVD the
ation corresponds to a valid projective reconstruc-matrix of extracted columns to estimate the best
tion: the freedom in factorization is exacthax 4 combinations of them.

)\ml Xm1 )\m2 Xm2 )\mn Xmn
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2.2 Projective Depth Recovery each pointp can be found trivially by chaining to-
gether the solutions for each image, starting from
some arbitrary initial value such ag, = 1. Solving

the depth recovery equation in least squares gives a
Jimple recursion relation fox;, in terms of)\;,

The above factorization techniques @any be used

if a self-consistent set of projective depthg can
be found. The key technical advance that makes thi
work possible is a practical method for estimating
thgse using funglamental matrices and epipoles ob- - (e Axip) - (Fij xip) N
tained from the image data. The full theory can be P

found in [18], which also describes how to use triva-

lent and quadrivalent matching tensors for depth relf additional depth recovery equations are used, this
covery. Here we briefly sketch the fundamental ma-Simple recursion must be replaced by a redundant
trix case. The image projections, xi, = P; X, (and hence potentially more robust) homogeneous

J

lleji A xip 12

imply that the6 x 5 matrix linear system. _However, car_e.is needed. The depth
recovery equations are sensitive to the scale factors

Pi | Aip Xip P; chosen for theF’'s and e’s, and these can not be

Pi | Aip Xip - P; ( L | Xy ) recovered directly from the image data. This is ir-

relevant when a single chain of equations is used,

has rank at most 4, so all of itsx 5 minors van- ~ as rescalings oF ande affect all points equally
ish. Expanding by cofactors in the last column givesand hence amount to rescalings of the correspond-
homogeneous linear equations in the components dhg projection matrices. However with redundant
Aip Xip @and Ay, X;p, With coefficients that aré x 4 ~ equations it is essential to choose a mutually self-
determinants of projection matrix rows. These turnconsistent set of scales for tl&s ande’s. | will

out to be the expressions for the fundamental matrixnot describe this process here, except to note that
F;; and epipolee;; of cameraj in imagei in terms  the consistency condition is the Grassmann identity

of projection matrix components [19, 4]. The result Fijei; = eix A ej [18].

is theprojective depth recovery equation It is still unclear what the best trade-off be-
tween economy and robustness is for depth recov-
(Fij xip) Aip = (i AXip) Aip (1) ery. This paper considers only two simple non-
redundant choices: either the images are taken pair-
This says two things: i)Y The epipolar line ofx;, wise in sequencdis;, Fso, ..., Fnm_1, or all sub-
in image: is the same as the line through the cor- sequent images are scaled in parallel from the first,
responding pointx;, and epipolee;; (as is well  Fg;,F3q,...,Fy. It might seem that long chains

known); (i) With the correct projective depths and of rescalings would prove numerically unstable, but
scalings forF;; ande;;, the two terms have exactly in practice depth recovery is surprisingly well con-
the same sizeThe equality is exact, not just up to ditioned. Both serial and parallel chains work very
scale. This is the new result that allows us to re-well despite their non-redundancy and chain length
cover projective depths using fundamental matricesor reliance on a ‘key’ image. The two methods give
and epipoles. Analogous results based on higher orsimilar results except when there are mam4Q)
der matching tensors can be found in [18]. images, when the shorter chains of the parallel sys-
It is straightforward to recover projective depths tem become more robust. Both are stable even when
using (1). Each instance of it linearly relates the epipolarpoint transfer is ill-conditioned €.g. for a
depths of a single 3D point in two images. By esti- camera moving in a straight line, when the epipolar
mating a sufficient number of fundamental matriceslines of different images coincide): the image obser-
and epipoles, we can amass a system of homogerations act as stable ‘anchors’ for the transfer pro-
neous linear equations that allows the complete setess.
of depths for a given point to be found, up to an arbi- Balancing: A further point is that with arbitrary
trary overall scale factor. At a minimum, this can be choices of scale for the fundamental matrices and
done by selecting any setof—1 equations that link  epipoles, the average size of the recovered depths
the m images into a single connected graph. With might tend to increase or decrease exponentially
such a non-redundant set of equations the depths falturing the solution-chaining process. Theoretically
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this is not a problem as the overall scales are arbifind the corresponding, correctly scaled via-points
trary, but it could easily make the factorization phasein the other images. The required fundamental ma-
numerically ill-conditioned. To counter this the re- trices can not be found directly from line matches,
covered matrix of projective depths must be bal-but they can be estimated from point matches, or
anced after it has been built, by judicious overall row from the trilinear line matching constraints (trivalent
and column rescalings. The process is very simpletensor) [6, 14, 4, 19, 18]. Alternatively, the triva-
The image points are normalized on input, so ide-lent tensor can be used directly: in tensorial nota-
ally all of the scale factors;, should have roughly tion [18], the trivalent via-point transfer equation is
the same order of magnitud€(1) say. For each lp, G¢, BeyCi = (Ip, e )y

point the depths are estimated as above, and then: As with points, redundant equations may be in-
(i) each row (image) of the estimated depth matrix iscluded if and only if a self-consistent normalization
rescaled to have lengtfin; (i) each column (point) is chosen for the fundamental matrices and epipoles.
of the resulting matrix is rescaled to lengtfim. For numerical stability, it is essential to balance
This process is repeated until it roughly converges,the resulting via-pointsi.g. depth estimates). This
which happens very quickly (within 2-3 iterations). works with the3m x 2njines ‘W’ matrix of via-
points, iteratively rescaling all coordinates of each
image (triple of rows) and all coordinates of each
line (pair of columns) until an approximate equilib-
&ium is reached, where the overall mean square size
of each coordinate i©®(1) in each case. To ensure
that the via-points representing each line are on av-
erage well separated, | also orthonormalize the two
3m-component column vectors for each line with re-
spect to one another. The via-point equations (2) are
IJi'near and hence invariant with respect to this, but it
does of course change the 3D representai¥esd

Z recovered for each line.

3 Line Reconstruction

3D lines can also be reconstructed using the abov
techniques. A lind. can be represented by any two
3D points lying on it, sayY andZ. In imagei, L
projects to some image lilgandY andZ project

to image pointsy; andz; lying on l;. The points
{yil = 1,...,m} are in epipolar correspondence,
so they can be used in the depth recovery equatio
(1) to reconstrucl’, and similarly forZ. The repre-
sentativesy’ andZ can be fixed implicitly by choos-
ing y1 andz; arbitrarily onl; in the firstimage, and
using the epipolar constraint to transfer these to the .
corresponding points in the remaining images: 4 Implementatlon
lies on bothl; and the epipolar line of, so is lo-

cated at their intersection. This section summarizes the complete algorithm

In fact, epipolar transfer and depth recovery canfor factorization-based 3D projective reconstruction
be done in one step. Lt stand for therescaled from imqge points ar_1d Iines,_and discus_ses afewim-
via pointsP;Y. Substitute these into equation (1), portant implementation details and variants. The al-

cross-product with;, expand, and simplify using - gorlthm goes as foII_ows: Extract and match points
and lines across all images.

yi=0 Standardize all image coordinates (see below).
LA(Fy5) = LA(eiAyi) Estimate a set of fundamental matrices and
= —(L-e)yi+ 1 yi)es epipoles sufficient to chain all the images together
= (L-en)y: @) (e.g.using point matches).

For each point, estimate the projective depths us-
Up to a factor ofl;-ej;, the intersectiod; A (F; y;) of  ing equation (1). Build and balance the depth matrix
1; with the epipolar line of/; automatically gives the A, and use it to build the rescaled point measure-
correct projective depth for reconstructiotdence, ment matrixw.
factorization-based line reconstruction can be imple- For each line choose two via-points and transfer
mented by choosing a suitable (widely spaced) paithem to the other images using the transfer equations
of via-points on each line in the first image, and (2). Build and balance the rescaled line via-point
then chaining together instances of equation (2) tomatrix.
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Combine the line and point measurement matricessured image line. With SVD-based factorization and
into a3m x (npoints + 2nuines) data matrix and fac- standardized image coordinates the iteration turns
torize it using either SVD or the fixed-rank method. out to be extremely stable, and always improves the
Recover 3D projective structure (point and via-point recovered structure slightly (often significantly for
coordinates) and motion (projection matrices) fromlines). For points, one can even start with arbitrary

the factorization. initial depths (say the affine oneg, = 1) and it-
Un-standardize the projection matrices (see be-erate to convergence. This requires no fundamental
low). matrices or depth recovery equations and converges

reliably in practice, although it can be rather slow if
started far from the true solution.

Nonlinear Least Squares: The ‘linear
factorization-based projective reconstruction
methods described above are a suitable starting
point for more refined nonlinear least-squares
estimation. This can take account of image point
error models, camera calibrations, or Euclidean
constraints, as in the work of Szeliski and Kang

Complexity: The algorithm is dominated by the
O(mnmin (3m,n)) SVD step if this is used, while
if an approximate factorization is used it is propor-
tional to the input data siz& (mn).

Standardization: To get acceptable results from
the above algorithm, it isabsolutely essentialo
work in a well-adapted image coordinate system.
The basic idea is to choose working coordinates

that reflect the least squares trade-offs implicit |n[16], Hartley [5] and Mohr, Boufama and Brand

the factorization algorithm. This is standard prac-
. 'zatl gorith 'S | P [10]. The standard workhorse for such problems
tice in numerical analysis, but it does not seem to.

. S : is Levenberg-Marquardt iteration [12], so for
have been widely known in vision until Hartley [7] ; . ) .
. o . comparison with the linear methods | have imple-
pointed out its importance for fundamental matrix . o )
o . ... mented simple L-M based projective reconstruction
estimation. The exact scheme used is not criti-

. . algorithms. These can be initialized from either

cal, provided that the homogeneous working coor-_. o :
) . fixed-rank or SVD-based factorizations. For lines
dinates are all of the same order of magnitude. | cur- . . .
the recovered structure is often improved signifi-

rently prefer to scale the image into the unit square . . .
. .__cantly, while for points the improvement over the
[—1,1] x [-1,1], homogenize, and then normalize .
linear methods is usually small.

the resulting homogeneous 3-vectors to unit length o .
9 | o 2 genec 9MAftine Factorization: To illustrate the advantages
x® 4+ y° + z= = 1. This simple scheme works very

. . o : .~ of projective factorization over the original Tomasi-
well in practice. The normalization applies to line

. Kanade-Poelman work [17, 11], | have also imple-
vectors as well as point ones, and behaves well even : : . .

: . . o mented affine SVD-based point reconstruction. This
for points g.g.epipoles) near the line at infinity. Af-

. L ives rather poor results in the below experiments
ter reconstruction, the camera projections need to b%ecause the perspective distortions are quite large
un-standardized by multiplying by the inverse trans- Persp a ge.
formation.

5 Experiments

4.1 Generalizations & Variants . :
To quantify the performance of the various algo-

| have implemented and experimented with a num-rithms, | have run a large number of simulations us-
ber of variants of the above algorithm, the moreing synthetic data, and also tested the algorithms on
promising of which are featured in the experimentsmanually matched primitives derived from real im-
described below. ages. There is only space for a very brief summary
Iterative Factorization: The projective depths de- here, more details can be found in [20].

pend on the 3D structure, which in turn derives from  The simulations are based on trial scenes consist-
the depths. The reconstruction can be iteratively im-ing of random 3D points and lines in the unit cube
proved by reprojecting to refine the depth estimateg—1,1] x [-1,1] x [—1,1], perturbed by uniform
and then re-factorizing. For points one finds thenoise and viewed by identical perspective cameras
component of the reprojected 3D point vector alongin various arrangements. In the graphs shown here,
each image vector, while for lines the reprojectedthe cameras are spaced uniformly along a 90 degree
via-point is perturbed orthogonally to lie on the mea- arc of radius 2 in the equatorial plane of the scene,



Papier : Factorization Methods for Projective Structure & Motion — CVPR’'96 93

Point Reconstruction Error vs. Image Noise Point Reconstruction Error vs. # Views Point Reconstruction Error vs. # Points
.8 0.6 05 ~
0.7 fixed-rank . —— A fixed-rank —— 0.45 i fixed-rank
SVD 0.5 ) SYD e o4 L2l SUD
06 iterative SV . TN o) iterative SVD - — oss LN iterative SVD e~
5 SVD + L-M, % IS 0.4 SVD-+1-M IS ' : .}\ SVD + L-M
< 0.5 e S N < 0.3 i
S S Xm o BN
o 0.4 I 0.3 L = 0.25 FyPegyisree—ese—tr
& & R e
Ia) 0.3 - Ia) 0.2 xR a g
™ ™ . 2 ¥ ™ 0.15
0.2 A =
01 %ooe 0.1
01 0.05
0 0 0
0 0.5 1 15 2 25 2 4 8 16 32 64 8 16 32 64 128
image noise (pixel) # views # points
Line Reconstruction Error vs. Noise Line Reconstruction Error vs. # Views Line Reconstruction Error vs. # Lines
10 = 3 7 T
I serial trilinear SVD,~— parallel trilinear SVD —— parallelttilinear SVD ——
8 parallel trilinear SVD -+ 25 iserial bilinear SVD === serial bilinear SVD =+
. serial bilinear'SVD - . .+ parallel bilinear SVD = . parallel bilineak SVD. --a-
IS parallel bilinear SVD -~ IS 2 /- terative bilinear SVD IS iterative bilinear S¥D
g 6 iterative pifinear SV == g / § bilinear SVD + L-M  -4--- g bilinear SVD + L- b:_\
2 bilinear SVD + L-M -x*-- 2 15 [/ 2 S
) 4 - ) D S| ) T
a ’ a 1 oF Ben.oa BRE o s S
() ) ] X N § : o ] a -
F . R LN
2 W — N RS g, .
,E"//E‘D e e 0.5 e S N N X x ? " =B 'Q‘RV,
S A A S R S U R SO SN SN
0 saiioesmns 0 0
0 0.5 1 15 2 25 4 8 16 32 64 128 8 16 32 64 128 256
noise (pixel) # views # lines

Figure 1 Mean 3D reconstruction error for points and lings, noise, number of views and number of primitives.
Defaults:£1 pixel noise; 10 views; 50 primitives.

and are directed towards the scene ceriteethere a2 oonSueton Error vs: mage Standardzaton
is a large baseline and significant perspective dis- 16 fon \ ine S ";ﬁ_?ﬁ‘f
tortion). Reconstruction error is measured over 50 g i ‘ i (YD - |
trials, after least-squares projective alignment with g 2 SE R
the true 3D structure. Mean errors are reported for g 1 SR
points, while for lines there are always outliers so 0?2'2 : P b
median errors are uskd 0125

0.01 0.1 1 10 100

Fundamental matrices and epipoles are estimated coordinate scale

using the linear least squares method with all the
available point matches, followed by a supple-
mentary SVD to project the fundamental matri-

ces to rank 2 and find the epipoles. In standard- . . I .
) . . of views, and number of scene primitives (points or
ized coordinates this method performs very well

. ; lines). The methods shown amgoints: fundamental
[7], and it has not proved necessary to refine the ; . .

. . matrix depth recovery with SVD and fixed-rank fac-
results with a nonlinear method. Unless other-

torization, iterated SVD and nonlinear least-squares

wise noted, the.p.rOJectlve depths of points are ' initialized from SVD;lines: fundamental matrix and
covered by chaining sequentially through the im

ages: Fio F F A parallel chain “trilinear parallel and serial via-point transfer fol-
ges: ¥i2,Xa3,.- o ¥moim. A D lowed by SVD, iterated SVD, and SVD plus non-
Fi2,F13,...,F1n usually gives similar results. For

. . ; .. linear least-squares.
lines in more than a few images, the parallel chain is _ _
superior and is used by defaullt. Al of the point methods are very stable. Their er-

Fig. 1 shows the sensitivity of various point and TOrS vary linearly with noise and decrease as more

line reconstruction methods to image noise, numbelP?iNts or views are added. There is not much dif-
ference in precision, but generally the fixed-rank

'The image of a line passing near the optical centre of amethod is slightly less accurate (but significantly

camera is extremely sensitive to small 3D perturbations. Also,faster) than SVD. Iterating the SVD makes a small

if the camera centres_lle in a plane (a_s here), all lines in thatimprovement, and nonlinear least-squares is slightly
plane have the same image, so such lines can not be uniquely

reconstructedc(f. axial points for cameras lying in a line; in MOre accurate again. Serial depth recovery chains
this case, only lines skew with the axis can be reconstructed). become ill-conditioned when more than 30-40 im-

Figure 2 Reconstruction errors.image standardization.
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Reconstruction Error vs. Scene Distance

32 the final aligned reconstructions seem qualitatively
16 e ank accurate and in good agreement with the results ob-
8 SVD-i-a- . . .
g 4 iterative SVD tained using synthetic data.
g SVD + L-M e
2 2
[}
a 1
o™
0.5
0.25 feusgsg: . . . .
o10s LTt 6 Discussion & Conclusions
' 2 4 8 16 32 64 128 256

scene distance
Within the limitations of the factorization paradigm,
factorization-based projective reconstruction seems
quite successful. For points, the methods studied
have proved simple, stable, and surprisingly accu-
ages are chained: beyond this parallel chaining igate. For lines the situation is less clear: the methods
advised. work, but least-squares refinement often improves
Line reconstruction is less stable. Only the least-the results significantly. As with any line reconstruc-
squares methods consistently give reconstruction ertion, there are always outliers, especially when the
rors commensurate with the input noise. Parallel F-cameras are collinear or coplanar.
matrix transfer plus factorization is a factor of 2 or  Fixed-rank factorization works well, although (as
more worse than this, and serial transfer is worsemight be expected) SVD always produces slightly
again. Iterative factorization helps a little, but the more accurate results. The savings in run time over
use of a nonlinear least-squares routine is still ad-SvVD probably only become significant for quite
visable. Any of these methods are accurate enougharge problems (say more than 40 images and 100
for reliable initialization of the least-squares itera- points), but in these cases they can become very sub-
tion. If my implementation is correct, trilinear trans- stantial.

fer based reconstruction is too sensitive to noise t0 Thig paper presents only the first few members of
be useful (this requires confirmation). For all of the 5 large family of reconstruction techniques, based
above methods, there are outliers corresponding @, the recovery of projective depths or scale factors.
lines that either can not be reconstructed uniquelyeiure work will expand on this. There are anal-
or are very sensitive to small 3D perturbations. ogous factorization methods using higher match-
The importance of standardization is illustrated |ng tensors, and also methods that reconstruct the
in fig. 2, where the image coordinates are standardprojection matrices directly from matching tensors
ized toO(scalg rather tharO(1) before reconstruc-  without factorization (and hence do not require to-
tion. Pixel coordinates Correspond to a scale of 256kens to be tracked through every image)_ All of these
and give errors hundreds of times worse than well-a|low various trade-offs between redundancy, com-
standardized coordinates. The rapid increase in errObutation and implementation effort. | am also in-
at scales below 0.1 is caused by floating-point trun-yestigating numerical factorization methods that can
cation error. handle missing data and incremental updates grace-
Fig. 3 illustrates the advantages of using perspec{ully, and alternatives to Levenberg-Marquardt re-
tive rather than affine reconstruction, for a camerafinement (which | feel is not well suited to nonlinear
driving in a 90 degree arc around a scene at vari{east-squares reconstruction).
ous distances. Clearly, the affine approximation in-
troduces a considerable amount of systematic error Summary: Projective structure and motion can
even for quite distant scenes. Projective factoriz-pe recovered from multiple perspective images of a
ation is stable and accurate even for distant scenesicene consisting of points and lines, by estimating
even in these cases, the only real advantage of affinfundamental matrices and epipoles from the image
factorization is the fact that it is 2-3 times faster. data, using these to rescale the image measurements,
| have also run the point-based algorithms onand then factorizing the resulting rescaled measure-
several data sequences extracted from real imagesnent matrix using either SVD or a fast approximate
Without the ground truth it is hard to be precise, but factorization algorithm.

Figure 3 Projective and affine reconstructies. scene
distance.
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Abstract

This paper describes initial work on a family of projective reconstruction techniques that com-
pute projection matrices directly and linearly from matching tensors estimated from the image
data. The approach is based on ‘joint image closure relations’ — bilinear constraints between
matching tensors and projection matrices, that express the fact that the former derive from
the latter. The simplest methods use fundamental matrices and epipoles, alternative ones use
trilinear tensors. Itis possible to treat all of the image data uniformly, without reliance on ‘priv-
ileged’ images or tokens. The underlying theory is discussed, and the performance of the new
methods is quantified and compared with that of several existing ones.

Keywords: Multi-image structure, projective reconstruction, matching tensors.

1 Introduction

Traditional stereo vision systems use carefully calibrated cameras to provide metric reconstruction
from a single pair of static images. It has long been clear that the redundancy offered by fur-
ther images can significantly increase the quality and stability of visual reconstructions, as well
as extending their coverage to previously hidden parts of the scene. Furthermore, much of the 3D
structure can be recovered with@urty prior camera calibration. Even in the extreme case of several
distinct unknown projective cameras viewing the scene from unknown positions, the entire metric
scene geometry can be recovered up to just 9 global parameters — 3 scale factors, 3 skews and
3 projective distortions[4, 7, 13]. Various common scene or camera constraints can be used to
further reduce this ambiguitg.g.known vanishing points or length ratios, known skew or aspect
ratio, motion-constancy of intrinsic parameters,[6]. This is especially relevant to applications
such as scene modelling for virtual reality or robot navigation, where many images are needed to
cover the scene and precise calibration is difficult owing to uncertain camera motions, changes in
internal parameters (focus, zooming) or the use of several cameras.

There is a need for visual reconstruction methods with the following characteristics:
1) Multi-image/multi-point/missing data: It is hard to match features reliably across many im-
ages, especially under large changes of viewpoint. Reconstruction methods requiring long se-
guences of matches tend to run into missing data problems. For example, factorization methods
[26, 25, 29, 24] are very stable and treat all images and points equally, but require completely filled
‘blocks’ of pointsvs.images. Traditional methods further limit these blocks to small fixed numbers

This paper was published in Image & Vision Computing. An earlier version appeared in BMVC’96. The work was
supported by INRIA RbAe-Alpes, the Esprit HCM network and the Esprit LTR grant CUMULL.
LIf there is lens distortion, this can also (in theory) be recovered up to an unknown image homography.
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of images or points. The stability of such methods is critically dependent on the images chosen,
and since these must usually be closely-spaced to allow reliable matching, overall accuracy suffers.
It is possible to work around gaps in the data by ‘patching together’ several partial reconstructions,
but it would be useful to have methods that handled missing data naturally, without relyiad on

hoc patching, key points, or key images.

2) Flexible calibration: Calibration constraints come in many forms: prior knowledge, calibration
images, scene or motion constraints, ... Itis not always obvious how to incorporate them into the
multi-image reconstruction process. Often it is simpler to ignore them at first, working projectively
and only later going back and using them to ‘straighten’ the recovered projective structure. This
‘stratification’ school [6] has its critics [32, 20]. In particular, it is felt that stability may be com-
promised by failing to enforce reasonable camera and motion models at the outset. However as far
as | know it is the only approach that has yet produced true multi-image reconstruction algorithms
for general cameras and motions [25, 29, 30, 24].

3) Precision/robustness/stability: Precisionmeans that the method gives accurate results when

it works; robustnesghat it works reliably é.g.in the face of mismatches or initialization errors);
stability that the results are not overly sensitive to perturbations in the input data. Stability is a
precondition for precision and robustness, but is easily compromised by degeneracies in either the
viewing geometry or the algorithmic formulation used.

For the best precision there is no substitute for rigorous statistical parameter estiraaion,
maximum likelihood. For this, a nonlinear cost reflecting a statistical error model of the image
observations must be globally optimized over all unknown 3D structure and calibration parameters.
With Gaussian errors, this reduces to covariance-weighted nonlinear least squares. Such statistical
‘bundle adjustment’ is a truism for photogrammetrists but seems to be tacitly discouraged in com-
puter vision, where the traditional emphasis is on A.l. image understanding rather than precision
(howevercf. [17, 10, 19, 14, 9]). Efficient numerical methods exist for handling large problems,
both off-line and in a linearized recursive framework [1, 18].

Rigorous, statistically weighted least squares should not be confused with ‘unweighted’ or
‘linear least squares’ minimization @fd hoc'‘algebraic distances’ — sums of squared algebraic
constraint violations with no direct relation to measured image residuals. For example the ‘lin-
ear’ method for the fundamental matrix [12], reconstruction by affine and projective factorization
[26, 25, 29, 24], and the new ‘closure based’ methods presented here, all linearize the problem and
minimize algebraic distances using linear algebra technicrigsVD). Common characteristics
of such methods arei)(they are linear and much simpler to implement than the corresponding sta-
tistical methods;i{) no prior initialization is neededji{) somewhat more than the minimal amount
of data is required, to allow nonlinearities to be “linearized awaly); they are sensitive to the rel-
ative weighting of different components of the error function (but the choice is not too critical once
you realize it has to be made)) (with suitable weighting, they give results not too far from (but
still worse than) the statistical optimum. Criticisms includg: ignoring constraints may reduce
stability and make the results difficult to interpret) general linear methods are often slower than
dedicated nonlinear ones, as large matrices tend to be invohigdt i6 difficult to detect outliers
without a clear error model.

Bundle adjustment routines provide all of the desirable features listed above, except robustness
against initialization. As they are only iterative improvement techniques, they require initial esti-
mates for all unknown parameters. In practice they are seldom robust against gross errors in these,
or even against re-parametrizatiand.convergence tests are notoriously sensitive to this).

Hence, there is still a need for stable and relatively tractable suboptimal reconstruction methods
that require no prior initialization, take into account as many as possible of the above properties, and
can be used as input to nonlinear methods if more precision is required. Partly in response to this,
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there has recently been a significant amount of work on the theoretical foundations of multi-image
projection and reconstruction [11, 10, 19, 18, 23, 2, 22, 8, 15, 16, 31, 27, 28, 3]. The problem turns
out to have a surprisingly rich mathematical structure and several complementary approaches exist.
The field is developing rapidly and there is no space for a survey here, so | will only mention a
few isolated results. The epipolar constraint (the geometry of stereo pairs) is now well understood
(e.g.[5]). Shashua [22] and Hartley [11] developed the theory of the trivalent tensor (three view
constraint). Faugeras and Mourrain [8] and | [28] systematically studied the complete family of
multi-image constraints (only one was unknown: a quadrilinear one).

As a means to this, | developed a tensorial approach to multi-image vision [28], which nicely
unifies the geometric and algebraic aspects of the subject. This leadjtirthienage picture, in
which the combined homogeneous coordinates of all the images of a 3D point are stacked into a
single big ‘joint image’ vector. The geometry of this space can be related to that of the original
3D points via the stacked projection matrices. All of the familiar image entities — points, lines,
homographies, matching tensoet¢c — fall naturally out of this picture as the joint image repre-
sentatives of the corresponding 3D objects. The approach is also ‘dual’ (in the sense of Carlsson
[3]) to Sparr’s ‘affine shape’ formalism [23, 15, 24], where coordinates are stacked by point rather
than by image.

In the MOVI group, we have recently developed several families of projective reconstruction
methods based on the joint image approach. The factorization-based ‘projective depth recovery’
methods [25, 29] use matching tensors to recover a coherent set of projective scale factors for the
image points. This gives an implicit reconstruction, which can be concretized by factorizing the
matrix of rescaled image points into projection and structure matrices by a process analogous to the
Tomasi-Kanade-Poelman method for affine structure [26, 21]. Factorization-based methods give
an implicit linear least squares fit to all of the image data. They are simple and extremely stable,
but have the serious practical disadvantage that each point must be visible in every image (modulo
‘hallucination’ [26]). This is unrealistic when there are many images covering a wide range of
viewing positions.

The current paper represents a first attempt to overcome this problem. It describes a new fam-
ily of reconstruction methods that extract projection matrices directly and linearly from estimated
matching tensors, after which the scene structure can be recovered linearly by back-projecting the
image measurements. The projections are estimated using ‘joint image closure relations’ — bi-
linear constraints between projections and their matching tensors, analogous to the depth recovery
relations used for projective factorization, but with projection matrices replacing image points.

In principle, the closure based reconstruction methods treat all of the images uniformly, so they
have the potential to be significantly more stable than the commonly used approach of initially
reconstructing from two key images, then reprojecting into the other ones to estimate the remaining
projection matrices. On the other hand, because they only use the image data indirectly via the
matching tensors, they are not as stable as factorization based methods. The suggestion is that
they will prove good replacements for the ‘stereo + reprojection’ methods (whose main application
is probably to initialize more refined nonlinear least squares iterations), but that when tokens are
visible in every image factorization will still be the best linear method.

The rest of the paper outlines the theory of the closure relations, describes the resulting re-
construction algorithms and their implementation, reports on an initial experimental study of their
performance, and ends with a short discussion.

2 Theory

This section sketches the theoretical background of multi-image reconstruction, and discusses the
‘joint image closure relations’ on which the new reconstruction methods are based. The theory is
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not difficult, but when more than two images are involved the equations are hard to express without
using tensorial notation. We will use ordinary matrix-vector notation except for a few trivalent
tensor equations, so you should be able to follow most of the paper without a knowledge of tensors.
An extremelybrief introduction to them follows — see [28, 27] for more details. All quantities are
assumed to be projective, expressed in homogeneous coordinates.

Tensorsare just multidimensional arrays of components. Vectors (1-index arrays) and matrices
(2-index arrays) are examples. Each index is associated with a specific space (the 3D world, im-
agei, ...), and inhéts the corresponding change-of-basis law. Many common vector and matrix
operations generalize directly to tensors, provided we specify which of the many indices the op-
eration applies to. (For matrices, the index is implicit in the ‘juxtaposition = multiplication’ rule).

To keep track of the indices, we write them out explicitty:b, c. .. for world-space indices and

A;, B;, C; ... for imagei ones. The most common operatiorc@ntraction — summing a corre-
sponding pair of indices over the range of their values, as in vector dot-product, matrix product or
trace. The summation signs are elided: any index that appears twice in a term is implicitly summed
over.

A further complication is that in projective geometry each space has a correspahdihg.g.
in each image, the space of points is dual to the space of lines (hyperplanes). This means that
every index actually comes in two varieties: point-likecomtravariant and hyperplane-like or
covariant. These havaifferent (complementary) transformation laws under changes of basis, so
they must be carefully distinguished: point indices are written as superscripts, hyperplane ones as
subscripts. Contractions are only meaningful between covariant-contravariant pairs of indices from
the same space,g.there isno meaningful ‘dot product’ between pairs of projective points — the
result would be completely dependent on the basis chosen.

World pointsX® project to image ones“: by contraction witt8 x 4 projection matriced®:
x4 ~ PAIX (implicit summation ovem). e{‘Q denotes the epipole of camera 1 in image 2;

F 4, B, the fundamental matrix between images 1 and 2;@nd”2“* the trivalent tensor between
images 2 and 3 based in image 1. (There are also corresponding trivalent tensors based in images
2 and 3). In ordinary matrix-vector notatioX, stands forX®, x; for x“i, P; for Pg‘i, e;; for efj,

andF;; for Fa,p;.

Consider the projections;,x;, = P;X,, of n homogeneous world poinX,,, p = 1,...,n,
into m images via3 x 4 perspective projection matricd®;, i = 1,...,m. The resultingmn
homogeneous image points, are only defined up to unknown scale factaggs, calledprojective
depths As eachP; andX,, can be arbitrarily rescaled, there is some superficial freedom in the
choice of these scales. However there is a strong underlying coherence that embodies the projective
structure of the scene: the depthg, really do capture the projective part of visual depth. An
algebraic result of the coherence is the low rank (four) of the rescaled data matrix:

A11X11 o ApXin Py
)\mlxml to )\mnxmn Pm
It is useful to view this column-by-column, as the projection of world pokjsto 3m-component
joint image spacevectors via the stackein x 4 joint projection matrix P:
AMpXip P,
=PX, where P =
)\mpxmp P,

The joint projection can be viewed as a projective injection mapping the 3D projective world bijec-
tively to thejoint image — a 3D projective subspace @§m — 1)-D projective joint image space
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[28, 27]. This is a faithful projective copy of the world expressed entirely in image coordinates.
Projection from it to the individual images is a trivial forgetting of coordinates and scale factors.
Projective reconstruction of the joint image amounts to recovering the missing dgpth$his

is a canonical proce$sip to a once-and-for-all choice of scales for the projectiBps The four
columns of the joint projection matrix form a spanning basis for the joint image. The coordinates
of a rescaled joint image point with respect to this basis are exactly the corresponding 3D point’s
homogeneous world coordinates. But neither the basis nor the world coordinates are canonical:
only the geometric position of the point in the joint image is recoverable from the image data.

The above geometry can be converted directly to algebra. 4Thel minors (submatrix de-
terminants) of the joint projection encode the location of the joint image (and hence the projective
camera geometry) in a well-defined algebraic sense: they are its ‘GrassmafpsRI6ordinates’.
Moreover, the minors turn out to be just the components ofntla¢éching tensorsbetween the
images. These generate the multilinear constraints that tokens in different images must satisfy if
they are to be the projections of a single world token. They can also be used for projective depth
recovery, and to transfer tokens between images. There are four basic types of matching tensors:
epipolese;; (tensorially: ef‘j), fundamental matrices F;; (F 4, 5,), trivalent tensors G, BiCr
andquadrivalent tensors HA:BiC¢x Dt These are formed from minors with respectively 3+1, 2+2,
2+1+1, and 1+1+1+1 rows from 2, 2, 3 and 4 imagesk, [ [22, 8, 28].

The ‘joint image closure relations’ that underlie the new reconstruction methods are bilinear
constraints between projection matrices and the corresponding matching tensors. They guarantee
that the projections are coherent with the joint image subspace defined by the tensors. Algebraically,
they express the four-dimensionality (“closure”) of the jointimage. The simplest way to derive them
is to append any column of ti3an x 4 joint projection matrix to the existing matrix, to form a rank
deficient3m x 5 matrix. The5 x 5 minors of this matrix vanish. Expand by cofactors in the
appended column. The coefficients are matching tensor compodents (ninors of the original
joint projection matrix). Closer examination reveals five basic types of relation. We use only the
simplest two her&

F;;P;+[e;P; = 0 F-e closure @

Gp,tiCk P4 ej‘i PCr — pAi ejck =0 e-G-e closure 2)
These relations provide constraints between matching tensors (which can be estimated from the
image data) and columns of the joint projection matrix. For each column, (1) contains 3 constraints
of which 2 are linearly independent, while (2) contains 3 = 9 constraints of which 5 are linearly
independent. By accumulating enough of these constraints, we can solve linearly for tRexfour
component joint projection columns, up to an oveda# 4 linear transformation that amounts to

a homography of the reconstructed world space. Geometrically, the joint image (the 4D subspace
spanned by the columns of the joint projection) is the null space of the constraints. Given the
projections, the scene reconstruction can be completed by linearly back-projecting image structure
into the world space, which amounts to solving redundant linear equations

Xip A (PiXp) =0 (3)

for the world pointsX,, in terms of their images;, and the projection matricds,;.
The depth recovery relations used for projective factorization [25, 29, 27] follow directly
from the above closure constraints. Attaching a world pdiptto each projection gives bilinear

2:Canonical’ means that it characterizes the imaging geometry and is characterized uniquely (up to the scales) by it;
it does not depend on the world or image coordinate systems used; and it is in some sense the ‘natural’ arena of action
for anyreconstruction method.

3[x]. denotes the ske® x 3 matrix giving the vector cross produdk],y = x A y.



102 Chapitre 4. Reconstruction projective

constraints between the matching tensors andtnectly rescaledmage points\;,x;, = P; X,

Fji ()‘ipxip)+eij (AjpXjp) = 0 4)
GBinCk ()‘jXBj)_()\z‘XA) +e ()\kx )y =0 (5)

Given the matching tensors, a coherent set of projective depths for the images of each world point
can be recovered linearly using these relations. These already contain a virtual projective recon-
struction, implicit in the fact that the rescaled data matrix (2) has rank 4. The reconstruction can be
consolidated and ‘read off’ by any convenient matrix factorization algorithm [25, 29].

Another way to express (1) is to note tiAY; has rank 2 and hence can be decomposed (non-
uniquely) asF;; = u;v, — v;u/. Here,u; <> u; andv; < v; turn out to be corresponding pairs
of epipolar Iine-vectors (with approprlate relative scaling), and hepice- u; Avj, ej; = v; Au,.
Suitableu's andv's are easily obtained by rescaling the SVD basi¥ gt Sincele;;], = u;v; —
vjujT, the combinedF-e closure constraints from images; and j-i have rank just 2 and are
spanned by the rows ofax 6 matrix U;;:

Fji  [eijl —vj u g
= U, where Uy = | i
< lejil  Fij Vi W Y N v j

In fact, theu’s andv’s extracted from the SVD dF ;; combine to form a basis of the 2D orthogonal

complement of the-j joint image. (The space spanned by the 4 columns of-thint projection

matrix( ) or equivalently by those of thej rescaled data matr|é< “X“ )‘mfg”)) Hence,
Jjnagn

another Way to obtain the constraint matftix; is to use any two |mage reconstructlon methed;(
factorization) and extract the left null space of the resultifjgjoint projection or rescaled data
matrix, e.g.by QR or SVD.

Similarly, thee-G-e closure constraint (2) can be written @nx 3 blocks) as @ x 9 rank 5
matrix

—e;?’“ I3><3 G.‘ Tk ejz- 0 0 Pz’
—e]y-’“ I3><3 G.' Yk 0 €4 0 Pj =0
—ej’“ ngg G.' Zk 00 €4 Pk

Here, the 27 components G 4, BiCk are viewed as threg x 3 matrices, forCj, = z,y, z. As

before, the rank remains 5 even if further bilinear or trilinear closure constraints are added for
the same images taken in a different order (tfuthe discussion on scaling below). Any rank 5
decompositiorlJ; j;, of this constraint matrixg.g.by SVD) gives a trivalent equivalent of the above

U;; matrix. For any sucfU,;;, each of its 5 rows contains three 3-component row vectors which
define a matching triplet of image lines, and hence a corresponding 3D lin¢u,(lf;, us} is

such a triplet, the closure constraint says that the pulled-back visual planes meet in a common 3D
line: (w;P;) + (u;P;) + (u,Py) = 0). The 4D projective space of linear combinations of these

5 line-triplet vectors bijectively spans the entire 4D spacedckt quadric) of lines in 3Dexcept

that the correspondence is singular for lines in the trifocal plane.

The complete closure-based reconstruction process runs roughly as follows. A very large num-
ber of closure constraints is available, relating the projections of any selection of 2, 3, or even (for
higher closure constraints) 4 or 5 images. It would be impractical to enforce all of these, but in any
case they are highly redundant and only a small subset of them need be used in practice. The choice
must depend on the correspondences and matching tensors available, convenience, and a run time
vs.redundancy trade-off. To fully constrain the projections, each image (except the first pair) must
be related tat leasttwo others. This can be done with oadgG-e constraint or twdF'-e ones, in
either their full or reducedlJ-matrix) versions. (The experiments below use the full versions).
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This paper considers only the simplest possible choices, based on minimal sets of constraints
for the first two types of closure relation. Each image is connected to exactly two previous ones in
a chain. The following types of chain have been considered

Q——E, O ONFONFO
R S O)O)CHER S W
F-e serial F-e parallel e-G-e serial

Serial chains connect each image to the two immediately preceding ones, while parallel ones con-
nect each image to two ‘key frames’. For theG-e chains, the trivalent tensor based in (with
covariant index in) the middle image of the triplet is used,, 5 — G ,"1“* — €5 for images

1-2-3. Note that the basic formulation is symmetric in that it allows any pair or triplet of images to
be incorporated. Choosing a particular constraint topology breaks this symmetry, but the choice is
at least under user control (modulo suitable estimates of the matching tensors).

Each constraint contributes several rows to adigcolumn, m image constraint matrix (un-
used elements are zero). It is essential to choose consistent relative scalings (see below), but once
this is done the constraint matrix generically has rank— 4. Its null space is exactly the joint
image (the 4D space spanned by the joint projection columns). Any basis for the null space provides
four 3m-component column vectors that can be regarded as the columns of a valid reconstructed
joint projection. The freedom of choice in the basis correspondsite @ nonsingular mixing of
the columns, which amounts to a projective deformation of the reconstructed world coordinates.

The above process enforces a particular relative scaling for the projection matrices, so it is
necessary to choose coherent scalings for the overlapping constraint equations. In fact, matching
tensors inherit ‘natural’ scalings from their definitions as minors of projection matrices, but these
are lost when they are estimated from image data. The closure relations depend critically on these
scalings, so the relevant part of them must be recovered.

It turns out that the scales can be chosen arbitrarily modulo one constraint for each closed loop
in the above chains. The same constraints guarantee the existence of consistent choices of depths
in the depth recovery equations (4) or (5), and it turns out to be easiest to recover the scalings using
this. For each closed loop, scalings are chosen arbitrarily and the depths of (a selection of) measured
image points are propagated around the loop by a chain of depth recoverycét¢ps]). Then,
one of the tensor scales is modified to make the average ‘closed-loop gain’ unity, as it must be for
consistency. For th&'-e constraint this involves 3-image loops.§.1 — 2 — 3 — 1), while for
thee-G-e one we multiply (5) byles; ], so that only two terms survive, and then propagate through
just two images€.g.2 — 3 — 2). The required epipoles are also estimated fiGnand (5), by
multiplying by [x; ], or [x3]. and solving. The epipoles and scalings could also be found bilinearly
from G alone, but for maximum stability | prefer to use linear methods based on the image data.

Numerically, once the combined constraint matrix has been assembled there are several ways
to calculate its null space. The experiments reported here use the four smallest singular vectors
of the SVD, but eigendecomposition of the normal matrix gives similar results. These methods
are numerically stable and easily handle redundant constraints, but all of them are rather slow
when there are many images, as large matrices with many zeros are involved. With sparse sets
of constraints (as here), the null-space could also be estimated using various sparse or recursive
methods. These should be much faster than the full SVD, although some stability may be lost —
more investigation is needed here.

In fact, it is clear (in retrospect) from the above discussion that one can also view closure-based
reconstruction as a means of ‘gluing together’ many overlapping virtual 2 or 3 image reconstruc-
tions into a coherent multi-image whole. Each reconstruction implicitly provides @ or 9 x 4
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joint projection matrix in some arbitrary world frame. The closure-based framework characterizes
these by their 2 or 5 dimensional left null spaces. These have the advantage of being independent
of the world frames chosen, and directly extractable from the matching tensors without passing
through an explicit intermediate reconstruction. Finally, the accumulated null space constraints are
re-inverted to give the combined joint projection matrix. In retrospect, it is unclear whether pass-
ing through a larg€3m — 4)-D null space computation is an effective means of patching together
several (implicit) 4D partial reconstructions. This must rest as a subject for future work.

In practice, thee-G-e method turns out to be quite a lot slower thankke one, mainly because
larger matrices are involved at each step. However it is also significantly more stable. In particular,
for a camera moving in a straight line, the fundamental matrices and epipoles of different images
coincide. This is a well-known singular case for epipolar-line-based token transfdr-astbsure
based reconstruction fails here too. The failure is intrinsic to any method based solely on epipolar
geometry (rather than image measurements). Camera zooms centred on the unique epipole leave
the epipolar geometry unchanged and hence can not be recovered. (The problem still exists for two
images, but there it can be absorbed by a 3D homography). In contrast, trivalent transfd&amd
reconstruction are well behaved for aligned centres, as is reconstructiére lwepth recovery and
factorization. Basically, some information about positions along epipolar lines is needed to stabilize
things. This can be provided by trivalent transfer, or even better by anchoring onto explicit image
correspondences.

3 Implementation

Now we summarize the reconstruction algorithms, and discuss a few important implementation
details. TheF'-e closure algorithm has the following steps:

0) Extract and match features between images.

1) Standardize the image coordinates (see below).

2) Estimate fundamental matrices and epipoles connecting each image to at least two others.

3) Correct the scales of the fundamental matrices and epipoles usirgf. @9dtion 2).

4) Build the constraint matrix of equations (1) and use SVD to find its 4D null space.

5) Extract the projection matrices from the null space column vectors.

6) Back-project and solve for 3D structure using (3).

7) De-standardize the projection matrices (see below).

Thee-G-e closure based method follows the same pattern, except thatoth point and line
features can be used to estimate the trivalent tensorgguation 5 is used to correct the trivalent
scaling, and equation (2) to build the constraint matrix.

The current implementations use linear methods to estimate fundamental matrices and trivalent
tensors. With properly standardized coordinates these turn out to be very stable and surprisingly
accurate [12]. Using a nonlinear least squares iteration to refine the estimates marginally improves
the stability of (for example) the long serial chains of #e method, but not enough to change
the basic conclusions. The linear method Foincludes a finaB x 3 SVD to enforce deF = 0
and calculate the epipoles. The epipoles foréh@-e method are found linearly frorix and the
image data using (5).

For accurate results it sssentiato work in a well-adapted coordinate system. This is standard
numerical practice, but it is particularly important when there are implicit least-squares trade-offs
between redundant constraints, as here. If some components of the input vectors are typically much
larger than others — for example when homogeneous pixel coordifatgsz) ~ (256,256,1)
are used — some constraints have a much higher implicit weight than others and this significantly
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Reprojection Error vs. Image Standardization Reconstruction Error vs. Image Standardization
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Figure 1 Mean reprojection and reconstruction erwvsrimage coordinate standardization.

distorts the estimated solution. Hartley has underlined the importance of this for fundamental ma-
trix estimation [12], and it is equally true for reconstruction. In practice it makes little difference
which of the many possible standardization schemes is used. Here, the pixel coordinates are scaled
uniformly into the unit squarg-1, 1] x [—1, 1], homogenized, and normalized as 3-vectors to norm

1. This is easy, fast, independent of the image, and works equally well for visible and off-image vir-
tual points €.g.distant vanishing points or epipoles). Figure 1 shows the effect of standardization:
pixel coordinates (scale- 256) give reconstructions hundreds of times worse than well standard-
ized ones (scale- 1). The error rises rapidly at scales beld@! owing to (32 bit) floating point
truncation error.

4 Experiments

To help quantify the performance of the algorithms, | have run a series of simulations using synthetic
data. The algorithms have also been tested on hand-matched points extracted from real images, and
an implementation on ‘live’ images is in progress. The simulations are based on trial scenes con-
sisting of random 3D points in the unit cube. These are viewed by identical perspective cameras
spaced evenly along @° arc of radius 2, looking directly at the centre of the scene. These are
ideal conditions for accurate reconstruction, but many other configurations have also been tested,
including infinitesimal viewing angles and distant scenes with negligible perspective. When cam-
eras are added, their spacing is decreased so that the total range of viewing angles remains the same.
The positions of the projected image points are perturbed by uniform random noise. Mean-square
(and median and maximum) 2D reprojection and 3D reconstruction errors are accumulated over 50
trials. The 3D error is the residual after projective alignment of the reconstruction with the scene.
Unless otherwise stated, default values of 10 views, 50 points-druixel noise are used.

Figure 2 summarizes the results, giving image reprojection and 3D reconstruction\exrors
image noise, number of points and number of views. The new techniques under test are serial
and parallel chairF'-e closure, and serial chaierG-e closure. For comparison, several existing
techniques are also shown.

Evidently, the most stable techniques are ‘SVD’ and ‘SVD+L-M’". SVD-based projective fac-
torization [25, 29], and a Levenberg-Marquardt-like nonlinear least squares algorithm initialized
from this. However, remember that these are only applicable when points can be matched across all
images, while the other techniques require matches across only 2-3 fmages

The ‘2 image’ methods simply reconstruct the scene from two images, and then reproject to

“To allow fair comparison, the point reconstruction step for each method has been allowed to combine data from all
the images using the recovered projections.
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Reprojection Error vs. Image Noise Reconstruction Error vs. Image Noise
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Figure 2 Mean reprojection and reconstruction ewsrnoise, number of points and number of views.

estimate the projection matrices for the remaining ones. The ‘serial 2 image’ method uses only
the first two images, and hence involves a considerable amount of extrapolation. This can be very
inaccurate, but it is realistic in the sense that practical two image methods are often restricted to
nearby images when tracking is difficult. The seiiak ande-G-e closure methods fuse a series
of small, inaccurate steps of this sort and still manage to produce significantly better results, despite
the potential for accumulation of errors.

In contrast, the ‘parallel 2 image’ method uses the first and last images of the sequence, and
hence maintains a constant baseline. The same applies to the ‘pRrellelosure method, which
links each image to the two end ones. These results require unrealistically wide matching windows,
but they provide a clear indication of the “integrating power” of the closure formalism. In particular,
adding more images does continue to improve the ‘parBHel closure results, while the ‘parallel
2 image’ results stay roughly constant (as expected). However, the closure method seems to need
about 10 images just to overcome the extreme stability of the 2 image factorization method.

All of the methods scale linearly with noise and initially improve as more points are added, but
level off after about 20 points. The serial methods eventually worsen as more images are added and
their baseline decreases: the ‘2 image’ one immediately (as expected);ettome after about 10
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images; and the-G-e one after about 30. In general, the trivalent methods are significantly more
stable than the fundamental matrix ones. It definitely pays to select images as widely separated
as possible for the closure constraints, even if this means having to use several ‘key’ images. The
instabilities arising from long chains seem to be far greater than any biases introduced by working
from ‘key’ images. However, tracking reliability puts strong practical limitations on the separations
that can be attained.

All of the methods are stable for both close and distant scenes (modulo straight line motion
for F-e closure), but all of them (especially the fundamental matrix ones) give very poor results
for points near the axis of fronto-parallel motion, as there is no stereo baseline there for point
reconstruction. (Surface continuity constraints are essential in this case).

One reason for the early failure &-e closure is the fact that it is singular whenever three
adjacent camera centres are aligned. This happens to an increasing extent as the spacing along
the circular baseline decreases, adding to the natural uncertainty associated with the short baseline
itself. For this reason, it is advisable to use #i€-e method (or an equivalef matrix derived
from reconstruction of at least 3 images) whenever straight line motions are involved.

The factorization method is notable for being linear yet close to optimal. It is bas@deon
depth recovery (4) — essentially the same equations aB-#aelosure based method, but applied
directly to the image points rather than to the projections. Clearly, the direct use of image data
gives a significant improvement in accuracy. Unfortunately, factorization is practically limited as
it requires every token to be visible in every image: this is why the closure-based methods were
developed.

5 Summary

The closure relation based projective reconstruction techniques work reasonably well in practice,
except that th&'-e method fails for aligned camera centres. If there are many images, closure is
more accurate than the common ‘reconstruct from 2 images and reproject for the other projections’
paradigm, but it can not compete with projective factorization when features can be tracked through
all the images. In principle there is no need to single out ‘privileged’ features or images. But short
chains of closure relations turn out to be significantly more stable than long ones, so in practice it is
probably best to relate all of the images to a few ‘key’ ones (or perhaps hierarchically). The trivalent
techniques are slower, but significantly more stable than the fundamental matrix based ones.

Future work will implement the methods on real images, investigate fast recursive solutions of
the reconstruction equations, study the stabilizing effects of incorporating redundant constraints,
and compare the closure-based methods with direct techniques for merging several partial recon-
structions.
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Chapitre 5

Auto-calibrage d’une camera en
mouvement

Les travaux peaddents redvent tous de la structunerojective — ou implicite en terme de
contraintes et de tenseurs d’appariement, ou explicite en terme d’une reconstruction etatas cam’
projectives. Cette structure contierdjglune description quasi-conapé de la sene. Seulement les
valeurs de 9 paraetres manquent comme celagjaété dit plus haut: 3 pour lagformation projec-
tive (location du plaraTinfini) ; 5 pour la dformation affine ; et un facteure&thelle global qui ne
peut jamaisefre retroue”sans informations externes. Mais la plupart des applications exigent une
structure netrique. Pour retrouver ces derniers 8—-9 pataes, il nous faut des contraintes qui sont
situées au del des images et du mela projectif non-calike? elles viennent ou du calibrage interne
des carefas, ou de leur mouvement, ou de larse elle-nefne. Les trois cas sont ereéssants et ont
été bienétudés [MF92, Har93a, MBB93, Fau95, ZF96].

Ici, on se limite au cas decontraintes non-mesuges» sur les calibrages internes — pardn
entend toute contrainte qui peut vraisemblablement figurer dans nos connaisseatdsqs;, sans
effectuer des mesuresgmises qui relvent d’une calibrage classique. On appaito-calibrage»
I'obtention des calibrages et/ou de la structurtnique de la sene (jusqu’au facteur dthelle pes)

a partir des contraintes non-meses. En particulier, on verra comment la simple connaissance de
constancedu calibrage interne d’'une card en mouvement peut suffire pour obtenir les valeurs
numériques des paragtres des caara ainsi que la structure 3D euclidienne.

On pourraiteventuellement autorisarfaire varier plusieurs paratres (ex. focale et point prin-
cipal), et considfer que certaines connaissances eniguies (skew nul, rapportethelleggala un)
font partie de l'auto-calibrage, car elles somsistables et souvent connues pefladta précision
suffisante. Les contraintegdites ci-dessous s’adaptent facilemare genre de probhe, mais
les articles peseng's se limitent au cas des paretnes internes constants et inconnus.

5.1 Resung de« Autocalibration and the Absolute Quadric » — CV-
PR'97

Historique

Ce papier fut pubé’a CVPR'97. Il repesente mon travail de base sur I'auto-calibrade.
I"epoque, il y avait €ja plusieursetudes, soit suivant I'approche originale de Maybank & Faugeras
[MF92] liee aux contraintesde Kruppa » entre paires d'images [FLM92, ZF96], soit faralSur
I'estimation peliminaire de la structure affine (par voie ou de la homographie ou dwegdlariini)
[Har93a, BRZM95] — approche getait nomnge plus tard: stratification » [Fau95]. On peut ci-
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ter aussi plusieurs travaux sur les cas particuliers (mouvemestffigpes des caeras, calibrages
partiels, ou structures deesés particuéres comme l'observation de pasdigrammes rectangles)
[Har92, Har93b, HCP94, BRZM95, Har94, PGP96].

M éthode

La clé de l'auto-calibrage est ladan d'implanter la gongtrie euclidienne dans I'espace pro-
jectif. Les transformations projectives sont relativement geossi— elles ne pservent ni laissent
distinguer qu’une partie de la structureemque. Pour retrouver la structure perdue de cetterfa,
on peut se pencher sur une grandeatardes connaissances euclidiennes : de la structure 3D ob-
senée, des mouvements, ou des calibrages de®ie@nlci, on prend comme base la constance
des calibrages caenas, et il faut se limiter aux aspects de &ogétrie 3D euclidienne qui s’ap-
pliguent indiféremmenta’toutes les smes. Les diffences intrinsques entre I'espace euclidien
(jusqu'a une facteur dichelle pes) et I'espace projectif pourraieatré €duites dans un seul objet
géons¥trique —«la quadrique absolue duale- — qui mesure pour I'essentiel les angles entre les
vecteurs normaux de plans 3D. Dans urerepguclidien, sa forme matricielle est une mattice4

symetrique de rang 3
_ (lsxz O
o= (% 0)

avec pour loi de transformation sous les transformations projecXives T' X
Q — TQT'

Cette matrice est invariante par toute transformation euclidi@hre (§ ), mais sous des trans-
formations projectivesergrales elle devient une matricergrale synetrique positive semiefinie
de rang 3. Elleesume la structure affine — le plar’infini (0 1) est son vecteur nul — et aussi la
structure netrique angulaire — I'anglé entre deux plang etq est

pQq’
V(p2q')(qQq")

Sion peut localisef2 dans une reconstruction projective d'unerse; il est alors facile derectifier »
I'espace pour obtenir la structure euclidienne.

La projection def2 dans une caeraP = K (R|t) est«l'image de la quadrique absolue
duale»

cosf =

w~POQP" = KKT

ou K est la matrice de calibrage de la cana.” Si la calibrag& est constant entre images est aussi
constant, ce qui nous donne un gyst déquations algbriques qui lie les matrices de projection
(par exemple d’une reconstruction projective) et les matrices incorfdugds.

On montre alors que cesgjlations de projection de peuventetre €solues partir de 3 images.
La méthode deeSolution peférée est I'optimisation nuerique sous contraintes par programma-
tion quadratique efjuentielle : I'erreur @Siduelle degquations de projection est miniraes” avec
pour contrainte le fait qu€ soit de rang 3. Cette ethode seavele en pratique &s stable en com-
paraison avec d'autresetfiodes d’auto-calibrage, et semble fiablenme™avec une initialisation
arbitraire. Comme toujours en auto-calibration, les esra doivent tourner sur deux axes signifi-
cativement non-paralés — sinon il y a une ambigé’dans la structure et les calibrages retems:”
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5.2 Resune de« Autocalibration from Planar Sceness> — ECCV’'98

Ce papier fut pubéa ECCV’'98. Il refond le formalisme de la quadrique absolue duale en terme
d’'une base de vecteurs de directions, etadit étend la teorie d’auto-calibrage pcédente au cas
ou la s@ne est plane.

L'apport de la base de directions est plus esthie que fondamental — pour legon-initiés»
aux tenseurs, elle est moins abstraite et plus intuitive que la quadrique absolue duale, et elle simplifie
significativement certainesdvations.

C’est peutetre un peu surprenant que l'auto-calibragdase d’'une sme plane soit @rme
possible : dans ce cas, la structure 3D projective — pointegiard pour la rathode 3D ci-dessus
— n'est plus disponible, doncdtape d'initialisation est nettement moiegident. NN\anmoins, les
contraintes d’'auto-calibrage sont toujours actives, et il suffit d’en empiler suffisamment pour rendre
le syseme bien contraint eesoluble. Ce n’est en effet que cela qu’on propose : on raffategé
d’initialisation, et applique les contraintes deda, nungriqgue. Un nombre relativement important
de vues difrentes sontetessaires, mais au niveau de sa stehilith€rique la nethode semble
plus ou moins satisfaisante.

Cette nethode peuefre vue comme i) une ¢gréralisation de la mthode de« canéra tour-
nante» de Richard ARTLEY [Har94, Har97], pour le casudes translations de la card sont aussi
autorig€es ; {i) une gréralisation (mais guétait publg avant) des ethodes de calibrage plan
de STURM & M AYBANK [SM99] et de HANG [Zha98] (aussi mentiorenpar LEBOWITZ & Z1S-
SERMAN [LZ98]), dans les caswla structure du plan n’est pas connue. Ces éeesi nethodes
sont facilea’'implanter et &5 efficaces en pratique quand leurs hypsdés respectives soranfiées.
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Abstract from this.

With arbitrary cameras, structure can only be re-

We describe a new method for camera autocalibratiorbovered up to an overall projectivity. Additional

and scaled Euclidean structure and motion, from three, i pines are required to ‘Euclideanize’ it. We will
or more views taken by a moving camera with fixed but

unknown intrinsic parameters. The motion constancy of °CUS On the traditional case of a single camera with
these is used to rectify an initial projective reconstruction. fixed but unknown intrinsic parameters moving ar-
Euclidean scene structure is formulated in terms of thebitrarily in the scene [13, 4, 7], but our formalism
absolute quadric— the singular dual 3D quadrid (x 4 easily extends to handle multiple cameras and prior
rank 3 matrix) giving the Euclidean dot-product between calibration, motion or scene constraints. Alterna-
plane normals. This is equivalent to the traditional ab- tiye approaches restrict the motion to a pure rotation
solute conic but simpler to use. It encodes both afflne[8] or a plane [1]: handle zoom modulo an initial

and Euclidean structure, and projects very simply to the re-calibration [15, 16]; or assume a rigidly movin
dual absolute image conic which encodes camera caliP ' ’ gialy 9

bration. Requiring the projection to be constant gives aStereo head [22]' For practicgl applications it is |m
bilinear constraint between the absolute quadric and imfortant to exploit any constraints that may be avail-
age conic, from which both can be recovered nonlinearlyable, as this both increases stability and allows auto-
from m > 3 images, or quasi-linearly from > 4. calibration from more restricted types of motion.
Calibration and Euclidean structure follow easily. The jsed on its own, autocalibration has several no-

nonlinear method is stabler,_ f_aster, more accurate and, e weaknesses:i) ( scene scale can not be re-
more general than the quasi-linear one. It is based on

a general constrained optimization technique — sequenggvgred_ — small motions in a.smaI.I scene are |n.-
tial quadratic programming — that may well be useful in distinguishable from large motions in a large one;

other vision problems. (ii) generic motions — independent rotations and
Keywords: autocalibration, absolute quadric, multiple SOMe translation — are required for a unique (up to

images, Euclidean reconstruction, constrained optimizaScale) solution: many common types of motion are
tion. degenerate casedij ) past formulations have tended

to be complex and ill-conditioned, often adding fur-
ther degeneracies of their owny) it has been hard
1 Introduction to incorporate additional knowledge except during a
final bundle adjustment, exacerbating the degener-
Camera calibration is traditionally based on explicit acy and ill-conditioning problems.
3D scene or motion measurements, but even for This paper focuses on the last two points, con-
unknown motions in an unknown scene there aretributing a simpler, more direct problem formulation
strong rigidity constraints relating the calibration to and a well-behaved numerical algorithm that easily
the image, scene and motiorAutocalibration is handles additional constraints.
the recovery of calibration and motion from an un-
known scene using rigidity. Structure follows easily

2 The Absolute Quadric

This paper appeared in CVPR’97. The work was supported

by INRIA Rhéne-Alpes and Esprit LTR project CUMULI. | . . .
would like to thank P. Sturm for useful discussions and R. Ho- V& work in homogeneous coordinates, initially Eu-

raud and G. Csurka for supplying calibration data. clidean, later projective. Finite points and asymp-
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totic directions (‘points at infinity’) are given by col-
umn vectorsk = (x 1)" andv = (v 0)". A row
vectorp = (n d) specifies a plane with normal
and offset—d. x lies onp iff its signed distance
from it vanishes;px = n-x+d = 0. Theplane
at infinity poo, = (0 1) contains the infinite points
(d 0) and no finite ones.

Change-of-basis transformations arex 4 ma-
trices acting by left multiplication on points(—
T x) and by right multiplication by theénverseon
planes p — pT~1) so that point-plane products
are preservedp x (pT ")(Tx). Euclidean

transformations take the forr(fg ;) whereR is a

3 x 3 rotation matrix RR™ = 1) andt a transla-
tion vector.R becomes a rescaled rotation fmaled
Euclidean or similarity transformations, and an ar-
bitrary nonsingulag x 3 matrix for affine ones. For
projective transformationdr is an arbitrary nonsin-
gular4 x 4 matrix.

To distinguish their very different transformation
laws, points are calledontravariant, and planes
covariant. Matrices and higher dimensional arrays

(tensors) have a different transformation law asso-

ciated with each index.Contraction (‘projective
dot product’ or sum over products of components

Chapitre 5. Auto-calibrage d’'une camra en mouvement

and affine (plane at infinity) structure. Usifdj it is
straightforward to define further Euclidean concepts
such as spheres, angles between lines and lines or
planes, relative distances, and even (fixing a scale)
absolute distances.

In contrast to planes, there is no meaningful “Eu-
clidean dot product” between finite points. How-
ever, introducing 3-component coordinates on the
plane at infinity, the dot product of two direction
vectors becomes-v = u' C vwhere the3 x 3 sym-
metric doubly covarianabsolute conicmatrix C be-
comesl in any Euclidean basis. The need for sep-
arate coordinates op is inconvenient. In world
coordinates the direction dot product can be written
u' Qv, whereQ is any doubly covariant symmet-
ric 4 x 4 matrix of the form LI) However there
is no canonicalchoice ofQ: it cannotbe invariant
under translations. Only the upp@&rx 3 submatrix
(the restriction ofQ to poo) is invariant. Such &
converts a point at infinity (direction vectod) into
some finite planel ™ Q orthogonal to it, but there is
no canonical choice of such a plane.

The absolute quadric is also much simpler to
project into images than the absolute conic. Any

)doubly contravariant world matrid can be pro-

is only meaningful between contravariant-covariant/€ctéd to @ doubly contravariant image omeac-

index pairs €.g.a point and a plane). Otherwise the
result is completely basis-dependent.

Theabsolute quadricis the symmetrid x 4 rank

3 matrix ) = (}J 2) It is defined to be contravari-

ant (point-like) in each index, s@ — TQT' un-
der change-of-basis transforms— T x. It follows
that(2 is invariant under Euclidean transformations,
is rescaled under similarities, takes the fo(rglg)
(symmetric3 x 3 nonsingularQ) under affine ones,
and becomes an arbitrary symmetdicx 4 rank 3
matrix under projective ones.

Being contravariant{2 can be contracted against
plane vectors. Given a finite plang Qp"' is
the point at infinity representing its Euclidean nor-
mal direction. The plane at infinity i€’'s unique
null vector: @ pl, = 0. The Euclidean dot prod-
uct of the normals of two finite plangs andp’ is
n-n = pQp'T, and the angle between them is
cosd = (pQp'")//(pQ2pT)(P'2pT). These

formulae apply in any basis provided the corre-

sponding? is used. S is a projective encod-

cordingtom ~ PMPT, whereP is the usuaB x 4
point projectionx — Px. This applies both to skew
Pllicker line matriced. and symmetric dual quadric
matricesQ. In each case the result represents the
actual image of the 3D object (skew matrix repre-
sentation | |« of image linel, and dual image conic

g representing the image of the dual quadds oc-
cluding contour). 2's projectionw = PQPT is
thedual absolute image conie— a symmetric3 x 3
rank 3 image matrix. Using x 3 RQ decomposi-
tion to expand the projectioR = KR (I | —t) into

the traditional upper triangularalibration matrix

K, rotationR and translation to the optical centre
we find thatw = KKT is invariant under rigid mo-
tions and encodes the camera’s intrinsic parameters.
K can be recovered from by Choleski factoriza-
tion.

The dual and non-dual absolute image conics
andw™"' encode the 3D angular structure implicit
in the image measurements. The 3D angle be-
tween the visual planes of image linegnd m is
cost) = (lwm")//(ITwlT)(mwmT), while that

ing of both scaled Euclidean (angle between planespetween the visual rays of image pointsandy is
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Poo I(PQPT)IT =(IP)Q(IP)” =0 (c.f.fig. 1).
Q
3 Autocalibration

X
There are essentially three current approaches to au-
tocalibration, all based on the motion constancy of

1P

- \ 7 w. Multilinear matching constraints exist relat-

ing 2—10 images of any dual quadric, includify
PX|" penil of tangent TheKruppa constraint is the two image case, orig-
' inally used to find epipolar geometry for relative

orientation fromknown calibration. It essentially
says that since epipolar lines correspond via epipolar
planes, the above angle-between-visual-planes for-
mula must give the same result for corresponding
epipolar lines in either image. A compact deriva-
tion applies theclosure identity [19] Fo1 P; ~
cost = (xw'y")//(xw xT)(yw-lyT). [e12] « P to either side of2 to derive the quadric
matching constrainfFq; wFj; ~ [€12]x w[€12]).
Allowing for symmetry and rank deficiency, this
amounts ta linearly or (cross multiplying to elim-
inate the unknown scal€) algebraically indepen-
dent equations. w has 5 d.o.f. so at least 3 im-
ages are required. Various resolution procedures ex-
ist. Maybank, Faugeras & Luong [13, 4] use alge-
braic elimination in well-chosen coordinates, Zeller
& Faugeras [21] apply least squares optimization
over many images, and Hartley (reported in [14])
uses a preliminary SVD based simplification.

Figure 1 The absolute quadri€ is a very flat dual
guadric “squashed onto” the plane at infinity, whose rim
is the absolute coniC.

The above algebra is all we will need to U2ebut
a geometric picture may help intuition. Temporarily
allow x to be complex. Then a symmetric covari-
ant matrixQ uniquely defines a non-emptyadric:
a quadratic hypersurface (ellipsoid, hyperboloid)
given by homogeneous equatiox§Q x = 0. The
plane x™ Q is called thedual planeof x in Q. x lies
on Q iff it lies in its own dual plane(x™ Q) x = 0.
This happens ifk ™ Q is tangent to the quadric at
Thedual of Q is the quadricp Q= *p"™ = 0 in the
projective space of all planes. The ‘points’ @f*
are exactly the tangent planes@f as is easily seen The second approaditratifies [12, 3] the prob-
by replacingp < x" Q. lem into affine and Euclidean parts. Affine struc-

For regularQ the duality relation is symmetric. ture is encoded ipo. or theabsolute homography
For singularQ the point quadric ‘stretches out’ to H., — the inter-image mapping defined by project-
a cone then a plane pair, while in dual-space theing pixels up ontg .. For fixed calibrationH o, =
quadric collapses onto a plane then a line until onlyK RK~* is conjugate to a rotation and turns out
its ‘rim’ remains {.e. it becomes a dual-space plane to be invariant: Hoo w H., ~ w (with equality if
conic curve or a point pair). The cone vertex and itsdet(H,) = 1). This gives a linear constraint on the
dual space supporting plane correspond to the kernelKruppa matrix” w, sometimes also (misleadingly)
of Q. called the Kruppa constraint. Sintt,, fixes the

Dually, a singulardual quadric Q- defines directiond of the rotation axisw + Ad d" also sat-
a dual-space cone and a point-space conic curvésfies the constraint for any. So two rotations with
whose dual-space vertex or point-space supportinglifferent axes are needed to solve dar
plane is the null space d)~*. This is the case If there is negligible translation compared to a
with the absolute quadri€: it is the degenerate visible ‘background’,H,, is an observable inter-
dual-space quadric whose ‘rim’ is the absolute conicimage homography so autocalibration is straightfor-
C in peo (see fig. 1). Dual quadric projection ward (but not structure!) [8]H o can also be found
Q — PQPT is also easy to picture: an image from known vanishing points or 3D parallelism [3].
line | is tangent to the image conic iff the pulled But for pure autocalibration on finite points, the only
back visual plané P is tangent to the 3D quadric: constraints orp, andH ., are their relations t6?,
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w, andK. Given a plangn d) and an image pro- Thisabsolute quadric projection constraintis the
jectionP = A(l | — t), the image-to-plane homog- basis of our autocalibration method. The antisym-
raphy is((”'”f)n' ~t") A-1. Specializing to coordi- Metrization interchangesothindicesAB andC'D
natesP = (1 |0) and projecting into another image ©f the 3 x 3 symmetric matriceso and P; @ P/
A’ (I | — 1) gives a homographid = A’ (d1 +t'n). V|_eW|ng the_se as abstract 6D vectors, we will write
If (n d) representpos in some projective frame, this symbolically as

applying this tow ~ HowH]_ gives equations

relating the unknownsgn d) anaow. These can be wA (P Q2P]) =0

solved iteratively given a reasonable initial guess for
Poo OF K.

Hartley pioneered this sort of approach using
bounds onp. [7]. Most other authors start from
an approximate prior calibration [12, 10]. Hey-
den & Astrom’s formulation [10] also partially
(but independently) foreshadows ours given below.
The modulus constraint [12, 15] — thatH,, =
KRK~* being conjugate to a rotation matrix must
have the same unit modulus eigenvalues — focuse

N (n d) by implicitly eliminating w or K. Arm- planes measured usin@ must agree with those

stronget. al. [1] take a more eclectic approach, re- o .
- . ) . measured from the corresponding image lines us-
stricting attention to planar motion and using both .

. . . in . Roughl king, the Kr nstrain
parallelism to constraitH ., and the motion con- g« oughly speaking, the Kruppa constraint

. . is the projection of the restriction of this to epipo-
stancy of the circular points (the 1D analoguewf lar planes, while the homography constraintA

The Kruppa (epipolar (_:on_straint) approach avoids(Hoow HZ) = 0 is the projection of the rotational
the _need to_deducbloo.m.dwe(.:tly from the con- part of it. Atleast3 images are required for a unique
straints, but it can not distinguisf2 from any other g4 tion. For maximum stability it is advisable to
quadric with constantimage: planarity (rafk=3) ;- |ude further images, and to enforce rdfiK — 3

is not directly enforced. (i.e. det©2) = 0) and any known scene or calibra-
tion constraints.

We will describe two methods of resolving the ab-
solute quadric projection constraints. Both use all

This paper introduces a third approach to autocali-157 €quations fromn images and solve the system
bration, which explicitly locates the absolute quadric I @lgebraic least squares. Thenlinear method

in an initial projective reconstruction and uses it to US€S constrained numerical optimization/on> 3
‘straighten’ the projective structure£2 is recov- images, while thequasi-linear method uses SVD

ered using the motion constancy of its projection Pased factorization om > 4. Only the nonlinear
w ~ P;QP7, whereP; ~ KR;(I| — t;)T-*  Method directly enforces dé€?) = 0. It requires a

7

for fixed unknown3 x 3 and 4 x 4 transforma- (Very approximate) initialization, but turns out to be
tions K and T and normalized rotation;. If we  More accurate, stabler, faster and simpler than the

For each image, this amounts (Lg)) = 15 bilinear
equations{ linearly independent) in thB)+6 = 16
independent components ©f and w, with coeffi-
cients quadratic in the image’s reconstructed projec-
tion matrix. It can also be written as 9 bilinear equa-
tions inQ2 andw~* (8 linearly independent):

w'P, QP = ltracdw 'P;QP/]) I

Yhe constraint says that angles between visual

3.1 Absolute Quadric Method

knew the correct relative scaling for the projections, duasi-linear method. _
w = P; QP] would be linear in the unknowns Once 2 andw are known, the camera calibra-

and © and could be solved trivially. Instead, we tion K is easily found by Choleski decomposition
eliminate the unknown scale by taking ratios of com-©f w = KKT. Similarly, a Euclideanizing homog-
ponents and cross-multiplying, in much the samefaphyx — T~*x, P — P T can be found from the
way as the point projection ~ P x can be rewritten ~ eigen-decompositioE AE™ of @ ~ T ((') 8) T
asxA (Px)=0: by settingT ~ EAY2 (with the 0 eigenvalue
in A replaced byl). The columns ofT are an
WAB (P, QPP — P (P, QP )AP =0 absolute Euclidean basis in projective coordinates
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(i.e. 3 orthogonal directions and an origin). If re- zero translation, while reconstruction based methods
quired, the rotational part of each rectified projec- require fairly substantial ones and nonplanar scenes.
tion K-*P; T ~ R;(l | —t;) can be perturbed to

be precisely orthonormaé(g.using quaternions and 3.3 Nonlinear Solution

SVD [11]). As always, a final, close-lying-outlier-
insensitive bundle adjustment over all parameters i
recommended for precise work.

dNow consider how to solve the quadric projection
constraintsw A (P, QP/) = 0 for Q and w,
with detQ2) = 0. By far the most effective ap-
proach turns out to be direct constrained numeri-
3.2 Degeneracy cal optimization. Numerical approaches are some-
times undervalued in the vision community. Empir-
. . . ically, algebraic elimination on coordinate expres-
apply uniformly to all algorithms. In particular, . . ; L
. : sions provides valuable theoretical insight but al-
if the axes of all the camera rotations are parallel S . "

. . ) . most inevitably leads to poor numerical condition-
(say, vertical), the horizontal-to-vertical aspect ratio .

: ing, while numerical resolution based directly on the
of neither the camera nor the scene can be recov-

- . .._original, physically meaningful variables tends to be
ered. Intuitively, a narrow scene taken with a wide . . . ) L

. A .~ significantly more stable in practical applications,
aspect ratio lens is indistinguishable from a wide

scene taken with a narrow lens. This is unfortunatebUt too ‘opaque’ to provide much theoretical insight.

. At present it is hard to relate the two approaches,
as many real image sequences do preserve a vert)-

o . ) ut progress in tensorial and Grassmann-Cayley-like

cal. To avoid this problem, one must either include prog . ayley
. . . : . formalisms [19, 5] and computational nonlinear al-
images with 3 substantially different tilts or cyclo- . )

. : . gebra €.g9.[2]) may soon make this much easier.
torsions, or rely on prior scene, motion or camera . o .

. o . Many constrained optimization schemes exist [6].

knowledge €.g. aspect ratios).90° rotations pro-

. ; o .1 will giv rief line of the simple on
vide the maximum stability, but feature extraction give a brief outline of the simple one used

T, here, as | think that it has considerable potential
and matching limitations mean that these are usually, : N
. . . for other constrained problems in visiolgequen-
only possible with pure cyclotorsion.

. . L tial dratic P ing [6] i | nu-
Formally, ifd = (d 0)" is the 3D direction lal Quadratic Programming (6] Is a general nu

int at infinity) of the rotati q merical scheme for optimizing smooth non-linear
(cCommon point a ntini y) of the ro ation axes and ., functions under smooth non-linear constraints.
P;d = KR; d = Kd (independent of) is the corre-

ding i int. addi ltinle ™ It is Newton-like in that it requires second deriva-
shonding Image point, adding any muitiple tives of the cost function and potentially provides
to © and the same multiple ofPd)(Pd)™ to w

o uadratic convergence. The version presented be-
maintains bothw ~ PQPT and defQ2) = 0, so d g P

it ai ther feasibl lut Thi q low is trivial to implement and adequate for our
't gives another teasible solution. IS COMeSpoNnas, o5 More elaborate versions provide inequality
to a vertical stretching of botk and the scene.

P lation | q constraints, stabilization and step control schemes.
ure transiation is an even more degenerate case goal is to extremize a scalar cost function

as it fixesall points at infinity: affine structure fol-

lows easily, buf? is essentially arbitrary so autocal-
ibration is impossible. Various other types of mo-
tion lead to further degeneracies: Sturm [17] gives  VJ/+z-Ve=0  with  ¢(x)=0

a detailed catalog. Such ambiguities must typically Resolve this iteratively starting from some initial
be handled by imposing further constraints (knownguessx,. Approximate the cost to second order and
skew, aspect ratio, motion. ...). This can be difficult the constraint to first order &, giving a quadratic

with algebraic approaches, but is very easy in ourgptimization subproblem with linear constraints:
numerical formalism below.

Euclidean structure and motion follow directly ~ min <Vf 0x + %5XT 'V2f'5X)
from autocalibration, provided only that there
is sufficient translation to give a stereo base-
line. Translation-neutral internal calibration meth- <V2f VcT> <5x> B (Vf)

Autocalibration has some intrinsic limitations that

f(x) subject to a vector of constraintgx) = 0.
Lagrange multipliers give an implicit solution:

c+Ve-0x=0
This subproblem has an exact linear solution:

ods would be useful: Hartley's method [8] requires Ve 0 z ¢
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Solve fordx, updatex, tox; = xq-+0x, re-estimate ) Reconstruction Error vs. Image Noise
derivatives, and iterate to convergence. 18 quasi-lin. Euclidean

In the current applicatiorx contains thed 046 = S 16 nonlin. Euclidean .+
16 components of2 andw. The cost function is < 14 projective =
the sum of squared violations of the projection con- 2 12

. . ()

straintsy"; [|w A (P; Q P])||%. The constraint vec- a 1
tor ¢ enforces rank-3-ness d€t) = 0 and normal- 2 08
ization [|w||* = ||©2||> = 3. Further knowledge or § 8'2
constraints are easily added.q. known skew, as- 0'2
pect ratio, principal point,...). A Gauss-Newton '0
approximation (ignoring second derivatives of the 0O 05 1 15 2 25 3
quadric projection constraints) was used for the Hes- image noise (pixel)
SianV2f- Reconstruction Error vs. # Views

Initial guesses(2, and w, are required. Using 0.8 - o
wo A (PQePT) = 0, Q can be estimated in 07 quasi-iin. Eucidean —
linear least squares from an approximate calibration & 06 projective o
wo = KgK{ , orw by projecting an estimatef, S 05 b
derived from approximate scene constraints. In fact, g 0.4 7 i A
for m > 4 images and reasonably well placed cam- ® 03 e E:fp | \
eras {.e. several independent rotations and transla- & o2 B .
. . . . R
tions), spurious solutions seem to be rare and any E e
TORT . . . 0.1 g ng- g
initialization will do. The choicesvy = | and o

o 10 . .

Qq=1Ior (00 often sufflce., although fo; im- 4 8 16 32 64 128
ages, long focal lengths or highly constrained mo- # views
tions they can sometimes lead to Iogal minima. Reconstruction Error vs. View Separation

Convergence is rapid (4—10 iterations) unless the 32
problem is degenerate, and even then failure to con- 16 b quﬁgl-“ﬂ- Eﬂg“g:gg g
verge tosomefeasible solution is rare. It is worth S 8 " projective o
using a fairly accurateg(g.nonlinear least squares) S \/
projective reconstruction, especially in the unstable SR i S S
3 image case. Omitting the d€?) = 0 constraint & 2
significantly reduces both accuracy and stability. § 1

=
0.5

3.4 Quasi-Linear Approach 025

. . . o 02505 1 2 4 8 16 32
It is also possible to solve the quadric projection view separation (degrees)

constraints using a “quasi-linear” approach. No
initialization is required, but at leagt images are  Figure 2 Mean 3D reconstruction erres. image noise,
needed and the method is slower, less stable and le§&mber of images and angular spread of cameras for
accurate than SQP. quaS|—I|near Eu_clldean, n_onlmear Euclidean and projec-
.. . . . tive reconstructions of point clouds.

The basic idea is to write the independent com-
ponents of(2 andw as vectors and work with the
10 x 6 = 60 components of their outer product ma- nulling its smallest eigenvalue, and the method pro-
trix. The absolute quadric projection constraints areceeds with2 andw as above.
linear and have rank 15 in these variables, so the ma- Since it only enforces the rank 1 and @@} = 0
trix can be recovered linearly from > [22] = 4 constraints indirectly, the quasi-linear method intro-
images. Al0 x 6 SVD projects the result to rank duces degeneracies that are not intrinsic to the un-
1 and factorizes it into vectol® andw. Finally, 2  derlying problem. In particular, it fails whenever
(rewritten as a matrix) is projected to rank 3 by an- any point — even a finite one — is fixed in all im-
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ages €.g.a fixating camera).

4  Algorithm

The full algorithm for autocalibration and scaled Eu-
clidean reconstruction is as follows:

1) Standardize all image coordinates.

2) Find the projection®; by projective reconstruc-
tion.

3) Find the absolute quadri and image conic
w by solving 15m bilinear quadric projection con-
straintsw A (P; QP ) = 0 (nonlinear and quasi-
linear methods).

4) Recover the camera calibratidt by Choleski
decomposition ofv = KKT.

5) Find a4 x 4 Euclideanizing homograph¥' by
eigen-decomposition dR.

6) PerturbK—'P; T-' ~ R;(I | — t;) to be exactly
Euclidean.

7) Recover Euclidean structure by — Tx or
back-projecting with the corrected projections.

8) Optional bundle adjustment.

CVPR'97 121

the scene. Several other configurations have also
been tried with success. Uniform random noise was
added to the image points. The initial projective
reconstruction was projective factorization [18, 20]
followed by projective bundle adjustment (not in-
dispensable). The nonlinear method was initialized
with a calibration wrong by aboui0%. Mean 3D
reconstruction error over 10 trials was estimated by
projective least squares alignment for projective re-
constructions and scaled Euclidean alignment for
Euclidean ones. There was no final Euclidean bun-
dle adjustment, although this is recommended for
real applications. Default values werel pixel
noise, 6 views, 50 points, with a wide-80°) range

of viewing directions and cyclotorsions.

Figure 2(a) shows that all errors scale linearly
with noise, and that the un-adjusted nonlinear Eu-
clidean reconstruction (witl3 + 3 + 1 = 7 free
parameters) is very nearly as good as the underly-
ing projective one (withl5). Figure 2(b) suggests
that this applies for any number of images, while the
quasi-linear method is somewhat less stable. Fig-
ure 2(c) shows that the error scales smoothly as the
viewing angles are decreased.

Standardization rescales image pixel coordinates |n an informal test on real images of a calibra-

to lie in the unit box[—1, 1] x [—1,1]. It is abso-

lutely indispensableOtherwise, different equations
of lw A (P; 2P )| ~ 0 have a difference in scale
of (say)256% ~ 10'*. Their numerical conditioning

tion grid, we compared un-bundle-adjusted autocal-
ibration with the scatter of results from conventional
calibration using known 3D point positions. It was
within: 0.1% (.3¢) ona,, anda,,; 0.01% (1.50) on

is terrible and severe floating point truncation error o, /n,: and 5 pixels £1-2) on uy andvy (the o
leads to further loss of precision. This is perhapsestimates here are very imprecise).

the major reason for the observed instability of some

previous autocalibration approaches. Standardiza

tion (‘preconditioning’) isessentialwhenever there

6 Discussion & Conclusions

is an implicit least squares trade-off (as here), par- . .
ticularly with equations of high degree. It is dis- We have described a new method for autocalibrat-

cussed in every text on numerical methods, but doed"9 @ movm? camera .W'th f|>é(_—:;d b.LIJt gnknown ll(ntrln-
not seem to have been widely known in vision be- sic parameters, moving arbitrartly in-an unknown

fore Hartley made the point for fundamental matrix ?cznte. '.A‘n |n|t||_abl ptr_OJectlvg reclor;stéuctllltén 'S retctl-
estimation [9]. ied to give calibration and scaled Euclidean struc-

ture and motion. The method is based on a new
projective encoding of metric structure: tladso-

lute quadric. This is equivalent to the absolute
conic, but considerably easier to use. It projects
To give a rough idea of the performance of the very simply to the dual absolute image conic which
algorithm, we briefly report on numerical experi- encodes camera calibration. The absolute quadric
ments with synthetic data. Images of random pointand conic are recovered simultaneously using an ef-
clouds were taken with identical wide-angle cam- ficient constrained nonlinear optimization technique
eras placed randomly within a fixed cone of view- (sequential quadratic programming) or a quasi-

ing angles, approximately on a sphere surroundinginear method. The results are stable and accurate

5 Experiments



122

Chapitre 5. Auto-calibrage d’'une camra en mouvement

for generic camera motions, and the formalism clari- [9] R. Hartley. In defence of the 8-point algorithm. In

fies the reasons for autocalibration’s intrinsic degen-
eracies. A major practical advantage of the nonlin-

ear approach is the ease with which it incorporates[10]
any further constraints that may be available, poten-

tially significantly reducing the problems of degen-

eracy.

Future work will examine several topics. In the

(11]

one camera case, priorities are techniques to def12]
tect and handle degeneracy, and a study of the ad-

vantages of incorporating various additional con-

straints. Problems with several cameras.(sev-

eral w’s) are easily handled, as are rigidly moving [13]

stereo headsJis replaced by a ‘local{2 in the head
frame, invariant under motion inducddx 4 homo-

graphies). Non-reconstruction based autocalibration14]

techniques that work whether or not the translations
are zero would be useful. Finally, SQP is being suc-

cessfully applied to several other constrained statis{15]

tical fitting problems in vision.

(1]

[2] J. Canny. A toolkit for nonlinear algebra. Report

(3]

(4]

(5]

(6]

[7]

(8]
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Abstract

This paper describes a theory and a practical algorithm for the autocalibration of a moving projective camera,
fromm > 5 views of aplanarscene. The unknown camera calibration, and (up to scale) the unknown scene
geometry and camera motion are recovered from the hypothesis that the camera’s internal parameters remain
constant during the motion. This work extends the various existing methods for non-planar autocalibration
to a practically common situation in which it is not possible to bootstrap the calibration from an intermediate
projective reconstruction. It also extends Hartley’s method for the internal calibration of a rotating camera,
to allow camera translation and to provide 3D as well as calibration information. The basic constraint is that
the projections of orthogonal direction vectors (points at infinity) in the plane must be orthogonal in the cal-
ibrated camera frame of each image. Abstractly, since the two circular points of the 3D plane (representing
its Euclidean structure) lie on the 3D absolute conic, their projections into each image must lie on the abso-
lute conic’s image (representing the camera calibration). The resulting numerical algorithm optimizes this
constraint over all circular points and projective calibration parameters, using the inter-image homographies
as a projective scene representation.

Keywords: Autocalibration, Euclidean structure, Absolute Conic & Quadric, Planar Scenes.

1 Introduction

This paper describes a method of autocalibrating a moving projective camera with general, unknown
motion and unknown intrinsic parameters, fream> 5 views of aplanar scene. Autocalibration

is the recovery of metric information — for example the internal and external calibration parame-
ters of a moving projective camera — from non-metric information and (metric) self-consistency
constraints — for example the knowledge that the camera’s internal parameters are constant during
the motion, and the inter-image consistency constraints that this entails. Since the seminal work of
Maybank & Faugeras [14, 3], a number of different approaches to autocalibration have been devel-
oped [5, 6, 1, 27, 26, 2, 13, 9, 16, 15, 21, 10]. For the ‘classical’ problem of a single perspective
camera with constant but unknown internal parameters moving with a general but unknown motion
in a 3D scene, the original Kruppa equation based approach [14] seems to be being displaced by ap-
proaches based on the ‘rectification’ of an intermediate projective reconstruction [5, 9, 15, 21, 10].
More specialized methods exist for particular types of motion and simplified calibration models
[6, 24, 1, 16]. Stereo heads can also be autocalibrated [27, 11]. Solutions are still — in theory
— possible if some of the intrinsic parameters are allowed to vary [9, 15]. Hartley [6] has given

a particularly simple internal calibration method for the case of a single camera whose translation
is known to be negligible compared to the distances of some identifiable (real or synthetic) points

This revised version of my ECCV’98 paper [23] contains an additional paragraph on the Kruppa instability and an
appendix describing an unused (but potentially useful) factorization method for homographies betwe@rimages.
The work was supported by Esprit LTR project CUMULLI. | would like to thank P. Sturm and the reviewers for comments,
G. Csurka and A. Ruf for the test data, and C. Gramkow for pointing out some missing constants in egns. (11) and (12).
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in the scene, and Faugeras [2] has elaborated a ‘stratification’ paradigm for autocalibration based
on this. The numerical conditioning of classical autocalibration is historically delicate, although
recent algorithms have improved the situation significantly [9, 15, 21]. The main problem is that
classical autocalibration has some restrictive intrinsic degeneracies — classes of motion for which
no algorithm can recover a full unique solution. Sturm [18, 19] has given a catalogue of these. In
particular, at least 3 views, some translation and some rotation about at least two non-aligned axes
are required.

Planar Autocalibration: All of the existing approaches to classical autocalibration rely on
information equivalent to a 3D projective reconstruction of the scene. In the Kruppa approach
this is the fundamental matrices and epipoles, while for most other methods it is an explicit 3D
reconstruction. For some applications (especially in man-made environments) this is potentially
a problem, because planar or near-planar scenes sometimes occur for which stable 3D projective
reconstructions (or fundamental matricet;) can not be calculated. This well-known failing of
projective reconstruction is something of an embarrassmentatitatedreconstruction of planar
scenes is not difficult, so it is exactly in this case when autocalibration fails that it would be most
useful. The current paper aims to rectify this by providing autocalibration methods that work in the
planar case, by ‘rectifying’ the inter-image homographies induced by the plane. In the longer term,
we would like to find ways around the ill-conditioning of projective reconstruction for near-planar
scenes, and also to develop ‘structure-free’ internal calibration methods similar to Hartley’s zero-
translation one [6], but which work for non-zero translations. The hope is that planar methods may
offer one way to attack these problems.

Planar autocalibration has other potential advantages. Planes are very common in man-made
environments, and often easily identifiable and rather accurately planar. They are simple to pro-
cess and allow very reliable and precise feature-based or intensity-based matching, by fitting the
homographies between image pairs. They are also naturally well adapted to the calibration of lens
distortion as some of the subtleties of 3D geometry are avéided

The maindisadvantage of planar autocalibration (besides the need for a nice, flat, textured
plane) seems to be the number of images required. Generb@aﬁy,[”T“} images are needed for
an internal camera model withfree parameter®.g.m > 5 for the classical 5 parameter projective
model (focal length, aspect ratio, skew, principal point)yob 3 if only focal length is estimated.
However for good accuracy and reliability, at least 8—10 images are recommended in practice. Also,
almost any attempt at algebraic elimination across so many images rapidly leads to a combinatorial
explosion. Hence, the approach is resolutely numerical, and it seems impracticable to initialize the
optimization from a minimal algebraic solution. Although for the most part the numerical domain
of convergence seems to be sulfficient to allow moderately reliable convergence from a fixed default
initialization, and we have also developed a numerical initialization search which may be useful in
some cases, occasional convergence to false minima remains a problem.

Organization: Section 2 gives a direction-vector based formulation of the theory of autocal-
ibration, and discusses how both non-planar and planar autocalibration can be approached within
this framework. Section 3 describes the statistically-motivated cost function we optimize. Section 4
discusses the numerical algorithm, and the method used to initialize it. Section 5 gives experimental
results on synthetic and real images, and section 6 concludes the paper.

Notation will be introduced as required. Briefly we use bold uprigHbr homogeneous 3D (4
component) vectors and matrices; bold itatifor 3 component ones (homogeneous image, inho-
mogeneous 3D, 3-component parts of homogeneous 4-component olijdotsjnage projections

we will ignore lens distortion throughout this paper. If necessary it can be corrected by a nominal model, or —
at least in theory — estimated up to an ovesalk 3 projectivity by a bundled adjustment over all the inter-image
homographies. (The pixel-pixel mapping induced by geometric homogriphy DH;D~" whereD is the distortion
model).
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andH for inter-image homographie&, C = K~ for upper triangular camera calibration and in-
verse calibration matrice$? andQ* for the absolute (hyperplane) quadric and (direction) conic;
andw = KK™ = PQPT andw™ = CTC for their images.|- |« denotes the matrix generating
the cross productix |,y =X AY.

2 Euclidean Structure and Autocalibration

To recover the metric information implicit in projective images, we need a projective encoding of
Euclidean structure. The key to Euclidean structure is the dot product between direction vectors
(“points at infinity”), or dually the dot product between (normals to) hyperplanes. The former leads
to the stratified “hyperplane at infinity + absolute (direction) conic” formulation (affine + metric
structure) [17], the latter to the “absolute (hyperplane) quadric” one [21]. These are just dual ways
of saying the same thing. The hyperplane formalism is preferable for ‘pure’ autocalibration where
there is noa priori decomposition into affine and metric strata, while the point one is simpler if
such a stratification is given.

Generalities: Considerk-dimensional Euclidean space. We will need the cases2 (the pla-
nar scene and its 2D images) ane- 3 (ordinary 3D space). Introducing homogeneous Euclidean
coordinates, points, displacement vectors and hyperplanes are encoded respectively as homoge-
neousk + 1 component column vectoss= (x,1)", t = (t,0) " and row vectorp = (n,d). Here
X, tandn are the usuak-D coordinate vectors of the point, the displacement, and the hyperplane
normal, andd is the hyperplane offset. Points and displacements on the plane satisfy respectively
p-x=n-X+d=0andp-t=n-t= 0. Displacement directions can be appended to the point
space, as hyperplane at infinity poo Of points at infinity or vanishing points Projectively,poo
behaves much like any other hyperplane. In Euclidean coordinatgss (0, 1) so thatpoe -t = 0
for any displacement = (t,0). Projective transformations mix finite and infinite points. Under
a projective transformation encoded by an arbitrary nonsindélar1) x (k + 1) matrix T, points
and directions (column vectors) transfooontravariantly, i.e. by T acting on the leftx — T x,
v — T v. To preserve the point-on-plane relatipnx = n - x+ d = 0, hyperplanes (row vectors)
transformcovariantly, i.e. by T~* acting on the rightp — p T

Absolute Quadric & Conic: The usual Euclidean dot product between hyperplane normals is
Ny - N2 = p; Q p; Wwhere the symmetric, rank positive semidefinite matrix

lkxk O

2= (" 1)
is called theabsolute (hyperplane) quadri@. © encodes the Euclidean structure in projective
coordinates. Under projective transformations it transforms contravariastlifke a point) in each
of its two indices so that the dot product between plane normals is invafiant: TQ TT and
pi — p; T7', sop; @ pg = ny-ng is constantf2 is invariant under Euclidean transformations, but
in a general projective frame it loses its diagonal form and becomes an arbitrary symmetric positive
semidefinite rank matrix. In any frame, the Euclidean angle between two hyperplanes #5-€0s
PP ")/V/PQpT)(p' 2p'T), and the plane at infinity i's unique null vectorps, 2 = 0.
When restricted to coordinates @n.., £2 becomes nonsingular and can be dualized (inverted)
to give thek x k& symmetric positive definitabsolute (direction) conic2*. This measures dot
products between displacement vectors, jufRameasures them between hyperplane nornfafs.
is definedonly on direction vectors, not on finite points, and unlReit has no unique canonical

2Abstractly, ©2 can be viewed as a cone (degenerate quadric hypersurface) with no real points in complex projective
hyperplane space. But it is usually simpler just to think of it concretely as a symmetric matrix with certain properties.
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form in terms of theunrestricted coordinates. (Anything of the for@} ’;) can be used, for

arbitraryx, y).

Direction bases:In Euclidean coordinate$? can be decomposed as a sum of outer products of
any orthonormal (in terms &2*) basis of displacement vectol® = >°% | x; x] wherex; Q* x; =
8ij. For example in 200 = ('252 8) = XX +y9y" wherex = (1,0,0),y = (0, 1,0), are the usual
unit direction vectors. Gathering the basis vectors into the columngbffal) x k orthonormal
rank k matrix U we have2 = UUT, poo U = 0 andU " Q*U = | ;. The columns olU span
Poo- All Of these relations remain valid in an arbitrary projective fralend with an arbitrary
choice of representative f62*, except thalU — T U ceases to be orthonormal.

U is defined only up to an arbitray x k orthogonal mixing of its columns (redefinition of the
direction basislU — U Rg«x. Even in a projective frame whefé itself is not orthonormal, this
mixing freedom remains orthogonal. In a Euclidean frdihe- (\({) for somek x k rotation matrix
V, so the effect of a Euclidean space transformatidd is> (R {) U = UR' whereR' = VTRV is
the conjugate rotation: Euclidean transformations of direction bagesi{ the left) are equivalent
to orthogonal re-mixings of them.€. on the right). This remains true in an arbitrary projective
frame, even thouglJ and the transformation no longkrok Euclidean. This mixing freedom can
be used to choose a direction basis in whig¢hs orthonormal up to a diagonal rescaling: simply
take the SVDU’'D VT of U and discard the mixing rotatiod . Equivalently, the eigenvectors
and square roots of eigenvaluesfcan be used. Such orthogonal parametrization®&J ohake
good numerical sense, and we will use them below.

Circular points: Given any two orthonormal direction vectoxsy, the complex conjugate
vectorsxy = %(x + dy) satisfyxy Q" x] = 0. Abstractly, these complex directions “lie on
the absolute conic”, and it is easy to check that any complex projective point which does so can
be decomposed into two orthogonal direction vectors, its real and imaginary parts. In the 2D case
there is only one such conjugate pair up to complex phase, anddinegkar points characterize
the Euclidean structure of the plane. However for numerical purposes, it is usually easier to avoid
complex numbers by using the real and imaginary paeady rather than... The phase freedom
in x4 corresponds to the x 2 orthogonal mixing freedom of andy.

Theoretically, the above parametrizations of Euclidean structure are equivalent. Which is practi-
cally best depends on the problefa.s easy to use, except that constrained optimization is required
to handle the rank constraintdet {2 = 0. Direction base®J eliminate this constraint at the cost of
numerical code to handle thdirx k orthogonal gauge freedom. The absolute c§iichas neither
constraint nor gauge freedom, but has significantly more complicated image projection properties
and can only be defined once the plane at infipity is known and a projective coordinate system
on it has been choseB.{.by induction from one of the images). It is also possible to parametrize
Euclidean structure by non-orthogonal Choleski-like decompositidas LL™ (i.e.the L part of
the LQ decomposition o)), but this introduces singularities at maximally non-Euclidean frames
unless pivoting is also used.

Image Projections: Since the columns of a 3D direction basis maftixare bona fide3D
direction vectors, its image projection is simphU, whereP is the usuaB x 4 point projection
matrix. Hence, the projection & = U U is the3 x 3 symmetric positive definite contravariant
image matrixw = PQPT. Abstractly, this is the image line quadric dual to the image of the
absolute conic. Concretely, given any two image lihek, w encodes the 3D dot product between
their 3D visual planep; = I; P: p1 Qpj =11 PQPTI] =l wlj. With the traditional Euclidean
decompositiorK R (| | — t) of P into an upper triangulainternal calibration matrix K, a3 x 3
camera orientation (rotation) R and anoptical centre t, w becomes simphl K K". SinceQ is
invariant under Euclidean motions,is invariant under camera displacements so long emmains
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constant. K can be recovered frorw by Choleski decomposition, and similarly the Euclidean
scene structure (in the form of a ‘rectifying’ projective transformation) can be recovered(irom
The upper triangulanverse calibration matrix C = K~ converts homogeneous pixel coordinates
to optical ray directions in the Euclidean camera frame?! = CT C is the image of the absolute
conic.

Autocalibration: Given several images taken with projection matriees- K; R;(I| —t;), and
(in the same Euclidean frame) a orthogonal direction bsis () ), we find that

C:P,U = R, (1)

whereC; = K;* andR, = R; V is a rotation matrix depending on the camera pose. This is perhaps
the most basic form of the autocalibration constraint. It says that the calibrated imagé®(
directions in the camera frame) of an orthogonal direction basis must remain orthogonal. It remains
true in arbitrary projective 3D and image frames, as the projective deformatiobswst P; and

P; vs.C; cancel each other out. However, it is not usually possible to choose the scale factors of
projectively reconstructed projectioaspriori, in a manner consistent with those of their unknown
Euclidean parents. So in practice this constraint can only be applied up to an unknown scale factor
for each imageC; P; U ~ R!. As always, the direction basls is defined only up to an arbitrary

3 x 3 orthogonal mixingU — UR.

2.1 Autocalibration for Non-Planar Scenes

The simplest approaches to autocalibration for non-planar scenes are based on the consistency equa-
tion (1), an intermediate projective reconstructidnand some sort of knowledge about thee.g.
classically that they are all the sam€; = C for some unknowrC). Nonlinear optimization or
algebraic elimination are used to estimate the Euclidean stru@uneU, and the free parameters

of theC;. Multiplying (1) either on the left or on the right by its transpose to eliminate the unknown
rotation, and optionally moving th€'s to the right hand side, gives several equivalent symmetric

3 x 3 constraints linking? or U to w;, K; or C;

UT P;r (4);1 PZU ~ |3><3 (2)
C; PiQPZ-T CZ-T ~ l3x3 )

In each case there are 5 independent constraints per image on the 8 non-Euclidean d.o.f. of the 3D
projective structuréand the 5 (or fewer) d.o.f. of the internal calibration. For example, three images

in general position suffice for classical const@n&utocalibration. In each case, the unknown scale
factors can be eliminated by treating the symmelrig 3 left and right hand side matrices as
3-4/2 = 6 component vectors, and eithey projecting (say) the left hand sides orthogonally to

the right hand ones (hence deleting the proportional components and focusing on the constraint-

3These can be counted as follows: 15 for a 3D projective transformation modulo 7 for a scaled Euclidean one; or
12 for a4 x 3 U matrix modulo 1 scale and 3 d.o.f. fordax 3 orthogonal mixing; o#t - 5/2 = 10 d.o.f. for a4 x 4
symmetric quadric matrif2 modulo 1 scale and 1 d.o.f. for the rank 3 constrdiett€2 = 0; or 3 d.o.f. forpe and 5
for the3 - 4/2 = 6 components of2* modulo 1 scale.
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violating non-proportional ones), aii  cross-multiplying in the usual way:

ui'Vi:ui'WZ‘:Vi-WZ‘:O
9 9 9 where (ui,vi,wi) = C;P,U (5)
[[ai|* = f[vill” = [lwil

(C; P, QP] C)H)* = (c;P, Py CT )PP

where A<B=1...3 (6)
(CiPi2PT CT) =0

P; QPP ()P = ()P (P, QP )P where A<B,C<D=1...3 (7)

Several recent autocalibration methods for 3D sceaeas [@1, 9]) are based implicitly on these
constraints, parametrized I§/or w and by something equivalénto 2 or U. All of these meth-

ods seem to work well provided the intrinsic degeneracies of the autocalibration problem [18] are
avoided.

In contrast, methods based on the Kruppa equations [14, 3, 26] can not be recommended for
general use, because they add a serious additional singularity to the already-restrictive ones intrinsic
to the problem. If any 3D point projects to the same pixel and is viewed from the same distance in
each image, a ‘zoom’ parameter can not be recovered from the Kruppa equations. In particular, for
a camera moving around an origin and fixating it at the image centre, the focal length can not be
recovered. Sturm [19] gives a geometric argument for this, but it is also easy to see algebraically.
Let x be the fixed image poinE the fundamental matrix between images 1 andtbg epipole of
image 2 in image 1, ang the constant dual absolute image quadric. Choosing appropriate scale
factors fore andF, the Kruppa constraint can be writtenBsv F™ = [e] w[e]]. Sincex is
fixed,x" Fx = 0 and by the projective depth recovery relations [BE6] = A\ [e]«x where) is the
relative projective depth (projective scale factorkaf the two images. Hende(w +puxx" )FT =
[e]x(w + pAXXx")[e]y. With these normalizations afandF, A = 1 iff the Euclideandepth
of x is the same in each image. If this is the case for all of the images we see thds i&
solution of the Kruppa equations, souds+ uxXx" for any . This means that the calibration can
only be recovered up to a zoom centred>onNumerical experience suggests that Kruppa-based
autocalibration remains ill-conditioned even quite far from this singularity. This is hardly surprising
given that in any case the distinction between zooms and closes depends on fairlpstbtiger
perspective effects, so that the recovery of focal lengths is never simple. (Conversely, the effects of
an inaccurate zoom-close calibration on image measurements or local object-centred 3D ones are
relatively minor).

2.2 Autocalibration from Planar Scenes

Now consider autocalibration froplanar scenes. Everything above remains valid, except that no
intermediate 3D projective reconstruction is available from which to bootstrap the process. However
we will see that by using the inter-image homographies, autocalibration is still possible.

The Euclidean structure of the scene plane is given by any ongad$ & 3 rank 2 absolute line
quadricQ; (i) a 3 component line at infinitl,, and its associate®l x 2 absolute (direction) conic
matrix; (i) a3 x 2 direction basis matri}XJ = (x y); (iv) two complex conjugate circular points

Xy = %(x + 4y) which are also the two roots of the absolute conid grand the factors of the

“If the first camera projection is taken to ¢ |0) [5, 9], U can be chosen to have the for(n_";) K where

w —wp

Poo ~ (p', 1), whenceQ2 ~ (7’)% p‘rwp> and( pCT 10) is a Euclideanizing projectivity.
SFor most other autocalibration methods, this case is ambiguous only if the fixed point is at infinity (rotation about a
fixed axis + arbitrary translation).
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absolute line quadriQ = xx™ +yy"™ = x;xT 4+ Xx_x]. In each case the structure is the natural
restriction of the corresponding 3D one, re-expressed in the planar coordinate system. In each case
it projects isomorphically into each image, either by the usual4 3D projection matrix (using

3D coordinates), or by the corresponditigc 3 world-plane to image homograpty (using scene

plane coordinates). Hence, each image inherits a pair of circular pbjnts and the corresponding
direction basid; (x y), line at infinityl, H;* and3 x 3 rank 2 absolute line quadrtd; QH; . As

the columns of the plandt matrix representbona fide3D direction vectors (albeit expressed in the
planar coordinate system), their images still satisfy the autocalibration constraints (1):

CiH; U ~ R3yx2 (8)

whereR34 5 contains the first two columns of3ax 3 rotation matrix. Multiplying on the left by the
transpose to eliminate the unknown rotation coefficients givés(R)):

UT H;rwz_l HZU ~ |2><2 (9)

Splitting this into components gives the form of the constraints used by our planar autocalibration
algorithm:

Juill> = i, 2u;-vi =0  where  (u;,v;) = CiH;(xy) (10)
These constraints say that any two orthonormal direction vectors in the world plane project under
the calibrated world-plane to image homograpByH; to two orthonormal vectors in the camera
frame. Equivalently, the (calibrated) images of the circular points- %(xi iy) lie on the image
of the (calibrated) absolute conic:

(HiXi)T w™ (HiXi) = ||uz'iH2 =0 where U+ = CiHiXi (11)

All of the above constraints are valid in arbitrary projective image and world-plane frames, except
that (x,y) are no longer orthonormal. As always, y) are defined only up to & x 2 orthogonal
mixing, and we can use this gauge freedom to requirexthgt= 0.

Our planar autocalibration method is based on direct numerical minimization of the residual
error in the constraints (10) from several images, over the unknown direction(kagisand any
combination of the five intrinsic calibration parametéfisa, s, ug andwvg. The input data is the
set of world plane to image homographlésfor the images, expressed with respect to an arbitrary
projective frame for the world plane. In particular, if the plane is coordinatized by its projection
into some key image (say image 1), the inter-image homographiesan be used as input.

Four independent parameters are required to specify the Euclidean structure of a projective
plane: the 6 components ¢%,y) modulo scale and the single d.o.f. oRax 2 rotation; or the
3-4/2 = 6 components of 8 x 3 absolute line quadriQ modulo scale and the rank 2 constraint
det Q = 0; or the 2 d.o.f. of the plane’s line at infinity, plus the 2 d.o.f. of two circular points on
it. Since equations (9), (10) or (11) give two independent constraints for each ih#@féé,images
are required to estimate the Euclidean structure of the plane &mdnsic calibration parameters.
Two images suffice to recover the structure if the calibration is known, three are required if the
focal length is also estimated, four for the perspectiveq, vy model, and five if all 5 intrinsic
parameters are unknown.

2.3 Camera Parametrization

We have not yet made the camera parametrization explicit, beyond saying that it is given by the
upper triangular matricel§ or C = K. For autocalibration methods which fix some parameters
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while varying others, it makes a difference which parametrization is used. | prefer the following
form motivated by a zoom lens followed by an affine image-plane coordinatization:

f fs wug 1 (@ —s svo—aug
K=|0 fa v C=K'=—10 1 —p
0 0 1 falo o fa
Here, if standard pixel coordinates are usgé; «, is the focal length in.-pixels, s = — tan Oskew

is the dimensionless geometric skew:= «, /(v cos Oskew) IS the dimensionless : u aspect ratio,

and (ug, vg) are the pixel coordinates of the principal point. However pixel coordinatesiatre
used in the optimization routine below. Instead, a nominal calibration is used to standardize the
parameters to nominal valugs=a = 1, s = uy = vg = 0, and all subsequent fitting is done using

the above model with respect to these values.

3 Algebraic vs. Statistical Error

Many vision problems reduce to minimizing the residual violation of some vector of nonlinear con-
straintse(x, u) ~ 0 over parameterg, given fixed noisy measurementsvith known covariance

V... Often, heuristic error metrics such as tigebraic error ||e(x, u)||? are taken as the target for
minimization. However, such approaches are statistically sub-optimal and if used uncritically can
lead to () very significant bias in the results and) (severe constriction of the domain of conver-
gence of the optimization method. Appropridi@lancing or preconditioning (numerical scaling

of the variables and constraintsg.as advocated in [7, 8] or any humerical optimization text) is the
first step towards eliminating such problems, but it is not the whole story. In any case it begs the
question of whais “balanced”. It isnotalways appropriate to scale all variableg¢l). In fact, in

the context of parameter estimation, “balanced” simply means “close to the undestyitigtical

error measure’®

X2 ~ e"V'e where V, ~ %VK %T is the covariance o#
Ideally one would like to optimize the statistical cose(log likelihood). Unfortunately, this is
often rather complicated owing to the matrix products and (pseudo-)inverse, and simplifying as-
sumptions are often in order. | feel that this pragmatic approach isrheacceptable way to
introduce algebraic error measures — as explicit, controlled approximations to the underlying sta-
tistical metric. Given that the extra computation required for a suitable approximation is usually
minimal, while the results can be substantially more accurate, it makes little sense to iteratively
minimize an algebraic error without such a validation step.

One very useful simplification is to ignore the dependenc¥ gf on p in cost function deriva-
tives. This giveself-consistentor iterative re-weighting schemesd.g.[12]), whereV, is treated
as a constant within each optimization step, but updated at the end of it. One can show that the
missing terms effectively displace the cost derivative evaluation point from the measturedirst
order estimate of the true underlying valug [22]. For the most part this makes little difference
unless the constraints are strongly curved on the scalg,of

For our autocalibration method, the statistical error splits into independent terms for each im-
ag€. For want of a more specific error model, we assume that the components of the(Hate,

be is a random variable through its dependencexorAssuming that the uncertainty is small enough to allow lin-
earization and that is centred on some underlying satisfyinge(xo, i) = 0 for some parameter valye,, e(x, p)
has mear® and the above covariance. It follows thelt V' e is approximately q?ank(e) variable neay,, which can
be minimized to find a maximum likelihood estimateof

"We (perhaps unwisely) ignore the fact that Hheare correlated through their mutual dependence on the base image.
The base image is treated just like any other in the sum.
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theH; in nominally calibrated coordinates) are i.i.dz:[AH3 AHG] ~ € - 6455 wheree is a

noise levél. From here it is straightforward to find and invert the constraint covariance. For the
planar autocalibration constraint (10), and assuming that we have enforced the gauge constraint
X -y = 0, the constraint covariance is

a1y b2 (¢ -y a b _cr _
4e - ((xz—yQ)&-bi VR where (a;,b;) = C/ (u;,v;) = w;” H;(X,y)
In this case, numerical experience indicates that the off-diagonal term is seldom more than a few
percent of the diagonal ones, which themselves are approximately equal for each image, but differ
by as much as a factor of 2—-3 between im&gé$ence, we drop the off-diagonal term to give an
autocalibration method based on self-consistent optimization of the diagonal cost function

i < Rl Pl /e + B > where (u;,Vv;) = C; H; (X,Y)

S \CCTUl? + Y2 ICTvill? - X (G vill? + y? |G |2
(12)

In our synthetic experiments, this statistically motivated cost function uniformly reduced the ground-
truth standard deviation of the final estimates by about 10% as compared to the best carefully nor-
malized algebraic error measures. This is a modest but useful improvement, obtained without any
measurable increase in run time. The improvement would have been much larger if the error model
had been less uniform in the standardized coordinates. Perhaps most importantly, the statistical
cost is almost completely immune to mis-scaling of the variables, which is certaityue of the
algebraic ones which deteriorated very rapidly for mis-scaling factors greater than about 3.

4 Planar Autocalibration Algorithm

Numerical Method: Our planar autocalibration algorithm is based on direct numerical minimiza-
tion of them-image cost function (12), with respect to the direction bdsig/} and any subset

of the 5 internal calibration parameters focal lengthaspect ratia:, skews, and principal point
(ug,v0). There are 4 d.o.f. ifix,y} — 6 components defined up to an overall mutual rescaling and
a2 x 2 orthogonal mixing — so the optimization is over 5-9 parameters in all. Numerically, the 6
componenix, y) vector is locally projected onto the subspace orthogonal to its current scaling and
mixing d.o.f. by Householder reductiond. effectively a mini QR decomposition). As mentioned

in section 2, the mixing freedom allows us to enforce the gauge condition= 0. Although

not essential, this costs very little (one Jacobi rotation) and we do it at each iteration as an aid to
numerical stability.

A fairly conventional nonlinear least squares optimization method is used: Gauss-Newton iter-
ation based on Choleski decomposition of the normal equations. As always, forming the normal
eqguations gives a fast, relatively simple method but effectively squares the condition number of the
constraint Jacobian. This is not a problem so long as intermediate results are stored at sufficiently
high precision: double precision has proved more than adequate for this application.

8This model is undoubtedly over-simplistic. Balancing should make their variances similar, but in reality the compo-
nents are most unlikely to be independent. We should at very least subtract a diagomsfitafsy ||H 4 |2, as variations
proportional toH make no projective difference. However this makes no difference here, as when contracte with
it just gives backe(xo)’s which vanish. Thishad to happen: correctly weighted error terms must be insensitive to
projective scale factors, and hence have total homogeneity 0 in their projective-homogeneous variables.

This was to be expected, since we chose everything to be well-scaled except tHandnmalizations may differ
somewhat from their ‘correct’ Euclidean ones, and our noise model is uniform in an approximately calibrated frame. If
any of these conditions were violated the differences woulthbehgreater.
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As with any numerical method, care is needed to ensure stability should the numerical condi-
tioning become poor. Our parametrization of the problem guarantees that all variables4re of
and fairly well decoupled, so preconditioning is not necessary. The Choleski routine uses diagonal
pivoting and Gill & Murray’s [4] minimum-diagonal-value regularization to provide local stability.
The regularizer is also manipulated in much the same way as a Levenberg-Marquardt parameter
to ensure that each step actually reduces the cost function. We also limit the maximum step size
for each variable, relatively for the positive, multiplicative parametéenda and absolutely for
the others. Both the regularizer and the step size limits are activated fairly often in practice, the
regularizer at any time, and the step limit usually only during the first 1-2 iterations. The method
terminates when the step size converges to zero, with additional heuristics to detect thrashing. Con-
vergence within 5-10 iterations is typical.

Prior over Calibrations: We also allow for a simple user-defined prior distribution on the
calibration parameters. Even if there is no very strong prior knowledge, it is often advisable to
include a weak prior in statistical estimation problems as a form of regularization. If there are
unobservable parameter combinations. ¢that make little or no difference to the fit), optimal,
unbiased estimates of these are almost always extremely sensitive to noise. Adding a weak prior
makes little difference to strong estimates, but significantly reduces the variability of weak ones
by biasing them towards reasonable default values. A desire to “keep the results unbiased” is
understandable, but limiting the impact of large fluctuations on the rest of the system may be more
important in practice.

Default priors are also useful to ensure that parameters retain physically meaningful values. For
example, we use heuristic priors of the fotmyxo — zo/x)? for f anda, to ensure that they stay
within their physically meaningful rang@, co). This is particularly important for autocalibration
problems, where degenerate motions occur frequently. In such cases the calibration can not be
recovered uniquely. Instead there is a one or more parameter family of possible solutions, usually
including physically unrealizable ones. A numerical method (if it converges at all) will converge to
an arbitrary one of these solutions, and for sanity it pays to ensure that this is a physically feasible
one not too far from the plausible range of values. A weak default prior is an effective means of
achieving this, and seems no more unprincipled than any other method. This is not to say that such
degeneracies should be left unflagged, but simply that whatever cleaning up needs to be done will
be easier if it starts from reasonable default values.

Initialization: The domain of convergence of the numerical optimization is reasonably large
and for many applications it will probably be sufficient to initialize it from fixed default values. The
most critical parameters are the focal lengtand the number and angular spread of the views. For
example, iff can only be guessed within a factor of 2 and all 5 paraméterss, ug, v are left free,
about 9-10 images spread by more than abotitisé@m to be required for reliable convergence to
the true solution. Indeed, with 5 free parameters and the theoretical minimum of only 5-6 images,
even anexactinitialization is not always sufficient to eliminate false solutions.(with slightly
smaller residuals than the true one).

These figures assume that the direction basjsis completely unknown. Information about
this is potentially very valuable and should be used if available. Knowledge of the world-plane’s
horizon (line at infinity) removes 2 d.o.f. froryy and hence reduces the number of images required
by one, and knowledge of its Euclidean structure (but not the positions of points on it) eliminates
another image. Even if not directly visible, horizons can be recovered from known 3D parallelism
or texture gradients, or bounded by the fact that visible points on the plane must lie inside them. We
will not consider these types of constraints further here.

If a default initialization is insufficient to guarantee convergence, several strategies are possible.
One quite effective technique is simply to use a preliminary optimization wweior X,y, f to
initialize a full one over all parameters. More generally, some sort of initialization search over
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f, x andy is required. Perhaps the easiest way to approach this is to fix nominal values for all
the calibration parameters excefit and to recover estimates fary as a function off from a

single pair of images ag varies. These values can then be substituted into the autocalibration
constraints for the other images, and the overall most consistent set of values chosen to initialize
the optimization routine. The estimation »ff),y(f) reduces to the classical photogrammetric
problem of the relative orientation of two calibrated cameras from a planar scene, as the Euclidean
structure is easily recovered once the camera poses are known. In theory this problem could be
solved in closed form (the most difficult step bein@ & 3 eigendecomposition) and optimized
over f analytically. But in practice this would be rather messy and | have preferred to implement
a coarse numerical search over The search uses a new SVD-based planar relative orientation
method (see appendix 1) related to Wunderlich’s eigendecomposition approach [25]. The camera
pose and planar structure are recovered directly from the SVD of the inter-image homography.
As always with planar relative orientation, there is a two-fold ambiguity in the solution, so both
solutions are tested. In the implemented routine, the solutions for each image against the first one,
and for eachf in a geometric progression, are substituted into the constraints from all the other
images, and the most consistent overall values are chosen.

If the full 5 parameter camera model is to be fitted, Hartley's ‘rotating camera’ method [6]
can also be used for initialization. It works weltovided (i) the camera translations are smaller
than or comparable to the distance to the plaigng point on the plane is nearly fixated from a
constant distance. (For such a pointy + uxx" is an approximate solution of Hartley’s equation
HwHT = w for anyu, i.e.w can not be estimated uniquely, even for small translations).

5 Experiments

Synthetic data: The method has been implemented in C and tested on both real and synthetic
images. For the synthetic experiments, the camera roughly fixates a point on the plane from a
constant distance, from randomly generated orientations varying by (by defa&it)in each of
the three axes. The camera calibration varies randomly about a nominal focal length of 1024 pixels
and unit aspect ratio, by30% in focal lengthf, +10% in aspect ratia:, 0.01 in dimensionless
skew s, and £50 pixels in principal point(ug,vg). (These values are standard deviations of log-
normal distributions forf, a and normal ones fos, ug, vg). The scene plane contains by default
40 visible points, projected into th&l2 x 512 images with a Gaussian noise tfi pixel. Before
the homographies are estimated and the method is run, the pixel coordinates are centred and scaled
to a nominal focal length of: (u,v) — (u — 256,v — 256)/1024. The output is classed as a
‘success’ or ‘failure’ according to fixed thresholds on the size of its deviation from the true value.
Only successes count towards the accuracy estimates. The usual mode of failure is convergence to
a false solution with extremely short focal length (say50 pixels). However when the angular
spread of the views is small or there are only a few images, random fluctuations sometimes take
a “correct” but highly variable solution outside the (generously set) thresholds. Conversely, there
is occasionally convergence to a false solution within the threshold. Thus, when the failure rate is
high, neither it nor the corresponding error measure (nor, for that matter, the results!) are accurate.
The optimization typically converges within 5-10 iterations, although more may be needed for
degenerate problems. The run time is negligible: on a Pentium 133, about 0.5 milliseconds per
image if the default initialization is used, or 2.0 with a fairly fine initialization search gver

Figure 1 gives some illustrative accuracy and reliability results, concentrating on the estimation
of focal length f. First consider the plots where all 5 calibration parameters are estimated. The
error scales roughly linearly with noise and inversely with the angular spread of the views. It drops
rapidly as the first few images are added, but levels off after about 10 images. The failure rate
increases rapidly for more than about 2—3 pixels noise, and is also unacceptably high for near-
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Figure 1 Error in estimated focal lengtfi and failure ratevs.image noise, number of images and angular
spread of cameras. Each value is the average of 1000 trials. The aspeet isit@w s, and principal

point (ug, vg) are either fixed at their nominal values, or allowed to vary freely, as indicated. The method is
initialized from the nominal calibration, except that in the failuseimages plot we also show the results for
initialization by numerical search ovégr and by a preliminary fit ovef alone (‘2-phase’).

minimal numbers of images (within 1-2 of the minimum) and small angular spreads (less than
about 10). however, it decreases rapidly as each of these variables is increased. It seems to be
difficult to get much below about 1% failure rate with the current setup. Some of these failures
are probably the result of degeneracies in the randomly generated problems, but most of them are
caused by convergence to a false solution with implausible parameters, either very gfaai

than about 50) ot far from 1. The initialization method has little impact on the reliability. In fact,
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A

Figure 2 Several images from our calibration sequence.

in these experiments the default initialization proved more reliable than either numerical search
over f, or an initial optimization overf alone. The reason is simply that we do not assume prior
knowledge ofany of the calibration parameters. An initialization search of@nust fixa, s, ug, vg

at their inaccurate nominal values, and this is sometimes enough to make it miss the true solution
entirely. This also explains the poor performance of the methods whichaheld,, vy fixed and
estimatef alone. As the graphs of errgs.noise and number of images show, errors,ig, ug, vg

lead to a significant bias iffi, but most of this can be eliminated by estimatings well asf. The
initialization search ovef also becomes much more reliabéed.0.05% failure rate for 10 images,

30° spread and 1 pixel noise) if ands are accurate to within a few percent. Here and elsewhere,

it is only worthwhile to fix parameters if they are reliably known to an accuracy better than their
measured variabilitieg.g.here for 1 pixel noise and 10 images, to ab@003 for a, s or 20 pixels

for up, Vo-

For conventional calibrationf is often said the most difficult parameter to estimate, and also
the least likely to be knowa priori. In contrasta ands are said to be estimated quite accurately,
while vy and vy — although variable — are felt to have little effect on the overall results. A
more critical, quantitative view is to compare thedative accuracy|Af/f| to the dimensionless
quantities|Aal, |As|, |Aug/ f| and|Avy/ f]. Errors in these contribute about equally to the overall
geometric accuracye(g.reconstruction errors of 3D visual ray directions). Conversely, other things
being equal, geometric constraints such as the autocalibration ones typically constrain each of these
guantities to about the same extent. Hence a good rule of thumb is that for autocalibration (and many
other types of calibration)Aug/ f| and|Awy/ f| are of the same order of magnitude |&sf/ f|,
while |Aa| and |As| are usually somewhat smaller if there is cyclotorsion or other aspect ratio
constraints, but larger if there are nomeg(if the rotation axis direction is almost constant). These
rules are well borne out in all the experiments reported here: we alwayg¥ind ~ |Avg| ~ |Af],
while |Aa| and|As| are respectively about one fifth, one half, and one tent\gf/ f| for the
synthetic experiments, the real experiments below, and the Faugeras-Toscani calibration used in the
real experiments.

Real data: We have run the method on several non-overlapping segments of a sequence of about
40 real images of a calibration grid (see fig. 2). Only the 49 (at most) points on the base plane of the
grid are used. (It would be straightforward to extend the algorithm to handle several planes, but there
seems little point as a non-planar autocalibration method could be used in this case). The motion
was intended to be general within the limits of the 5 d.o.f. robot used to produce it, but is fairly
uniform within each subsequence. Visibility considerations limited the total angular displacement
to about40°, and significantly less within each subsequence. The sample means and standard
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deviations over a few non-overlapping subsequences)fgrglone, andi{) all 5 parameters, are as
follows (the errors are observed sample scattessestimates of absolute accuracy):

| | fony | F | @ | s [ w | w |
| calibration| - | 15154 | 0.9968 £ 0.0002 | - | 27143 | 26444 |
6images [ 1584 +63 ]| 1595 & 63 | 0.9934 + 0.0055 | 0.000 £ 0.001 [ 268 £ 10 [ 271 + 22
8images [| 1619 +25 || 1614 & 42 | 0.9890 £ 0.0058 | —0.005 +0.005 | 289 +£3 | 320 + 26
10 images | 1612 & 19 | 1565 & 41 [ 1.0159 + 0.0518 | —0.004 £ 0.006 | 273 +5 [ 286 +27

The ‘calibrated’ values are the averaged results of several single-image Faugeras-Toscani calibra-
tions using all visible points on the grid. Looking at the table, the results of the autocalibration
method seem usable but not quite as good as | would have expected on the basis of the synthetic
experiments. This may just be the effect of the small angular range within each subsequence, but
the estimates of seem suspiciously high and it may be that some small systematic error has oc-
curred during the processing. Further work is required to check this. Note that in this case, fixing
a, s, ug, vg appears to have the desired effect of decreasing the variability of the estifnatdaut
perturbing its value very much.

6 Summary

In summary, we have shown how autocalibration problems can be approached using a projective
representation of orthogonal 3D direction frames, and used this to derive a practical humerical
algorithm for the autocalibration of a moving projective camera viewing a planar scene. The method
is based on the ‘rectification’ of inter-image homographies. It requires a minimum of 3 images if
only the focal length is estimated, or 5 for all five internal parameters. Adding further images
significantly increases both the reliability and the accuracy, up to a total of about 9-10. An angular
spread between the cameras of at least 10i2ecommended.

The priorities for future work are the initialization problem and the detection of false solutions
(or possibly the production of multiple ones). Although the current numerical method is stable even
for degenerate motions (and hence giggmssible solution), it does not attempt to detect and flag
the degeneracy. This could be doeqy. by extracting the null space of the estimated covariance
matrix. It would also be useful to have autocalibration methods that could estimate lens distortion.
This should be relatively simple in the planar case, as distortion can be handled during homography
estimation.

Appendix: Homography Factorization

Our planar autocalibration approach is based on scene plane to image homodtaphigwactice

we can not estimate these directly, only the inter-image homographies- HZ-Hj‘1 induced by

them. In theory this is not a problem as the formalism is invariant to projective deformations of
the input frame, so we can choose scene plane coordinates derived from a key image (say image
1) and use théi;; in place of theH; (i.e. the unknown direction vectors y are parametrized by

their coordinates in the key image). This works reasonably well in practice, but there is a risk that
inaccurate measurements or poor conditioning in the key image will have an undue influence on the
overall numerical accuracy or stability of the method, since they potentially contribute coherently
to all theH’s. It would be useful to find a homography representation that does not single out a



Papier : Autocalibration from Planar Scenes — ECCV’98 137

specific key image, but instead averages the uncertainty over all of them. This can be achieved by a
factorization method analogous to factorization-based projective structure and motion [0, 21]

This appendix describes the homography factorization algorithm. However note thabtt is
used in the final planar autocalibration routine as it turns out to give slighuigeresults in practice.
| am not sure why this happens. It may be that the scaling required for the homographies induces
less than ideal error averaging, or that the resulting frame is in some way less well adapted to the
calibration problem. In any case, it suggests that the use of a key image does not introduce too
much bias in the calibration. Despite this, | have included a description of the factorization method
here as | still think it is potentially useful for other applications.

Suppose we have estimated inter-image homographiebetween each pair of. images of a
plane. In terms of some coordinate system on the plane which induces plane to image homographies
H; we have);;H;; ~ HiHj‘1 + noise, where thg,; are unknown scale factors. Write this as a big
(3m) x (3m) rank 3 matrix equation

AuitHit o AeHi - AHin Hq
AziHar  AgoHoz oo AomHop Ho 1o _

: : , : ~| | (H; 55 -+ H;l) +noise
)\mlel )\mQHm2 e )\mmHmm Hm

As in the projective structure case, if we can recover a self-consistent set of scale fagttine
left hand side can be factorized to rank 3 usiagyj SVD or a fixed-rank power iteration method:
Hs,w3m = Usimx3Vsxsm. Any such rank 3 factorization has the required noise-averaging prop-
erties and represents some ‘numerically reasonable’ choice of projective coordinates on the plane.
For our purposes we need not insist that3he3 submatrices olU are exactly the inverses of those
of V, although — given thall;; = | — the inverse property is always approximately satisfied up
to scale.

A suitable set of scale factops; can be found very simply by choosing a key image 1 and noting
that up to scaléd;; ~ H;1H1;. Resolving this approximate matrix proportionality by projecting it
alongH,;, we find that the quantities

Trace((HilHlj) . H;;)

\ij
J TracegH;; - HJ))

are an approximately self-consistent set of scale factors. As in the projective structure case, the
matrix of scale factors,;; is only defined up to independent overall rescalings of each row and each
column. Numerically, it is highly advisable to balance the matrix so that all its elements are of order
O(1) before applying it to théd,;;'s and factorizing. Our balancing algorithm proceeds by alternate
row and column normalizations as in the projective structure case [20], and converges within 2-3
iterations.

It may seem that using a key image to find the scale factors is likely to spoil the noise aver-
aging properties of the factorization, but this is not so. Perturbations of the scates afdH ;
introduce no inconsistency, while other perturbations of o) introduce errors only ab(e?)
in the projection ofH;;H,; alongH;; — and hence in the scale factors — as these matrices are
proportional up to noise. At normal noise levelsk % these errors are swamped by thée)
ones arising from the explicil;; andH;; terms in the factorization, so each image has roughly the
same total influence on the resubirgvidedthe \;; have been balanced appropriately). The same
phenomenon is observed in the projective structure method: errors in the fundamental matrices and
epipoles used to estimate the scales have very little effect.

Analogous methods also exist for 3D homographies (projective structure alignment, rank=4) and, more interestingly,
for finding coherent sets of fundamental matrices or line projections (rank=6).
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Chapitre 6

Perspectives et probkmes ouverts

If the fool would persist in his folly
he would become wise.

William BLAKE
The Marriage of Heaven and Hell

La recherche — et toute particeiement une #se -etant une exemplaire hors pair de la persis-
tance en sa folie, il faud 'occasion se demander si on esjeddevenu sage ... et sinon, combien de
temps et comment persister ? — Cette chapitre propose, sous la forme @en@ebliverts, quelques
perspectives sur la visioregfrétrique engendy par nos travaux pendant la periode de cettegh’

Considrons d’'abord quelques prahes techniques de la visioeatetrique.

Reconstruction des senes complexes: Malgré tous nos efforts, la reconstruction visuelle de
s@Enes complexes reggénte toujours unefi' majeur. La mise en correspondance est loitrd’™
résolue, particuirement quand les prises de vue des images sesEtarEes [SMB98, PZ98,
TGDK99]. Le choix d'une paramtfisation et son initialisation automatique ne sont pas eWis ~
dentes, quand les primitives et les contraintes sont complexes. Enfin I'ajustement de faisceaux pour
de grands maoeles reste &S caiteux, en particulier pour desestes dynamiquesud’existence de
parangtres de mouvements iegéndants chaque image de l&glence peut augmentendrnme-

ment le nombre de parastresa estimer.

Concernant I'ajustement de faisceaux, nos experiences initiales semblent indiquer que dans un
cas Ealiste a'chaque primitive n’est vue que par un nombre constant de images (donc le nombre de
primitives augmente lisdirement avec le nombre d’'imagestoutes les rathodes connues risquent
d'etrea peu pes de I'ordre©® (n3) Ceci en @pit de tout effort de prendre en compte I'aspeestr
creux du systme, ou encore de lesoudre par desettiodes eratives (qui sont de I'ordré® (n)
ouQO (nQ) par ittration, mais qui semblent prendre un nombre exorbitanerdiitbns quanch
augmente). Des meilleuresethodes numriques pouresoudre ce probhme d’optimisation sont
a mettre au point — ou desathodes directes quiegent de fagn plus efficace I'aspect creux du
sysEme, ou encore desathiodes iratives qui prennent mieux en compte sa structure emoha”
...cangra—primitive—carera...

Méthodes d'initialisation fiables: Si on commence matfriser I'étape d’'optimisation pour la
plupart de nos probhes, trouver une solution approximative initiale reste difficile, et plus particu-
lierement quand le conditionnememiogrgtrique est dlicat et/ou il y a un grand nombre de valeurs
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aberrantes dans les da@®s. On ne demande pas que linitialisation soit parfaite, mais seulement
gu'elle tombe avec consistance dans la zond'agorithme d’optimisation converge vers la so-
lution optimale du proldime, et non vers un autre minimum local, ou dans une zone qui est inad-
missible.A présent, dans les casid manque des valeurs paefdut qui suffiront Tinitialisation,

on cherche souvenmtinitialiser par une solution quasi-éaire (c.a-d., qui ne prend pas en compte
guelques contraintes nondiaires qui auraient normalement&fe imposes), basé sur un moele
d’erreur algbrique ou ligari€. On sait convertir (par exemple) un sysie gréral de polyoimes

dans une telle forme, maisi) (le résultat risque @fre lourd; (i) le mocele d’erreur approahqui

est implicit en la construction peetre tes biai€, et ceci et klision de contraintes nonkaires
engendrent souvent une initialisation irapise voire rafe fausse ji{) il y a toujours des singula-
rites, qui correspondentels 'souvent aux casi@n voudrait appliquer I'algorithme. Desatiiodes

de rBduction plus fiables et pluedéres seraient bienvenues pour l'initialisation, partexgdiment si

elles peuvent prendre en compte le reledd’erreur statistique et les zones de convergence dedam’
thode d’optimisation nonli@aire. Dans le casudées minima locaux du probime ont une structure
typique (ce qui est pewtre le cas pour la reconstruction), ce serait aussréssant deaVelopper

des heuristiques poursauter d’'un minimuma (la zone d’attraction d’)un autre, afin de trouver le
minimum global.

Un autre aspect de l'initialisation est I'utilisation dethddes ddchantillonnage aktoire comme
RANSAC [FB81] pour contourner le prodaine de valeurs aberrantes. Avec de telles valeurs, I'es-
sence est de trouver ugehérence— un sous-ensemble des dees qui soient caréentes avec le
méme moele, et qui ne le seraient questarement par hasard, si elles ne correspondenephs r’
lementa un tel moéle. RANSAC et ses cousins nous semblent dethotes effectives, mais assez
primaires pour ce type de travail. Il doit y avoir degtimbdes moins adéuses et plususés pour
trouver la colefence, mais de toutedan unéchantillonnage erdgrement aatoire nous semble
trop simpliste, particuéfement si la dimension ou la probalglit’aberrance sont grandes, ou si
plusieurs modles diférents sont @Cessaires pouredfire la sene. Il serait irtfessant de eVe-
lopper des rathodes de tirage qui prennaient mieux en compte les informati@adapiés sur la
distribution de primitives, y inclut les principes de support local, et d’exclusion dans laugals-0"
sieurs correspondances sont possibles. La recherche de correspondercencenogonstrique a
un aspect optimisation combinatoire qui est loiptdEEpuis.

Une exemple notable d'initialisation est la reconstruction par factorisation. La factorisation
(SVD ou autre) trouve automatiquemerpiar magie- les caneras et la structure 3D — sans aucune
étape d'initialisation explicite, et sans prehies apparents de minima locaux ou de convergences
fausses« C’est plus fiable que l'optimisation ... mais en effet, au coeur de la SVD il y aepr’
cistment une rathode d’'optimisation dérative, relativementalicate — en effet, il a fallu 30 ans
d’expérience pour la perfectionner — et avec sa pragiepé d'initialisation interne. On appel de
telles ne€thodes« directes» — elles sont ifatives et en principe faillibles, mais en pratiqueusies”
et de convergence seguliere que on les consite égales aux rthodes finies commedlimina-
tion gaussienne. Nous sommes convaincus que é#isatés d'initialisation d’une fiabiétpareille
sont possibles en vision, par exemple pour la factorisation avec desemanquantes, mais aussi
pour bien d’autres probmes. Seulement, lagtiiode deetuction matricielle qui donne la preené
etape de la SVD semble difficilementmgralisable aux dore€s manquantes, donc il faut chercher
une autre fagn de proeder.

L'auto-calibrage depuis trois images : Un probEme ouvert notable est de trouver les contraintes
d’appariement entre les trois images d’'une quadrique. Cegarab€st important principalement par

son apporaT'auto-calibrage — de telles contraintes appligsd la quadrique absolue duale seraient
I'analogue en 3 images des contraintes de Kruppa [MF92] pour le cas de 2 images. En principe le
probléme est simple : la athode de dfivation des contraintes d’appariement des points s’applique
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directement aux quadriques, avec des matrites 10 de projection qui sont quadratiques aux
entées des matrices ordinair@s 4. Seulement, les tenseurs d’appariement quadriques sont issue
des @terminantd.0 x 10, etles Ecrire en terme de tenseurs standards (veimales dvelopper tels
quels), est un probhe fort lourd. Nous I'avons attagude plusieurs fagns eta plusieurs reprises
pendant la pfiode de cette #se, sans jamais aboutir, mais sans tomigey lsin non plus. Nous
allons poursuivre, bien qu'il ne soit pas clair que daalution doit menea une nethode pratique,
car les contraintes risquentadie elles refes fort complexes.

Une autre fagn d’aborder le mfe sujet serait dtudier le tenseur trifocal calier- I'analogue
en 3 images de la matrice essentielle en 2, et qui a l@septatiorR ® € — e® R, ou R,R’ sont
des matrice$ x 3 de rotation.

L'alg ebre geométrique multi-images: Alors que de nombreux chercheurs en vision et
dié intensivement la visionegpmetrique, aucun d’eux etait expert en gonetrie algbrique mo-
derne de par sa formation. Pour l'instant il semble que nous avonseplessstils plus classiques
presque aussi loin que possible, avec de bessltats, mais toujours avec une explosion de com-
plexité qui en limite I'horizon. Cependant, il nous semble que les rares exploration de la vision par
les ggorretres algbriques professionnels [Dem88, Buc92] ont promis des avaneesdhés si-
gnificatives, si toutefois ils €fudieraient plus systhatiquement avec des outils abstraits modernes
((co)homologie, esolutions libres, classes caexistiques, outils deatiouement de singuleei’...).
Surtout, et en dehors de sonardt théorique, une telletude pourrait apporter sur les prefres
d'initialisation, des minima locaux, de paratrisation effective de lagpneétrie multi-caneras, et
des singularis de la reconstruction et I'auto-calibrage.

Tournons maintenant vers des perspectives plus larges. Il nous semble que — quoique le filon
de la ggonBtrie pure qui a tant apperttécemment soit bien loin dife épui€ comme certains le
prédisent — la recherche en vision entre maintenant enege plus syntitique et applicative, 0"
I'ingenierie et l'interdisciplinaré”vont pesider. C’est’dire, il va falloir que ceux qui travaillent
sur la reconstruction deviennent un peu photograines, et ceux qui travaillent aux applications
en syntlese d’'images deviennent un peu plus graphistes.

Les deux domaines suivants nous semblent parti@rnient susceptibles de subir un pesgr’
significatif pour les aneés qui viennent :

Reconstruction de moeales effectifs de rendu graphique: La géon¥gtrie n'est qu'une partie
d’'un mocEle de sene graphiqueeay€rative. Il faut y ajouter [FvDFH91, WW92] des melds d'illu-
mination et de eflectance (matiel, BRDF), d’'ombres, de transparence et d'effets atmersphés
pour permettre un rendu de qualittt des partitionsegpmetriques et degchelles multiples pour
I'accélérer ... Dans ce genre d'application, tout est permis pourvu que les images de sortie soient
convaincantes eleresa gererer, et facilea’'manier oua'modifier. Le modle peutetre un nelange
de sous-moeles physiques, heuristiques, locaux, en 3D ou 2D glangtrie peutetre impgcise,
simplifiée, implicite ou nefne inexistante ; tous les raccourcis sont awsrisimposteurs, couches,
bump maps, carrelages, textures stochastiques. Il faut biemosimencer avec des choses simples,
mais les environnemengsreconstruire « imiter vraisemblablemerd base d’'images serait peut
étre une description plusegxise — peuvent au fur atmesure devenirdgs complexes, ave@®gire-
trie et photonetrie ddtaillées, mouvement, neiaux non-rigides ...

Certes on fait dja I'affichage de cartes de texture sur des facettes planes, ce qui donne des
résultats plus ou moins bons. Mais les transitions entre facettes et les bords d’objets restent particu-

1. L'ignorance quasi-totale en vision delérments de base de la photograetri€ nous semble inadmissible, matse”
mauvais inghieur, et redtouvrir les @buts des mthodes dja bien connues etedelop@es d’ailleurs, semble toujours
presque un point de fierthez de nombreux visionneurs ...
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lierement difficilesa’rendre correctement, et de tels rales ont en giéral une apparenceplate»

... comme les images affiebs sur les plans. Poureer’ des moeles qui soient visuellement plus
«Vvifs », il va falloir aussi capter les micro-effets de la surface — l'interaction de la texture 3D et
des petits reliefs, avec lillumination locale, les ombres et les reflets, et les micro-parallaxes. Tous
ces effets nous donnent d'importants indices perceptuels, mais qui sont marginaux paraégport °
géongtrie globale de la sne.

En effet, la gongtrie classique de points, droites, facettes planesssalést pas toujours suf-
fisante pour le graphisme. éffie dans les environnements recéhires, il faut souvent ajouter des
couches multiechelles ou de partitionnement spatial afin d&é@r le rendu. Dans les environne-
ments plus naturels, il faut congikr des moeles de gongtrie (ou de photoettie) plus flexibles :
des surfaces splines ou implicites ; des mled grératifs stochastiques, fractals ou d’'ondelettes
pour les arbres, I'herbe, les surfaces tesas.” Tout moele graphiquestant par éfinition un mo-
déle ggrératif, on peut esgrer optimiser un tel maale depuis une estimation initiale, en minimisant
iterativement les dififences entre I'ensemble d'images obses/ét les mmes images syrghises.

Mais les moeles Ealistes ont tant de paratnés —a'la fois discrets et continus — que la pasam’
trisation, l'initialisation et I'optimisation d'un tel maalé risquent dtre extemement complexes.
Il'y aura certainement un grand nombre de pates qui sont difficilement estimables, et pour
lesquels I'information pralable, laegularisation, et les approximations joueraientalr ctitique.
En plus, la mesura optimiser est la similaegtperceptive, ce qui n'est pavident, surtout pour
les modtles grératifs ou effectifs qui ne peuvent pas espa reproduire I'image enetail, mais
seulement son apparencergfale.

Compréhension de sene: On disposea present des technologies de structuration d’information
et d’apprentissage (c’estdire, estimation) statistique quigtdit que naissantes il y a 10 ans. De
plus, on a la puissance de calcul qu'il faut pour alimenter de telethades pour des images. Il
nous semble que cesatmodes, genreeseaux bayesiens et nedds de markov implicites (HMM)
[Per88, Lau96, CDLS99, RJ86], vont catalyser pendant les 10 ou 20 ans qui viennent un chan-
gement profond dans nos capasitde modliser et de manier laeglit visuelle (changement qui
était pedite il y a quelgues am@’s dans la communautie« vision activer [BY92, Alo93], mais

qui n'est pas encoral...). Cette évolution va se produire d’abord par des syses qui observent
en continu un environnement ou une classe d'aetiv{ipar voie de descripteurs 2D ou 3D adap-
tées, extrait des images en tempsl), et qui apprennent plus ou moins automatiquement (mais
selon une architecture gprogramree) une eponse dsie auxeévenements qui ont lieu. Lesan’
thodes déchantillonnage aktoire (RANSAC, MCMC, Condensation) vont jouer witerici, mais

au centre seront les reggéntations probabilistetructurées C'est la structuration et la modulari-
sation intensivea tous les niveaux qui rendraient possiblldboration de tels sysemes experts
de vision», et 'apprentissage des milliers de paetres ecessaires leur bonne fonctionnement.
Sur le plan desaseaux probabilistes, la modulatit’apprentissage d'un grand nombre de para-
metres, et I'interopfabilitt entre les re@sentations gonetriqgues—continues et les regentations
sémantiques—disetes restent difficiles mais voatrierger. Sur le plan vision, les aspects de moyen
niveau (le couplage entre les descripteurs d’'image de bas niveau etdaamation pluseshan-
tique de Eseau probabiliste) ne sont toujours paglénts, mais ils sont susceptiblegt& attaga”
par la méme nethode deaSeaux probabilistes.



145

Annexe A

Autres papiers

Cette appendice regroupe plusieurs autres travaux qui n'onétpaaclus dans le corps du
texte, car floignant un peu de I'axeefini pour cette thse, ouetant plus marginaux par rapport
aux références principales e#s.

A.1 Resune de« Matching Constraints and the Joint Image» —ICCV’'95

Ce papier est la version courte de dans le corps du texte. J'inclus cette version ici seulement
pour Eférence — il est notamment plus compadire, et il restea’ce jour la seule version pubk’
de ce travail (dans ICCV’95 [Tri95]).

A.2 Resune de«A Fully Projective Error Model for Visual Recon-
struction »

Ce papier — un essai pour un nabel projectif d’erreurs, qui est analogaéa Gaussienne dans le
cas affine — fuecrit en 1995, mais n'a pas enca® publg (il était soumis au workshop ICCV’'95
« Representations of Visual Scenas|'epoque). Le travail fut commead!'y a longtemps, en 1992
guand Kenichi KKNATANI était en sabbatique en Oxfordu@etais roboticien) e¢crivait son livre
« Geometric Computation for Machine VisierjKan93]. Il a don®@ un cours sur quelques chapitres
de son ouvrage et auquel j'ai assisNous avons discaténsemble les metEs d’'erreurs. Je n'ai
pasété convaincu qu’une forme affine des erreurs imagfa#t toujours et strictementla chose
correcte» pour un processus essentiellement projectif comme la formation des images. J'ai voulu
créer un modle « projectif de base, ou les choses projectives auraient la forme simple et inva-
riante sous les transformations et les projections projectives. La forme de base de la distribution aux
points projectifs fut vite trougé, mais I'avancement de lég@était tes lent car il fallait rechercher :
(i) une forme analytique ou une approximation convenable pour exprimezdakats d probabi-
listes; (i) une gréralisation de la thérie des pointa d'autres sous-espacedafes, teorie qui
engloberait et ghéraliserait les algbres Grassmann-Cayley au cas inceftain

L'article référen&e ci-dessous ne montre qu’une partie asedaité de cette programme am-
bitieux. Il évite les questions analytiquesu(pai des €sultats partiels mais pas satisfaisants) et se

1. Seitz & Anandan onta¢emment pubdi’'un autre tentative de mel#’ des sous-espaces affines [SA99] incertains,
ou une Gaussienne (dans I'espace des positions des points) ese &ust’ensemble des points messiret ses axes
principaux les plus grandsfihissent le sous-espaceptimal». A mon avis ce moele (que j'avais consifé et reje¢’a
I"epoque) est trop simpliste. Il ne reproduit pas I'ajustement standard moindes dam’sous-espace sur une ensemble
des points Gaussiens, et il regeénte un maalé €duit d'incertitude, ayant seulemef¥ ) parangtres de covariance au
place de( ("% (n,k = dimension de I'espace, sous-espace).
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focalise sur la forme alfrique du moele, et ce pour les points et pour les sous-espaceaiti&s
de plus haute dimension. Les aspects Grassmann-Cayley — intersection et union des sous-espace,
ajustement de sous-espace sur des points — ne sont pasabord”

L'essentiel consista introduire, en contrepartie de la forme quadratique de la log-vraisemblance
Gaussienne standard, uardminateur de la erhe forme. Donc le madé de distribution de proba-
bilite devient I'exponentiel d’'une forme quadratique rationnelle hanegLe fait que il soit ration-
nel homoghe donne une invariance de forme sous les transformations projectives, et aussi permet le
début d’'une gréralisation aux sous-espacesliires ghéraux. Le nombre de parames libres est
en principe multiple par deux par cette homeggisation. La forme en cloche elliptigue: d’'une
Gaussienne compacte petit€ maintenue quasi-globalement, mais d’autres formes deviennent pos-
sibles, notamment lacloche x céne» des pe-images possibles d'un point image incertain. Les
distributions aux dhominateurs diéifentes peuvent localemestré recombirés, mais pas globa-
lement de fapn aussi simple qu’avec les Gaussiennes. La loi devient 'exponentiel damene
de termes quadratiques rationnels incombinables, ce qui est plus difitiaipuler & intégrer,a
maximiser) qu’une seule quadratiqgue. Donem® si on aelssia céer une forme de distribution
qui est invariante sous les transformations projectives, les calculs pratiques ont teadanser
des sommes de distributions incombinables, et il faut ass@asser de I'analytique au nenijue.

A.3 Resune de « Critical Motions in Euclidian Structure from Mo-
tion » — CVPR’99

Ce papier avec FrederikA€L, doctoranta Lund en Sade, fut pubkE en CVPR’'99 [KT99].

Il fut ecrit lors de sonejour chez nous en automne 1998, dans le cadre de notre projeeenrop”
commun BPRITLTR 21914 GmuLl. Le but ggréral du programme est de camexiser rigoureu-
sement les caswol'auto-calibrage faillit. Peter BJRM avait dja publé une excellentetude de

ces cas pour l'auto-calibrage aux pagdres internes constants inconnus [Stu97a, Stu97b]. Fredrik
a voulu étendre IEtude aux autres cas, ou avec connaissan@aagtées sur certains paratres
(skew, rapport déchelle), ou avec d'autres paratres variables (focale). Il existaie@ des al-
gorithmes pratiques pour plusieurs de ces cas, par exemple pour I'estimation des deux longueurs
focalesa partir d’'une matrice fondamentale [Har92, Har93b, NHBP96, Bou98]. Mais toutes ces
méthodes ont des singularit‘qui se montrent souvengmgntes en pratique, et on a voulu cagact’
riser lesquellegtaient intrinegques au problne, et lesquelles seraientitables par des meilleures
formulations.

Les preuves intuitives-ggongtriqgues- de Sturm semblaierd 'epoque difficilement gféra-
lisablesa ces cas parfoisplus simples mais toujours moins syatfiques, donc nous avons pris
une route plus algrique, fonde sur la gon¥€trie algbrique effective. En principe, on travaille
dans I'espace de canrds (poses et calibrages) et des structures euclidiennes 3D possibles — espace
qui peutétre pararafré de plusieurs fagns. L'essentiel, c’est que dans cet espace, chaque suite de
contraintes d'auto-calibrageedbupe la vagé alggbrique de caeras/structures qui lesxifient.

On suppose gue ces contraintes sont notre seul moyeaceteda vraie calibrage/structure face °
des solutions alternatives fausses. Donc le jenolel d’auto-calibrage ne peeitré gsolu de fapn
unigue que si cette vaie est eduitea un seul pointj.e. que si il n'existe pas d'autres cam’
ras/structures quierifient les contraintes. Oetlde la vaete par voie deI'ideal » (ensemble de
tous les polynfnes) engend€ par les contraintes. Chaque ideal peut — et pour les calculs effectifs,
souvent doit -efre caraafisé par certains sous-ensembiesxhaustifs- dit « bases de Gobner ».

En principe ces calculs sorstandards, mais en pratique ils ont une forte tendarmcexplo-
ser de fapn incontolable. Dans ce premier article on n'a ab®mlie des situations relativement
simples, mais €ja les calculs on¢t assez lourds, emie pour des outils de calcul de base delizr”
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ner Bcents comme MCAULAY 2 et SNGULAR. Donc toute I'astuce consistetrouver une bonne
parangtrisation, ce qui relve encore de l'intuition gonmetrique ...

A.4 Resune de<« Camera Pose and Calibration from 4 or 5 Known
3D Points» — ICCV’99

Ce papier fut pubéa ICCV’99. Il décrit encore un travail fait pour notre projet eveep” Q-
MULI, en ce cas sur l'initialisation des canas. Il donne plusieursettfiodes permettant de retrouver
la pose (position et orientation) et quelques paties internes d’'une card,a partir d'une seule
image d’'un minimum de 4 ou 5 points 3D connus. Toutes cethaudes sont bass sur les matrices
multiresultantes — fzgn de esoudre un syste de polyafes redondante avec I'algre lirgaire.
Leur avantage est que — commelmansform ée directe lingaire » classique pour 6 points — elles
sont quasi-lieaires, donc relativement faciéemplanter et donnent une solution unique.

Le papier raconte aussi lagbfie de base des multiresultants dans une forme etmet appli-
cable aux calculs nueriques — chose rare dans laditture, o I'accent est toujours mis sur les
aspects formels qui n’ont qu’un impacesrelatif sur la construction des matrices multiresultantes
compactes et stables.
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Abstract here: more detail can be found in [8]. The mathe-
_ _ N matics and notation may be a little unfamiliar, but
This paper studies the geometry of multi-image perspecthe main conclusions are fairly straightforward: The

tive projection and thenatching constraintsthat this in- homogeneous coordinates for all the images can be
duces on image measurements. The combined image pro-

jections define a 3[opint image subspaceof the space Qathered into a sm.gle. vector and V|.eV\./ed'as a point
of combined homogeneous image coordinates. This idN @n abstract projective space callfenht Image
a complete projective replica of the 3D world in image Space The combined projection matrices define a
coordinates. Its location encodes the imaging geometry3D projective subspace of joint image space called
and is captured by the 4 indgaint image Grassman-  thejoint image. This is an exact projective replica
nian tensor. Projective reconstruction in the jointimage of the 3D world in image coordinates. Up to an arbi-
Is a canonical process requiring only a simple rescalingyary choice of scale factors its position encodes the
of image coordinates. Reconstruction in world coordi- . . . - .
imaging geometry. The combined projection matri-

nates amounts to a choice of basis in the jointimage. The

matching constraints are multilinear tensorial equationsC€S €an be viewed either as a set of image projections

in image coordinates that tell whether tokens in differ- OF @S a projective'basis for f[h.e jQint imgge. Alge-
ent images could be the projections of a single world to- braically, the location of the joint image is encoded
ken. For 2D images of 3D points there are exactly threeby the antisymmetric four indgwint image Grass-
basic types: the epipolar constraint, Shashua’s trilineamannian tensor, whose components are< 4 mi-
one, and a new quadrilinear 4 image one. Forimages oforg pyilt from projection matrix rows. Projective

lines Hartley's trilinear constraint is the only type. The goonq reconstruction is a canonical process only in
coefficients of the matching constraints are tensors built

directly from the joint image Grassmannian. Their com- the joint image, where it reduces to a simple rescal-

plex algebraic interdependency is captured by quadratidNd Of image coordinates. World-space reconstruc-
structural simplicity constraints on the Grassmannian. tion amounts to the choice of a projective basis for

the joint image. The essence of reconstruction is the

recovery of a coherent set of scalings for the image

coordinates of different tokens, modulo a single ar-

bitrary overall choice of scale factors. The multi-

linear tensorialmatching constraints tell whether

1 Introduction tokens in different images could possibly be the pro-
jections of a single world token. For 2D images of

Multi-image reconstruction is currently a topic of 3D points there are exactly three basic types: the
|ive|y interest in the vision Community_ This pa- bilinear epipolar Constraint; Shashua’s trilinear one
per uncovers some rather beautiful geometric struc{]; and a new quadrilinear four image one. The
ture that underlies multi-image projection, and ap-sequence stops at four because homogenized 3D
plies it to the problem of projective reconstruction. space has four dimensions. For images of lines the
There is only space for a brief sketch of the theoryonly type of matching constraint is Hartley’s trilin-

ear one [4]. The matching constraints are a direct
This paper appeared in ICCV’'95. The work was supported by

) ) algebraic reflection of the location of the joint im-
the European Community through Esprit programs HCM and . .. .
SECOND. age. Their coefficients are tensors built from com-

Keywords: multi-image stereo, projective reconstruc-
tion, matching constraints, tensor calculus, geometric in-
variants.
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ponents of the joint image Grassmannian. Up to aonly up to scale, denoted~". Different types of
choice of scale factors the Grassmannian is linearlyindex denote different spaces.b,... = 0,...,d
equivalent to the matching tensors. The matchingandA;, B;,... = 0,..., D, respectively denote ho-
tensors and constraints are linearly independent buinogeneous coordinates in tlledimensional pro-
algebraically highly redundant. The redundancy isjective world spaceP* and the D;-dimensional
encapsulated by a set of ‘structural simplicity’ con- i** image P4i. Usually, d = 3 and D; = 2
straints on the Grassmannian, that induce a large sdiut other cases do have applications, j,... =

of quadratic identities among the matching tensors.1, ..., m are non-tensorial image labels. Section 3
Form 2D images of 3D space there af&") lin-  introduces a D + m — 1)-dimensional projective
early independent matching tensor components, bujpint image spaceP® that combines the homoge-
only 11m — 15 of these are algebraically indepen- neous coordinates of all of the images, indexed by
dent. We introduce an ‘industrial strength’ tenso- Greek indicesy, 3,... =01,...,D;,0;41,..., D

rial notation that (even though it may seem a little (D = ;" D;). Index 0 is used for homoge-
opaque at first sight) makes these and many othenization, so the default inclusion of an affine vector
complex vision calculationmucheasier. The tradi- (z!,...,2%)T in projective space il, 2", ..., z%).
tional matrix-vector notation is simply not powerful  Superscripts denote contravariant (point) indices
enough to express most of the concepts describeend subscripts covariant (hyperplane) ones. These
here. transform inversely under changes of basis, so that
the contraction (dot product or sum over all val-
ues) of a covariant-contravariant pair is invariant.
We adopt theEinstein summation conventionin
which indices repeated in covariant and contravari-
ant positions denote contractions (implicit summa-
tions). The same base symbol is used for analo-
gous things in different spaces, withy, ... stand-

The geometry of the joint image was suggested
by the original projective reconstruction papers of
Faugeras, Luong & Maybank [1, 2], but its alge-
braic expression was only provoked by the recent””
work of Shashua [7] and Hartley [4] on the trilinear
constraint and Luong & \évVille on canonic decom-

positions [5]. Independently of the current work, ing for points andP for projection matrices. For

Faugeras & Mourrain [3] and Werman & Shashuaexam loxcAi PAixa represents the the proiec-
[10] also discovered the quadrilinear constraint and,; P e P pro)

H a
some of the related structure (but not the ‘big pic- tion ub tqt}lsgale of a .quld ppmi to th.e corre
\ o . spondlngz image pointx“* via the matrix-vector
ture’ — the full joint image geometry). The tensorial A : dho .
. g roductz o P4ix® with thei"" projection matrix
notation and the general spirit of the approach owe ' Since the |nd|ces themselves give the contrac
very deep debt to the Oxford mathematical physics g

tlon the order of factors is irrelevant.
research group led by Roger Penrose [6]. b .
Tleb-<] denotes the antisymmetrization of

T over all permutations of the indices . .. c,
2 Conventions & Notation with a minus sign for odd permutationsg.g.

Tl = L(T® — T%). In a d-dimensional
We will assume an uncalibrated perspective (pinholeProjective space there is a unique-up-to-seale 1
camera) imaging model and work projectively in ho- index antisymmetric tensarl®®1-4l and its dual
mogeneous coordinates. The development will bef[aga;--ay- UP tO scale, these have components
purely theoretical: there will be ‘too many equa- £1 and0 asapas ... aq is respectively an even or
tions, no algorithms and no images’. Divine inter- 0dd permutation 061 ... d, or not a permutation at
vention (or more likely a graduate student with a all. Any antisymmetrick + 1 index contravariant
mouse) will be invoked for low-level token extrac- tensor T“o--] can bedualized to an antisym-
tion and matching. Measurement uncertainty will metrlcd — k index covariant onQ*T)akH ag =
be ignored (but.f.[9]). eI e aato- b, T, and vice versa

Fully tensorial notation will be used, with all in- T = =l (+T)y, .4, €1 ba00 ok,

dices written out explicitly [6]. Writing out indices without losing information. This is effectively just
is tedious for simple expressions but makes com-a reshuffling of components: both forms he(ﬁﬁ)
plicated onesnuchclearer. Many equations apply linearly independent components.
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Later we will need to characterize the location of
a projectived-dimensional subspace algebraically,

151

The truly canonical structure is the set of equiva-
lence classes of joint image space points under arbi-

without reference to a particular choice of basistrary rescalings, but that has a complicated stratified
in the subspace. This can be done by specifyingstructure that makes it difficult to handle. So from

an antisymmetri¢d + 1)-index Grassmann tensor
whose components are t@assmann coordinates
of the subspace. These generalize thekd coor-

now on we will assume that some choice of scalings
has been made and work with the joint image.
The joint projection matrix can be viewed in two

dinates of a 3D line to arbitrary subspaces. An ap-ways: (i) as a set ofn world-to-image projection
pendix sketches the details. matricesi(ii) as a set ofl + 1 (D + m)-component
column vectors that specify a projective basis for the
joint image subspac®Z® in P*. Hence, a coor-
dinate vector(z?,...,2%) can be viewed either as
the coordinates of a world poist* or as the coordi-
nates of a joint image point with respect to the basis
{P%a=0,...,d}. Any reconstruction in world co-
ordinates can equally be viewed as a reconstruction
in the joint image However, modulo a once-and-for-
all choice of the overall scale factorgconstruction

in the joint image is a canonical geometric process
requiring only a simple rescaling of image coordi-

3 The Joint Image

The basic idea of the joint image is very simple.
Suppose we are givem homogeneous projection
matricesP2" from ad-dimensional world spac@®
tom D;-dimensional image®“:. The matrices can
be stacked into a biD +m) x (d+ 1) dimensional
joint projection matrix (D = )", D;)

P x4 nates Them-tuples of image points that correspond
Py = : x* = : to some world point are exactly those tten be
PAm xAm rescaled to lie in the joint image [8]. No choice of

basis is needed and there is no arbitrariness apart
from the overall scale factors. A basis is needed

homogeneous vectoss®. These can be viewed as only to transfer the final results from the joint im-
elements of an abstra¢D + m — 1)-dimensional ~ 29€ to world space. In fact, the portion of the world
projectivejoint image spaceP?. Joint image space that can be recovered from image measurements is
points can be projected into the images by trivial co-€Xactlythe abstract joint image geometry.
ordinate selection, and conversely any set of homo- Since the jointimage is@dimensional projective
geneous image vectors (one from each image) detegUbspace its location can be specified algebraically
mines a unique point in joint image space. by giving its (d + 1)-index Grassmann coordinate
The joint projection matrix can be viewed as a [€NSOr, thgoint image Grassmannian This is an
projective mapping from world space to joint image 'Ntrinsic property of the joint image geometry inde-
space, which composes with the trivial projections pendent of.any cho_lce qf coordinates, but in terms of
to give back the original projection matricBg. |t the projection matrices it becomes

mapsP* onto a projective subspace BF that we
will call the joint image PZ<. If the joint projec-
tion mapping is singular, different world points map Here eachy; runs through the combined coordinates
to the same point in joint image space and there-of all the images, and the components of the tensor
fore in the individual images, and unique reconstruc-are just the(d + 1) x (d 4+ 1) minors of the(D +

tion from image measurements is impossible. Som) x (d + 1) joint projection matrixP%. We will

from now on we will assume that the joint projec- see that these are equivalent to the complete set of

This maps world pointx® to (D + m)-component

o0y 1
(@+1)!

ap Qg ~ag-+aq [0 ag]
Pao"'Pads NPO ...Pd

tion matrix P$ has full rank ¢ + 1). In this case
the joint image is a faithful projective replica of the
d-dimensional world in image coordinates

The joint image is defined canonically by the

matching tensor components.

As a simple example of joint image geometry [8],
for two 2D images of 3D space the fundamental ma-
trix F 4,4, has rank 2 and can therefore be decom-

imaging geometry, up to an arbitrary choice of posed asi4,va, — va,u4, Whereuy, < uy, and
scale factors for the underlying projection matrices.uy, < ug4, turn out to be corresponding pairs of
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independent epipolar lines. Combining these intotensors The simplest example is the epipolar con-
joint image space row vectors, = (u4, ua,)  Straint.

andv, = (va, va4,), the constraintau,x® = On the other hand, iD < d there will be at least

0 = v,x“ define a 3D projective subspace of the two more free variables than equations and the solu-
5D joint image space that turns out to be exactlytion (if it exists) will not be unique. Similarly, if the
the joint image. All joint image points satisfy the joint projection matrixP$ has rank less thas + 1
epipolar constrainF 4, 4,x41x42 = 0, and all im-  the solution will not be unique because any vector in
age points that satisfy the epipolar constraint can behe kernel ofP% can be added to a solution without
rescaled to lie in the joint image. changing the projections at all. So from now on we
will require D > d andRank(P§) = d + 1. These
conditions are necessary but not generally sufficient.
However in the usual 3D to 2D case where 3he 4
rank 3 projection matrices have 1D kernels (the cen-
tres of projection)Rank(P¢) = 4 implies that there
are at least two distinct centres of projection and is

4 Basic Reconstruction Equations

Given m imagesx? ~ PAix® of an unknown
pointx®, we can introduce variables to represent
the unknown scale factors and combine the result

ing equationsPAix® — \;x4 = 0 into a single alsosufficientfor a unique reconstruction.
(D+m) x (d+14m) homogeneous linear system,  Recalling that the joint projection columrd®
the basic reconstruction equations (@ = 0,...,d) form a basis for the joint im-
" age PZ® and treating thex?i as vectors inP"
x40 0 X whose other components vanish, we can interpret the
0 x4 0 —M reconstruction equations as the geometrical state-
Py . C . A2 =0 ment that the space spanned by the image vectors
o o ' A : {xAi_] i=1,...,m} in P* must intersecPZ". At
—Am the intersection there is a point &~ that can be

_ _ _ expressed(i) as a rescaling of the image measure-
Any r:onfe(;o SOII‘:;'O” _0‘; these Ethufltlo{lhs t?]“’e_s a rfementsy"; \; x*; (ii) as a point ofPZ* with coordi-
constructed world point consistent wi € image natesx in the basiP%| a = 0, ..., d}; (iii) as the

measurements, and also provides the unknown Scalﬁrojection intoPZ® of a world pointx® underP®
@,

factors;. _ _ This construction is important because although nei-
Alternatively, assuming (or relabelling so that) her the coordinate system#f nor the columns of

0; th im- .
x' #0 we can use the™ components to elim-  pa can pe recovered from image measurements, the
inate theX's and combine the remaining equations joint imagePZ® canbe recovered (up to a relative

into a compac x (d+ 1) homogeneous system of egcaling). In fact the content of the matching con-

reduced reconstruction equations straints ispreciselythe location of the joint image in
P>. This gives a completely geometric and almost
canonical projective reconstruction techniquéiti

: that requires only the rescaling of image measure-
x0m Pim — xAm POm (Ai=1,.,D;) ments. A choice of basis iIRZ® is necessary only

_ ~ to map the construction back into world coordinates.
The basic and reduced systems are ultimately equiv-

alent, but we will work with the basic one as its
greater symmetry simplifies many derivations. 5 Matching Constraints

In either case, if there are more measurements
than world dimensionsI} > d) the system is usu- Now we briefly sketch the derivation [8] of the
ally overspecified and a solution exists only whenmatching constraints from the basic reconstruction
certain constraints between the projection matriceequations. We assume that there are redundant mea-
P/} and the image measurementd’ are satisfied. surementsD > d and that the combined projec-
We will call these relationsnatching constraints  tion matrix P$ has full rank ¢ + 1). The equa-
and the inter-image tensors they generatdching  tions have a nonzero solution if and only if the

01 Al _ LA 01
x1 P —xM P,
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(D +m) x (d+ m+ 1) coefficient matrix is rank €4, 5,¢c, €4,B,c, gives the equivalent but more fa-
deficient, which happens if and only if all of its miliar form
(d+m + 1) x (d +m + 1) minors vanish. The

- F A1 A2
. . . . = Fg 4, XX
matching constraints are precisely the conditions for

) A1 pBiC
this to happen. _ o = o (€A13101Pa1Pb 1x 1) :
Each minor involves an antisymmetrization over
. . e PA2 PBQXCQ E:abcd
every column of the system matrix, so the minors A2B202 ¢ Hd

eachx“i, with coefficients that are antisymmetrized tensor ofundamental matrix F A,.4, is defined by

products of projection matrix elements of the form

. . F = 1g e 1 B1C1B2C
PloPot ... P9 for some choice afig . . . ag. This Arda = 1 BABCL BA By
implies thatthe final matching constraint equations = (EAlBlclelel)
will be linear tensorial equations in the coordinates . (EAQBQQPCBQP%) gabed
of each image that appears in them, with coefficient
tensors that are exactly the Grassmann coordinates I5:¢152C2 — F, , eMBiC1 gA2B2C%

I of the joint image subspace iR®. This

is no accident: the Grassmann coordinates are th
only quantities thatould have appeared if the equa-

tions were to be properly invariant under projective

ch;ngﬁs O_f ba§is i? Worlﬁns_pace. but th linesl, andmy throughx?, the tensol ymp; is
ach minor involves aiin images, but the system proportional toe 4 s x©. Any covariant image ten-

matr_lx is rather sparse and the_re are many degenéor can be ‘pulled back’ through the projectigt!
eracies. In fact, any minor that involves only a sin-

I A f .  simol i want to a covariant tensor in 3D space. An image line
gle rowA; from |mAagez simply contains a constan pulls back to the 3D plank, = 1,PZ through the
overall factor ofx*i. These factors can be elimi-

rojection centre that projects to the line. The tensor
nated to reduce the system to irreducible factors in-p J pro)

C . .
. € x“ pulls back to the 2 index covariant tensor
volving at least two rows from each of betwezand ABC X P

Y For 2D i £ 3D h X[ = €apc P{PP xC. This is the covariant rep-
+ Limages. For Images o SPace e POSSlyasentation of a line in 3D: the optical ray through
bilities are as followsi(#£ j Ak £l =1,...,m):

x4, The requirement that two 3D lines,; and

The constraint can be viewed geometrically as fol-
fows. An image pointx? can be dualized to

eapc x©. Roughly speaking, this represents the
point as the pencil of lines through it: for any two

0 = IMABi4;B; 4 CiygCil Y] intersect can be writteRy, y.q €2 = 0. So
0 = TAiBiA;AL Ciy By Bil the bilinear constraint reall the standard epipolar
0 — TAAARAL (BiyB;  Bis Bl one,i.e. the requirement that the optical rays of the

two image points intersect.
These represent respectively the bilinear epipolar
constraint, Shashua’s trilinear one [7] and a new5.2 Trilinear Constraints
quadrilinear four image one. Herg/ represents . e [BIC1BaBs o Ay Ay A
aP> vector whose non-imagecomponents vanish, | Ne trilinear constraintd =11 7272 x fx2x =

so it is enough to antisymmetrize over the indices? COTeSPond @ x 7 basic reconstruction minors

from each image separately. Each constraint is disiormed by selecting all three rows from one im-

cussed in detail below. Recall that the Grassmanniaf9€ and two each from two others. Dualizing with

can be expressed &% = 1 PngPZPg cabed  €4,B,c, gives the equivalent constraint
A1y [A2 GA1B2HBB <43l — ¢

5.1 Bilinear Constraints where the3 x 3 x 3 = 27 component trilinear tensor

The epipolar constraint corresponds t6 & 6 mi- IS

nor containing three rows each from two images and G 4,424 = le, p o, 151014248
(antisymmetrizing separately over each image) can 1 B, pCi Ay pAs _abed
be writtenx[A1 TB1C1l[B2C2 A2l — o, Dualiz- = o0 (FamaPdPy ) PPy e

ing both sets of skew indices by contracting with 41814243 — G 4243 gC1A1B
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Dualizing the image 2 and 3 indices re-expresses thelefines the 3D plane through the optical centre that
constraint as projects to the image line through® andy*. All
such planes contain the optical raysof, and agy4
varies the entire pencil of planes through this line

1 AipBi C1) . is traced out. The constraint then says that for any
-2 <EAIBICI PPy x ) plane through the optical ray of*2 and any other

Ba Cy B3_C3\ _abed plane through the optical ray af*?, the 3D line of

'<€AQBQCQ Pox ) <EA‘°’B‘°’C‘°’ Pi'x ) € intersection of these planes meets the optical ray of
These equations hold for &l x 3 = 9 values of X''- Alittle geometry shows that this implies that
the free indicesd, and A;. However whend, is  all three of the optical rays meet in a point, so the
projected along the“2 direction orAj is projected  three pairwise epipolar constraints between the im-
along thexs direction the equations are tautolog- a9€s follow from the trilinear one.
ical because, for example42xP2l = 0. Sofor ~ The constraint tensor G, #4243 =
any particular vectors?? andx4s there are actu- €4,8,c, 17944 treats image 1 specially
ally only 2 x 2 = 4 linearly independent scalar con- and there are analogous image 2 and image 3
straints among the x 3 = 9 equations, correspond- tensorsG.4,*#41 and G 4,142, These turn out
ing to the two image 2 directions ‘orthogonal’sd2  to be linearly independent o6 4,243 and give
and the two image 3 directions ‘orthogonal’stds.  further linearly independent trilinear constraints on
The trilinear constraint can also be written in matrix x“'x**2x42. Together, the 3 constraint tensors con-

BB A1 Co C
0= EAQBQCQ EAngcg 'GAl 2P Lx XX

notation ¢.f.[7]) as tain 3 x 27 = 81 linearly independent components
(including 3 arbitrary scale factors) andivaly give
[x2], [Gx1] [x3], = Oy3x3) 3 x 9 = 27 scalar trilinear constraint equations, of

_ which 3 x 4 = 12 are linearly independent for any
Here, [x],, is the usual ‘cross product’ representa- given triplex1 xA2x4s

tion of a 3-component vectoras a skew-symmetric
matrix, and the contractior G 4, 4243 is viewed

. - - T
as at:;xli’)fznatrg{[G Xl]t'hTh_e E{oJeCt,'OQS,daIOp%” matching tensor components for the three images,
(on the left) andk; (on the right) vanish identically, the tensors are certainly natgebraically indepen-

so again there are only 4 linearly independent €JUayant of each other. There are magyadratic re-
tions. '

Two ind i trizat ‘ ducts lations between them inherited from the structural
Wo Index antisymmetrizations (cross_ produc s) simplicity constraints on the joint image Grassman-
vanish only for parallel vectors, so the trilinear con-

raintx A4z G, B2Bs w45l — 0 also imoli nian tensorI“0*¢. In fact, the number of al-
tshrail? x ”X | Alf the f x d'_ ﬁe%so IMPIIEs gebraically independent degrees of freedom in the
atfor all values of the free indicgsl, 5| (*")-component Grassmann tensor (and therefore

<A xAiglAz GA132}A3 in the complete set of matching tensor coefficients)
is only 11m — 15 (i.e. 18 for m = 3). Similarly,
(More precisely, formatchingx“' and x42 the there are only2m — 3 = 3 algebraically indepen-
quantity x41x[42 G Ale}As can always be factor- dent scalar constraint equations amonglihearly
ized asT4252] x4s for somex“i-dependent tensor independens x 4 = 12 trilinear and3 x 1 = 3 bi-
Tl4252]) By fixing suitable values ofd,B,], these  linear constraints on each matching triple of points.
equations can be used t@nsfer points from im- One of the main advantages of the Grassmann for-
ages 1 and 2 to image Be. to directly predict the malism is the extent to which it clarifies the rich al-
projection in image 3 of a 3D point whose projec- gebraic structure of this matching constraint system.
tions in images 1 and 2 are known, without any in- The constraint tensors are essentially just the Grass-
termediate 3D reconstruction step. mann coordinates of the joint image, and Grass-
Geometrically, the trilinear constraints can be in- mann coordinates are always linearly independent
terpreted as follows. As aboveupc PfPéB x¢ but quadratically redundant. Generically, three bi-
is the optical ray througlx“ in covariant 3D coor- linear constraints or any three components of a trilin-
dinates. For anw* the quantitye spc PAxPy® ear one are enough to imply all of the remaining con-

However, although there are rimear relations
between thesl trilinear and3 x 9 = 27 bilinear
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straints for three images, although numerically and6 x 1 = 6 bilinear constraints. However there are
for degenerate imaging situations it turns out that theonly 11m — 15 = 29 algebraically independent
trilinear constraints are somewhat more robust thartensor components in total, which gi2en — 3 =

the bilinear ones [7, 3]. 5 algebraically independent constraints on each 4-
tuple of points. The quadrilinear constraint is al-
5.3 Quadrilinear Constraints gebraically equivalent to various different combina-

_ . _ ~ tions of two and three image constraints, and vice
Finally, the quadrilinear, four image Grassmannianyersa.

constraintl [41424s44 xBiy B2y Bsx Bil —  corre-

_sponds to aB x 8 basic reconstrl_Jctlon minor ;elect- 54 Further Results

ing two rows from each of four images. In this case

the simplest form of the constraint tensor is just a di- The Grassmann tensor also containsepgolesin
rect selection oB* = 81 components of the Grass- the form

mannian itself oA 1e [ A AiBiC;
7 al €A;B;C;

— A1A2A3A ABCs ) B.C.

= [A1424344 IAjAszCZ _ ez‘AJ EAszCz

_ 1 A1 pAspAspAs _abed
- ﬂPa Pb Pc Pd €

HA1A2A3A4

This exhausts thé¢”"") components of the Grass-
Dualizing the indices from each image separatelymann'an’ so modulo a choice of scalings the Grass-

gives the quadrilinear constraint mannian can be reconstructed linearly from the com-
plete set of matching tensors and epipoles.

0 =¢€4,B,0, €AyB,Cs EA3B3Cs EALBAC, The Grassmann structu_ral simplici_ty relations
poocezlfo /820601 — 0 induce a rich set of

. HB1B2B3Bs (14 C24C34Cs . . :
quadratic identities between the matching tensors of
_ % (EAlBlclPalecl) (EAQBQCQPbBQXC2)' up to8 images. T_he swpplest iS juBt4, 4,€17% = 0.
Many more are listed in [8].
-(sASB3CSPf3xC3) (sA4B4c4Pf4xC4) gabed The formalism also extends to lines and other

types of subspace. For any number of 2D images
This must hold for each of thg* = 81 values of  of 3D lines the only type of matching constraint is
A1 As A3A4. Again the constraints witd; alongthe  Hartley’s trilinear one [4]. The relationships be-
directionx“ forany: = 1, ...,4 vanishidentically, tween trilinear line and point constraints emerge
so for any given quadruple of points there are onlyvery clearly from this approach. One can also de-
24 = 16 linearly independent constraints among therive the theory of homographic images of planes
3% = 81 equations. (2D worlds) and matching constraints for 1D (lin-

Together, these constraints say that for every posear) cameras in this way.
sible choice of four planes, one through the optical Matching constraints are closely associated with
ray of x4 for eachi = 1,...,4, the planes meetin minimal reconstruction techniques that recon-
a point. By fixing three of the planes and varying the struct world objects from the absolute minimum
fourth we immediately find that each of the optical amount of image data. In 3D there are bilinear
rays passes through the point, and hence that they adind trilinear minimal reconstruction techniques for
meet. This brings us back to the two and three imageooints and bilinear ones for lines. Reprojection
sub-cases. of the reconstructions gives matching tensor based
Again, there is nothing algebraically new here. methods for thdransfer of structure between im-

The 3* = 81 components of the quadrilinear con- ages.
straint tensor arénearly independent of each other  Finally, given a sufficient set of matching ten-
and of thed x 3 x 27 = 324 trilinear and6 x 9 = 54 sors one can exhibit ‘reconstruction’ technigues that
bilinear tensor components; and th&¢ = 16 lin- work directly in the joint image without reference
early independent quadrilinear scalar constraints aréo any world space or basis. The ‘reconstructions’
linearly independent of each other and of the lin- are somewhat implicit, but they really do contain all
early independent x 3 x 4 = 48 trilinear and of the relevant structure and with a choice of basis
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they reduce to more familiar coordinate-based tech-neither of these tensors vanish. The usual determinant-

niques.

6 Summary

of-a-product rule implies that undera + 1) x (k + 1)
linear redefinitiona¢ — S~ u?A of the spanning ba-
sisu{ , the components ai“°** are simply rescaled by
Det(A). Similarly, wq, . ,...a,,, iS invariant up to scale
under(d — k) x (d — k) redefinitions ofw’,. A pointx®

The combined homogeneous coordinates of a set dfes in the subspace if and only if thié + 2) x (d + 1)

m perspective images of a 3D scene define an ab

stract projectivgoint image spacecontaining a 3D
projective subspace called tjuint image. Thisis a
faithful projective replica of the scene in image co-
ordinates defined intrinsically by the imaging geom-
etry. Projective reconstruction is a canonical geo-
metric process in the joint image, requiring only a
rescaling of image coordinates. A choice of basis in
the joint image allows the reconstruction to be trans-
ferred to world space.
There are multilineamatching constraints be-

matrix formed by appending the column vectorxsfto
U is rank deficienti.e. if and only if ul®o ek xax+1] = ,
Dually, x* lies in the subspace if and onlywx® = 0
foralli = k+1,...,d+ 1 and this is equivalent to
Wayi1-aqb x® = 0. Finally, it turns out that up to scale
u® % andwyg, . ,...q,,, aretensor duals of one another.
In summaryup to scale the antisymmetric Grassmann
tensoru® - (or dually wy, ,...a,,,) Uniquely char-
acterizes the subspace and is characterized by it, inde-
pendent of the basis chosen to span the subspébs.
can be used to algebraize projective geometric relation-
ships. For example the union (span) of two noninter-
secting subspaces is just®o o vt and dually the

tween the images that determine whether a set of imintersection of two minimally intersecting subspaces is

age points could be the projection of a single world
point. For images of 3D points only three types of

Wlagt1aar1 Xbip1--bayi]® » )
However, although each subspace specifies a unique

constraint exist: the bilinear epipolar one, Shashua's2ntisymmetric tensor, very few tensors specify subspaces.

trilinear three-image one and a new quadrilinear
four-image one. For 3D lines the only type of con-
straint is Hartley’s trilinear three-image one.

All of the constraints fit into a single geometric
object, the 4 indejoint image Grassmannianten-
sor. This is an algebraic encoding of the location
of the joint image. The matching constraints are
linearly independent but algebraically dependent:
structural constraints on the Grassmannian tensor in
duce a rich family of quadratic identities between
them.

Appendix: Grassmann Coordinates

A k dimensional projective subspace irdimensions
can be specified by choosingia+ 1 element basis
{u?]i =0,...,k} of vectors that span it, or dually by
giving ad — k element basigw’|i =k +1,...,d + 1}
of linear forms orthogonal to itie. the subspace is
{x*lwix®*=0,i=k+1,...,d+1}). Given a choice
of basis for the embedding space, tkie can be thought
of as the columns of & + 1) x (k + 1) rankk + 1 ma-
trix U and thew's as the rows of dd — k) x (d + 1)
rankd — k matrix W. Up to scale, thék + 1) x (k+ 1)
minors of U are exactly the components of the antisym-
metricGrassmann tensoru® % = ul® ... u®!, Sim-
ilarly, the (d — k) x (d — k) minors of W are the com-
ponents of thelual Grassmann tensorwy, , ,...a,,;, =

whtl L wdtl - By the rank conditions o andW,

[ak+1 ad+1

Those that do are callesimple because they can be fac-
torized in the formul® . .. u?*! for some set ofa?. This
occurs exactly when either of the following equivalent
quadraticGrassmann simplicity relationsare satisfied

u(l()"'[(lk ub()“'bk] 0

(:bl"'bk 0

(¥Wayi-age U
These structural relations obviously hold for any simple
tensor because some vector always appears twice in an
antisymmetrization. One can also show that they do not
hold for any non-simple one. They restrict tf ﬁ)
dimensional space dft + 1)-index skew tensors to a
(k +1)(d — k) dimensional quadratic subvariety that ex-
actly parameterizes the possible subspac&mssmann
coordinates are linearly independent but quadratically
highly redundant
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A Fully Projective Error Model for Visual Reconstruction
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Abstract This paper describes initial work on a fully pro-
jective generalization of affine least squares. The

Measurement uncertainty is a recurrent concern in visuakesulting theory is relatively simple and projec-
reconstruction. Image formation and 3D structure recov-tively natural, and it extends to a wide variety of
ery are essentially projective processes that do not quitgprojective objects: points, lines, hyperplanes and
fit into the classical framework of affine least squares,so forth. Given a choice of ‘plane at infinity’,
so intrinsically projective error models must be devel- the classical affine theory is contained as a spe-
oped. This paper describes initial theoretical work oncial case. There is a canonical probabilistic in-
a fully projective generalization of affine least squares.terpretation along the lines of the potent least-
The result is simple and projectively natural and works squares/Gaussian/approximate log-likelihood con-
for a wide variety of projective objects (points, lines, hy- nection, and standard linear algebra often suffices
perplanes, and so on). The affine theory is containedor practical calculations.
as a special case, and there is also a canonical prob- The notion that projective geometry should be
abilistic interpretation along the lines of the classical ‘simpler’ than affine geometry is central to this
least-squares/Gaussian/approximate log-likelihood conwork. Several aspects of projective naturality played

nection. Standard linear algebra often suffices for prackey réles in the development of the theory:
tical calculations.
e It should look simple and natural in homoge-

neous coordinates and work equally well at all
1 Introduction points of a projectivized space, from the origin

right out to the hyperplane at infinity.
For reliable reconstruction of 3D geometry from im-
age measurements it is essential to take account of ®
measurement uncertainties. Image formation and re-
construction are essentially projective processes and
the errors they generate do not quite fit into the clas-
sical linear framework of error models such as affine
least squares. In the absence of fully projective er-
ror models, uncertainty is currently handled on a
ratherad hocbasis, often by simply feeding quasi-
linear phenomenological error estimates into agen- ¢ |t  should behave naturally  under

It should generalize easily from points to hy-
perplanes, lines and other projective subspaces,
and perhaps even to higher-degree projective
varieties like quadrics and cubics.

e For projective subspaces, it should be simply
expressible in terms of Grassmann coordinates
(i.e.'the natural parameterization”).

eral nonlinear least squares routine. This produces  point/hyperplane — and hence Grass-
numerical answers, but it obscures the underlying mann/dual Grassmann — duality, and also
geometric structure of the problem and makes fur- under projective transformations.

ther theoreticali(e. algebraic) development impos-

sible.

We will use tensorial notation with all indices

This unpublished paper dates from 1995. The work was sup-Written out explicitly, as in [7, 9]. Most of the de-
ported by the European Community projects Second and HCM.velopment will apply to general projective spaces,

159
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but when we refer to the computer vision case of 2D (1 x!
projective images of a 3D projective world we will T olx xxT+X
use indicess = 0,...,3 for homogeneous world

Inverting this homogenized covariance matrix
gives an equally simpleomogenized information
matrix :

vectors andA = 0,1,2 for homogeneous image
vectors. The Einstein summation convention ap-
plies to corresponding covariant/contravariant index
pairs, so for examplﬁ‘gxb stands for matrix-vector 1 % T -1 B 1+x' X1 —x'XxX"!
multiplication ", T¢ x°. % %% +X - _X-1x X1
Probability densities will be denoted ) ) ) ) )
dp(x“|Evidenc to emphasize that they are Finally, contracting the information matrix with
densities inx® rather than functions. Aelative X andx” gives (up to an additive constant) the
likelihood is a function defined by dividing a chi-squared/Mahalanobis distance/Gaussian expo-
probability density by a (sometimes implicit) prior nent/approximate log-unlikelihood afwith respect

dp(x®) or volume form (uniform prior) dv. toXandX:
Log-unlikelihood means—2 times the logarithm 1 4+ x?(x|%,X) =1+ (x — %) X }(x — )
of a relative likelihood, defined up to an additive

constantx? variables are log-unlikelihoods. _ (1 XT) (1 + XT§71X —XT§ 1) <1>
—X7'x X X

Although many specific error models have ap- i i i

peared in the literature there have been very few at] "€ déterminants of the homogenized covariance

tempts to unify different aspects of the field. Zhang 2d mfolrmauon matrices are simpBet(X) and

& Faugeras [10, 1] and Luoref al [3] respectively Det(X77). , o

provide linearized least squares models for 3D point_ 1 ne moral is that homogenization makes many

and line reconstruction and fundamental matrix eS_Gau55|an and affl_ne least squar_es_ notlo_ns even sim-

timation. Mohret al [5] formulate multi-image re- PI€r and more uniform. In fact, it is a nice way to

construction as a batch-mode nonlinear least square¥0rk €ven when there is no question of projective

problem, and more recently McLauchlan & Murray space, because the parameters of the Gaussian are

[4] describe a suboptimal but practically efficient gll kept together_m one matrix. Der!vatlons and cod-
linearized incremental framework for several types"9 PECOME €asier because equations for means fall
of reconstruction out of those for covariances.

: : 3 Projective Point Distributions
2 Homogenized  Affine  Least

Squares Now we briefly sketch the key elements of the pro-
jective least squares error model for a single projec-

To motivate the projective model we will re-express tive point. For a more complete development of the
classical least squares for affine points in homo-theory see [8]. - '
geneous coordinates. Consider a random vector Consider an arbitrary probability densitp(x*)
x = (z,..., 27 in ad-dimensional affine space, for an uncertain point in & dimensional projective
subject to some probability distribution with mean SpaceP®. To be projectively well defined, the den-
x and covariance matri. We can homogenize Sity must bescale invariant dp(x*) = dp(\x*)
x and embed it ind dimensional projective space for all x* and allA # 0. Integration againstip(-)
by adding an extra componesf’ = 1 to make induces a linear expectation value opergtpon the
a d + 1 component homogeneous vectef =  Scale-invariant functions oR:
Lz, ...,z9T. The mean and covariance are
( ) (1= [, 1) dplx)

neatly contained in the expectation val<ne"xb>:
The homogenized affine analysis given above

1 1 0 0 suggests that we should try to evaluatb@anoge-
(1x7)) = (o) (1 %)+ - ab agb\ i
b'e X 0 X neous covariance tensaK® ~ <x be > invert
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it to produce ahomogeneous information tensor ance normalization consistency conditioron X

My, = (X~ 1)y, and then take + x?(x%|X®) ~ ,

M,,x?x" as a measure of normalized squared er- N, X% — <NabX“X > 1) =1

ror or approximate log-unlikelihood. Unfortunately, ¢ N gxex4

this can not quite work as it stands becayseis

only defined forscale invariantfunctions ofx® and

the moment monomialg®: - - - x% all depend on

the scale ok®. On a general projective space there

is no canonical way to fix this scale, so classical

means and covariances are simply not defined.
This problem can be resolved by introduc- xx? = xab

ing an auxiliary normalization tensoN,, and N gxcx? )= N gXcd

homogenizing with respect to it, so that quan- ) _
tites of the form (M bXaXb) are replaced Usually, one can arrange to work with normalized
a

by homogeneous scale invariant quantitiesquantities and ignore the scale facta, No, X =
(Mabxaxb)/(chxcxd). We will call such
functions biquadrics because their level surfaces

Viewing X and N as matrices, this can be written
Trace(NX) = 1. If dp(-) is not correctly nor-
malized, we can normalize by dividing through by
N, X% = (1) # 1. The normalized covariance
tensor is then

By analogy with the homogenized affine case and
assuming for the moment th is nonsingular, we

are quadric: (MabXaXb) / (chXCXd) = A caninvert it to produce Aomogeneous informa-
implies (Mg, — ANg)x%x® = 0. As an tion tensor My, = (X~!),, and define a corre-
example, the affine normalization condition spondinghomogeneoud + x? function
2’ = 1 can be relaxed if we divide through o
by N#flxaxb = (p>x?)? = (29)2, where 1—|—X2(XQ‘X,N)EM
N2 = peeppe = (L % andp = (10...0) Neax“x?

is the plane at infinity, At first sight the normalizer |; js not immediately obvious that these definitions
simply provides a fiducial scalin®ux“x” = 1 make sense, but one can argue [8] that they do in
with respect to which the error model can be fact jead to a coherent theory of approximate least
defined, but ultimatelyN is on a par withM and  gqyares estimation. Two key approximations are re-
tends to play an equally activele’in the theory. quired, both of which arexactin the affine case and
generally accurate whenever the uncertainty is small
compared to the scale of projective space. (And itis
3.1 Basic Equations only in the limit of small uncertainty thaany least
squares technique becomes a good approximation to
Given a projective probability distributiodp(x®)  the more rigorous maximum relative likelihood the-
and an arbitrary symmetric positive semidefinite ory).
normalization tensor N, On a projective space  as in the affine case, it is often useful to regard
P, we can define théomogeneous covariance  the information as the primitive quantity and derive

tensor the covariance from it. The quadratic (Gaussian) ex-
w | xx° ponentx?(x|x,X) = (x — %) X !(x — %) is the
XT= N gx°x? keystone of affine estimation theory because it is the

leading term in thecentral moment expansionof

Note thatX is symmetric, positive semidefinite and an arbitrary distribution. Theentral limit theorem
independent of the scale af*, but it does depend (which guarantees the asymptotic dominance of this
on the value and scale d¥. If N has null directions ~ term given ‘reasonable’ behaviour of the underlying
it should be compatible witdp(-) in the sense that distributions) is the ultimate probabilistic justifica-
the above expectation value is finite. the distribu-  tion for affine least squares techniques.

tion should not have too much weight in the vicinity ~ Similarly,  biquadric ~ exponents 1 +

of the null space oN. Since(-) is linear, ifdp(-)is ~ x*(x*|X,N) = (Mabx“xb) / (chxcxd) lie at
correctly normalized we have the followirtpvari- the heart of projective least squares. In particular,
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they are likely to be good asymptotic approxi- desired solution is the smallest real root, which can
mations to arbitrary projective log-unlikelihood be roughly approximated by thepproximate shift
functions, so that estimation theory based on thensolution

should ‘work’ in much the same way that conven- 1

tional least squares ‘works’ in affine space. Given A~ (Nab(M_l)ab) -1

this, the uncertainties of projective points can be

modelled withbiquadric probability distributions The two main approximations required to make

projective least squares ‘work’ are the covariance
dp(x®) ~ exp 1 Mgpx*x° v estimateX ~ M~! and the approximate shift so-
2 N gxcxd lution. Both areexactfor affine normalization and

much as affine uncertainties can be modelled Withgenerally accurate for small uncertainties, but nei-
Gaussians ther is very good for distributions that spread across

Several approximations are required here. Firstly, "€ €ntire width of projective space. However, least
there is no canonical volume forhV on projec-  Sduares is not really suitable for weak evidence
tive space, so it is necessary to make an ‘arbitrary(Wide dis_tributions) in any e_vent: It makgs too many
but reasonable’ choice of this ‘uniform prior’. This assumptlgns about the_un_lformlty of priors and.t'he
is annoying, but it is not specifically a problem with a;ymptotlc shqpes of d|str|put|ons to pe CF’mPet'“"e
projective least squares: implicitly or explicitigy- with the? more rigorous maximum relative |Ik§|lh0.0q
ery least squares theory makes such choices. Thi1eory in this case. Its main _strengt_hs_ are simplicity
mere existence of a uniform volume form on affine 2" asympt_otlc correc.tness in the I_|m|t where many
space does not make it a universally acceptable primr_noderate pieces of e_v'|d(.ance comblpe t_o make asin-

Secondly, biquadric distributions are somewhat9® _s‘Frong one. Ar_1d I ek exactly this Iw_mt t_hat the
less tractable than Gaussian ones and (except in th%OIOIItlonal approximations made by projective least
limit of affine normalization) there does not seem to squarzsfpecome acc_ura;[el. distributi q
be a closed form for their integrals. This means that To define a meaningtu _'S_‘t” utlo_rM and N
we do not know the exact functional form of the re- need to beron-negative but it is practically useful
lation X — X(M, N) between the covariance and to allow them to have null directions. To guarantee

— 3 . . oy —1 b
the information and normalization. However with th_ﬁ pormallzatlolrll Cond't'o'Nab(M_l_ )* = 1 W?
an appropriate choice of projective basis the inte-V!!! IMPOSE anutl space compatibility condition:

gral can be approximated by a Gaussian [8], with thethe null space oM must be contained in that of.

result thatfor properly normalized distributionthe This ensures that any pseudo-ln\j?ril? _Of a singular
‘classical’ homogenized affine formul ~ M~! M can be used ',[0 evalual¥,, (M) (it _makes
is still approximately valid. Here properly normal- "° difference which). However, the covariance ten-

ized means that the covariance normalization condiS?' X ~ M is only defined for nonsingulavL.
tion N, X = 1 holds forX = M~!, so that the

distribution inM and N is approximately normal- 3.2 Normalizations

ized in the sense that) ~ 1. ' If we takeN to be theaffine normalization N2l =
_ It |s_often necessary 10 normallz_e an unnorm_al- copee = (19) wherep® = (10 ... 0) is the
ized biguadric distribution. Rescaling the density hype

) o i ) rplane at infinity, the biquadric distribution re-
function amounts tghifting the informationM by duces to the homogenized affine case we started
a multiple of N: M — M — AN. We will say that

) _ _ ] from. In this case the covariance normalization con-
M is cqrrectly shifted if M has the clorlr)ect nor-  qition is simply X% — NgffX”b — 1 and (to the ex-
malization to be a covarianceN.,(M™")* = 1. tant that the underlying distribution is well modelled
The _correct shlft_ f‘_actor gan be fqund by solving the by a Gaussian) the homogenedus x2 function is
nonlinearnormalizing shift equation one plus a genuine classicg? variable.
ab _ 1 On the other hand, iN is taken to be the identity

matrix in some projective basis we havespher-
This amounts to a polynomial of degr&ank(IN) ical normalization Ngx?x? = Y9_,(29)? = 1
in A, linear in the case of affine normalization. The and the error model reduces to a spherical analogue

Nap ((M - )‘N)il)
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of linear least squares, with ‘distances’ measured bysiond of the projective space:
sines of angles on the unit sphere. The two normal-

b
izations coincide for points near the origin but dif- <1 + XQ(Xa)> — M, <X(17X>
fer significantly near the hyperplane at infinity. The Negxex?
affine normalization vanishes on the plane at infinity _ X;blxab —d+1

and points there are infinitely improbable, whereas
the spherical normalization is regular and well be- Moreover, we have already seen that — in analogy
haved for all points, including those at infinity. to the error ellipsoids of the classicaf — the level

These are just two of the infinitely many possible Surfaces of + x* are always quadric. Near a mini-
choices forN. There is no universally ‘correct or mum of1+x? these surfaces will be ellipsoidal, but
‘canonical’ normalizer. IdeallyN should be chosen further away they may cut the plane at infinity and
to reflect the mechanism that generates the experif€nce appear hyperboloidal rather than ellipsoidal.
mental uncertainty, although in practice numerical
expediency is also a factor. 3.4 Homogeneous Taylor Approximation

With the spherical normalization it is natural t0 1o get an idea of why biquadric functions should ap-
take an eigenvalue expansionXfin an ‘orthonor-  pear in projective least squares, consider an arbitrary

mal’ projective basis. 'The r_nodg (maximum like- smooth scale invariant function on projective space:
lihood value) of the distribution is the maximum- f(x2) = f(Ax%). f(-) can be approximated with

eigenvalue eigenvector K and the remaining 5 conventional Taylor series at a point, but this is

eigenvectors give the principal axes of the uncer-nqt very satisfactory as the resulting truncated Tay-

tainty ellipsoids. Small eigenvalues correspond )6 holynomials are not exactly scale invariant and

directions with little uncertainty, while for large ones depend on the scale of the homogeneous vector at

(those near the modal eigenvalue) the distributionyhich the derivatives are evaluated. What is needed

spreads across the entire width of projective space;g aprojectively invariananalogue of the Taylor se-

For the ‘uniform’ distribution X = 75 T. ries. Once again homogenization with respect to a
More generally, given ani andN there is al-  normalizerN,, makes this possible.

ways some projective basis in which they are in Consider the scale-invariant function

canonical form, i.e. simultaneously diagonal with M. x@1x02 ... 02k

N having entriest-1 or 0. In this basis the global Fx) = =2

minimum of 1 4 x2 is at the minimum eigenvalue (Ngpxax?)

eigenvector ofM along a 1’ direction of N, and a whereM and N are arbitrary symmetric tensors.

correctly normalized distribution has 1/\; = 1 Multiplying out and differentiating2k times using

where the sum is over the inverse eigenvalueblof the usual iterated chain rule gives

along 1’ directions ofN.

1 o2k [(Nabxaxb)k . f(xa)}

Mooz = 1™ oxor - oxeam
3.3 Homogeneous Chi-Squared B i’“: oI f PP (NgpxxP)*
B s Ox(@1 ... 9x%  Ox%+1 - .. Oxa2k)

Except in the case of affine normalization and an un-
derlying Gaussian distribution, the homogenegtis Here, (a; - - - as;,) means ‘take the symmetric part’.
variable is unlikely to have a classicgf distribu-  The factorial weights of the familiar iterated chain
tion. However, the %2 ” variables used in statistics rule are subsumed by this symmetrization.
seldomdo have exacl? distributions and that does  This formula givesM in terms of N and the
not stop them being useful error measures. Severdirst 2k derivatives of f(-). Now choose anyN
familiar properties of the traditiona? do continue  and let f(-) stand for an arbitrary scale-invariant
to hold. Ourx? is nonnegativel(+x? > 1), andfor ~ function. The resultingM defines a function
nonsingularM its expectation value is the number (M, ..., X% - - - x%k) /(N,x%x)* that is guaran-
of independent degrees of freedone, the dimen- teed to agree wittf(-) to order2k atx®. We will
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say thatM and N define a(2k)"*-orderhomoge-  uncertainty is small the choice of normalization is
neous Taylor approximation to f(-) atx*. The  nottoo critical.
‘Taylor coefficients’ pack neatly into the single ho-  Since the biquadrid + x? functions represent
mogeneous tensdv¥l,, ..., . For example adding log-unlikelihoods, the proper way to combine them
a constant tof (-) amounts to adding a multiple of into a single estimate of the position »f is to add
N(aias *Nay, 1as,) 10 M. With affine normal-  them and then correct the constant offset term to nor-
ization N = N2, the homogeneous Taylor series malize the combined distribution. First consider the
reduces to the usual inhomogeneous affine one atommensurablecase in which all of the normal-
x = 0. izationsN(?) = N are identical. The sum of log-
In the present case we are mainly interested in apunlikelihoods reduces to a sum of information ten-
proximating projective log-unlikelihood functions to Sors, as in the affine theory:
second order near their peaks, by analogy with the
Gaussian approximation to the peak of an affine dis- - 2/ a . . M px*x”
aUS 14> x*(x"|Evidencg) = —*——
tribution. The second order homogeneous Taylor ap- Pt N gxex
proximation is a biquadric with

where
1 0’ f
Mab =35 (chxcxd) " Hoanvb k .
2 OO My = S MY — (k- 1)N,,
of of

+% ’ Nbcxc + @ ’ I\IacxC + Ngp - f =

The term(k — 1) N prevents the ‘1's of thé + x?
terms from accumulating, but a further correction to
. the shift of M is still needed. This can be found by
Points solving the normalizing shift equation either exactly

] ) o or approximately. The shifteNI then defines a cor-
We are finally ready to describe how projective least o v normalized posterior distribution fer* given

squares can be used to estimate the position of an Ul the evidence. and its inverde — M-1 gives the
certain projective point. Suppose we have COIIeCtedcovariance in the usual way. The mode (maximum
several independent estimates of the point’s positior]ike”hood estimate) for® is the global minimum
that can be summarized by a set of biquadric dIS'[I’I-Of the biquadricj.e. the minimum eigenvalue eigen-

4 Projective Least Squares for

butions vector of M along a non-null direction oN. The
() ab shift correction step is dispensable if only the mode
2 a . bX X . . .
14+x“(x"| Evidence) = E?) i=1,...,k isrequired.
N, xex4

Now consider theincommensurable case in
Just as one might summarize the uncertainty of arwhich all of the normalizer®&N® are different. This
experimental measurement in affine space by specease is much less tractable. In general the combined
ifying its mean and covariance, the uncertainty of alog-unlikelihood is a complicated rational function
projective measurement can be summarized by a hoand analytical or numerical approximations are re-
mogeneous information tensdd (or alternatively  quired.
by the covariancé& = M~1). The corresponding Many nonlinear optimization techniques can be
normalization tensoN should be chosen to reflect used to find the mode. One possible way to pro-
the source of the uncertainty. For example, in com-ceed is to make a commensurable reapproximation
puter vision a spherical normalization might be ap- of the combined distribution by choosing some suit-
propriate for uncertainty in the 3D angular position able common normalizatiotN and approximating
of an incoming visual ray relative to the camera, each log-unlikelihood to second order with a bi-
whereas affine normalization would probably be aquadric inN. This is straightforward except for
better model for errors due mainly to uncertainty in the choice of the point(s) at which the approxima-
the measured projection of the ray on the flat imagetions are to be based. To ensure self-consistency, the
plane €.g.quantization error). However when the log-unlikelihoods should ideally be expanded about
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the true mode of the combined distribution. Since5 Behaviour under Projections

this is not known until the end of the calculation,

it is necessary to start with approximations based aNow we discuss the behaviour of projective least
some sensible estimate of the mode (or perhaps aquares under projective mappings. First consider
the mode of each distribution), find the resulting ap-a general situation in which some eventcauses’
proximate combined mode, and if necessary iteratean eventy in the sense that = f(x) for some func-

at each step basing a new approximation at the lattion f(-), andy in turn gives rise to some measured
est mode estimate. Each iteration must accumulat@videnceE. The conditional independence Bfon

a new approximate unshifted information tenddr  x giveny results in the classical Bayesian formula
from the component distributions and find its min-

imum eigenvalue eigenvector (the updated estimate dp(x|E) dp(y|FE)
of the combined mode). There is no need adjust the dp(x)  dp(y)
shift of M until the end of the calculation. Once

the mode has been found, a second order biquadrignich says thatE augments the prior likelihood

reapproximation gives an estimate of the combinedgp, x) of x to the same degree that it enhances that

information and covariance. of y = f(x). In other words, the relative likelihood
function ony-space simply pulls back to the correct
relative likelihood function orx-space undef(-).

There is no guarantee that this nonlinear pro-If severalx are mapped to the sange their relative
cedure will converge correctly. Indeed, combina- weightings are determined by the pridp(x).
tions of incommensurable distributions are often |t f(-) has unknown internal parametess i.e.

multi-modal, although the secondary peaks are usuy — f(x, 1), the data space can be extended to in-
ally negligible unless there is strongly conflicting clude these and the abodp (x| -) factors become

evidence. However preliminary experiments sug-dp(x, . |-). Integrating over all possible values of
gest that convergence is reasonable in some reak and applying the conditional probability definition
istic cases. A possible explanation for this is the dp(x, ;) = dp(x | 1) - dp(u) gives

fact that biquadrics are typically convex within quite

a wide radius of their global minimum. They be- qp (.| E) dp(x, | E)

come non-convex near their non-minimal eigenvec—m = /xT()

tors, but these critical points are usually far from the

minimum in the standard projective basis unlds _ / dp(x dP(X plE)

is particularly ‘squashed’. dp(x,p)

B dp(.VIE)
B /dp dp(y) y = f(x, )

y=£f(x)

It might be suggested that the need to resort to ap-

proximations in the incommensurable case is a flawThjs says that the posterior likelihood fpris pro-
of the projective least squares method, but that is NOportional to the total probability faanycorrespond-
quite fair. It arises because the biquadric form isjng x to give the observation viy = £(x, ).
significantly richer than the Gaussian one, and evenn other words the log-unlikelihood qf given E
linear’ least squares produces nonlinear equationss proportional to the logarithmic ‘shift factor’ re-

in all but the simplest situation®.@g.orthogonal re-  quired to normalize the distribution afgiven » and
gressiong.f. section 6). In fact, except for problems g

with the nonlinear normalizing shift equation, the

projective model is not significantly less tractable The above analysis applies directly to a projec-
than the affine one. And even for incommensu-tive mappingx® — y* = P:x® between projec-
rable distributions, projective least squares providegive spacesP® andP4. If we assume that the rel-
an attractive intermediate analytical form for prob- ative likelihood onP# can be approximated by a
lems that might otherwise have produced completelybiquadric{M 45, N 45} and that the prior oP® is
‘opaque’ end-to-end numerical formulations. sufficiently ‘uniform’, the pulled back density ga®
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is the biquadric surjection onto a projective space of lower dimen-
_ sion. In this case each point & has a nontrivial
dp(x | Evidence ‘preimage’ inP* (i.e. the projective subspace
~ exp (_} (M4p P4 PE)xe xb> qv that projects onto it), an®® also necessarily con-
2 (Nop PS PD) xe xd tains a null subspace of points that project to noth-
ing at all: P2x® = 0. The pulled-back likelihood is
In matrix notation, the informatio® and normal-  constant on each preimage space but is undefined on
ization N are pulled back respectively 8" MP  the null space as the pulled bak andN both van-
andP "NP. The preservation of the biquadric func- ish there. The pulled back equi-probability surfaces
tional form under projective transformations im- are degenerate quadrics with singularities on the null
plies that image space error models are directlyspace, and generally look more like elliptical cones
pulled back to source space ones. However itthan ellipsoids.
should also be clear that there is little hope of ob- The singular surjective situation occurs for the
taining commensurable distributions when combin-ysual 3D-2D perspective projection in computer
ing observations pulled back from distinct image vision. In that case the null space is the centre
spacesP4t, ..., P4 the pulled-back normaliza- of projection, the preimage spaces are the optical
tionsN 4,5, PP} will usually all be different. rays, and the equi-probability surfaces — the sets of
In general the pulled-backI needs to be shifted world points that are equally likely to have produced
by a multiple of the pulled-back to produce a cor-  the given image measurement — are elliptical cones
rectly normalized probability density oR“. The  centred on the centre of projection and generated by
shift required is proportional to the logarithm of the the optical rays, that project to the experimental er-
total probability foranypoint inP¢ to project to the  ror ellipses in the image plane. The considerable
observation, and hence depends®fi. As men- representative power of the projective least squares
tioned above, if the transformation is uncertain theframework is illustrated by its ability to deal with
posterior log-unlikelihood for a particular vall®  error models for perspective projection out-of-hand.
given the observatiofM 45, N 45 } is proportional It was to accommodate surjective projections that
to the shiftA(P;!) required to normalize the pulled- we insisted on allowindVI to besemidefinite. Note
back distribution. In the next section we will use this that the null space compatibility condition is main-
to derive estimation techniques for uncertain projec-tained: if the null space d¥I 45 is a subset of that
tive subspaces, but for the remainder of this sectiorof N 3, the same is true of the pulled-back tensors
we assume th&t’g‘ is a fixed known transformation. MABPQPZ,B and NABPé‘PbB- The normalization

condition Ng(M~148 = 1 (with M~ inter-

Now let us examine the characteristics of the ) -
pulled-back distributions a little more closely.BfA ~ Préted as a pseudo-inverse) is also preserved under

is a projective isomorphism — a nonsingular map- surjective pull-backs, so the shift factor M does

ping between spaces of the same dimension, posspot usually need to be corrected in this case.
bly from P to itself — its effect is analogous to

that of a projective change of basis and there are n@§ Subspace Estimation

essentially new features.

If P4 is a nonsingulainjection — i.e. a one-to-  The results of the previous section can be used to
one mapping ofP* onto a projective subspace of develop projective least squares error models for
PA — the pulled-back likelihood is isomorphic to projective subspaces. Given a number of uncertain
the restriction of the parent likelihood to the range points, we are interested in ‘fitting’ a projective sub-
subspace iP4. The only new feature is that the space to them and estimating its uncertainty.
injected subspace may happen to ‘miss’ the mode Suppose we have measured a single paifit
of the parent distribution by a substantial margin, sowhose uncertainty is characterized by a biquadric
that the pulled back likelihood has a shape and rangelistribution inM,;, andN,;. A k£ dimensional pro-
of values much attenuated compared to those of thgective subspace id dimensions can be specified
parent function orP4. by choosing a set ot + 1 independent points that

Finally, consider the case wheRs is a singular ~ span it,i.e. by giving a(d + 1) x (k + 1) rank
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k + 1 matrix U4 whose columns span the subspaceApplying this at the covariancX = M~! gives

(A =0,...,k). U4 can be thought of as a non- the approximate log-unlikelihood of the subspace in

singular projective injection from an abstractdi- terms of dual coordinates

mensional projective spad@* to P*. As discussed ) teonst

in the previous section, ® is uncertain its relative 1+x*(W[X,N) =~

likelihood given the observatiofiM, N} is propor- Trace ™. [N- (X _ XWT(WXWT)*WX)}

tional to the total probability in the subspace it gen-

erates, and hence to the total probability in the pulledsinceX = M~ is normalized, the leading term is

back distribution or?4. In fact, up to an additive just Trace(N - X) = 1.

constant the log-unlikelihood diJ given {M, N}

is precisely the shift factor/\(UTMU,U'TN'U)_ 6.1 Affine Limit

required to normalize the pulled back distribution

{U'MU,U'NU} : In the affine case the approximate shift formula is
exact and the biquadric distributions become Gaus-

1+x2(U|M,N) "2" 1+ A(U'MU,U'NU) sians, so the projective error model reduces to the

standard affine one. Making the standard decompo-
At this point our approximate shift solutioh + sitions

AM,N) =~ Trace"!(NM~!) comes into its

own. Without a tractable analytic approximation to pf = (1 +x' X% _XTX1> N = <1 0)
A(UTMU, UTNU) it would be impossible to de- —X"'x Xt 00
velop explicit methods for the least squares fitting Ofand

subspaces. The abstract theory would still exist, but

there would be no closed-form formulae. Adopting [ 1 B 1\ 1 (1 0
this approximation we have the remarkably simple \ x | — y] \Ay+b]/’ —\b" A
estimate
we have

2

+eonst =1 (y1T T -1

~ Trace (U NU - (U MU) ) 1—|—()_{—b)TX_1()_(—b) —()_(—b)TX_lA

ATX (% —b) ATX 1A

= Trace™ (N-UUMU)'UT)

10
Note the invariance of this formula under redefini- U'NU = (o o)
tionsU — UA of the spanning basis of the sub-
space, wherd is any nonsingulafk +1) x (k+1)  Using the fact that an incorrectly shifted affine in-
matrix. formation tensor has an inverse with coefficient

1/(14+A) :

Dually, a subspace can be specified as the inter-
section ofd—k& hyperplanesi,e.by a(dfk)x(d+1) 1l x+xTX1g —xTxX-! -1
rank d — k matrix W¢' that determines a set of _X-1x x-1
d — k independent homogeneous linear equations
Wik = 0(C = k+1,...,d+1). WandU 1 L\ (1 &7 0 0
specify the same subspace if andTonIWU =0 TI14Ax ( X ) - 0 X
and the(d + 1) x (d + 1) matrix (%, ) is nonsingu- o
lar. For any such paifU, W} and any nonsingular & Short calculation gives
symmetric(d + 1) x (d + 1) matrix X we have the (U X, %) "2 (x—b) T

standard decomposition
(X -XTTAATXA)TTATX ) (% b)
Tae—177) L grT
X =U(U'x'U) U
. This is the standard affine formula for the log-
+XWT (WXWT) WX unlikelihood of an affine subspacky -+ b given
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an uncertain observation of a point on it. The matrix by cofactors and rearranging. The result is
vanishes on vectordy in the subspace and hence ) eonet
measures the ‘orthogonal Mahalanobis distance’ ofl +x“(u|M,N) =
the mearx from the subspace. . . Mapby - - Ma,p, - 1% % ubo b

In terms of dual coordinates the affine subspace 'S(l-c 1) NepagM,q, - M, g, - ucoci— adodi—dy

Once again we recognize the familiar form of the
biquadric, this time in the Grassmann coordinates
u? % rather than the point coordinates’, with
whereDA = 0 ande = —Db. In this case the informatiort My, - -- My, and normalization
affine log-unlikelihood is simply (k4 1) - NagpoMayp, - Mg,p,- If & = 0 we get

) ot T N back the original point distribution, as would be ex-
(W[ X,%)"2"(Dx+c) (DXD")  (D%+c)  pected.

The space ok dimensional projective subspaces
in d dimensions is locally parameterized (ol k) x
(k + 1) matrices and therefore has dimensjah-
k)(k+1). The Grassmann coordinatization embeds
it as a projective subvariety of tf(%ﬂ) dimensional
homogeneous spadel®o ! of k + 1 index skew
tensors. The constraint equations that determine this

] subvariety are the quadrati@rassmann simplicity
6.2 Grassmann Coordinates constraints

W<1>—Dx—|—c—0 W = (¢ D)

This is easily verified from the non-dual-form
affine log-unlikelihood given above, or with a lit-
tle more effort from the projective dual-form log-
unlikelihood. Basically, it says that the information
in constraint violation space is measured by the in-
verse of the classical constraint covariance matrix.

We promised that projective least squares would w0 ok 1lakybobr] —

look natural in Grassmann coordinates, and now we

verify this. Thek dimensional projective subspace Hence, although the Grassmann coordinatts
spanned by the column vectors Bf} has Grass- are linearly independent, they are quadratically

mann coordinates [2, 7] highly redundant.
The subspace information and normalization ten-
u[ao---ak} ~ Uao . Uak EAO <A . . .
Ao Ay, sors can be viewed as symmetric matrices on the
large (1) dimensional spac@l@oal. They are

Alternatively, ak dimensional subspace can be spec- . .
y P P nonsingular whenever the underlyitd;, andN

ified by d — k linear constraintsW¢x® = 0 . -
) are, however there are linear (non-matricial) re-
(the rows of the matrixW, labelled by C = . .
. . lations among their components that enforce the
k+1,...,d+1) to give dual Grassmann coordi- > .
nates Grassmann simplicity constraints. Any product of

symmetric tensors of the form

CkJrl Cd
Wiaks1aq) ™ ECki1Cq Waih - Wey laoar--ax]-[bobi---bk] — Mgaobol\/[‘flbl L MZ’“b’“H

Here, u® % and wy, , ... re r ively the . .. .
ere, u and wq,,,.q, are respectively the simple’ in the sense thapao ax—1lar - bobi] —

(k_+1)x(fli;1%_rr:unors OfUI agdff[he(dd—kt)x(d—lk) q because the antisymmetrization always includes a
MINors o1 VY. They are only detined up to scale, an pair of symmetric indices. A biquadric built with

if U andW specify the same subspace they are ten'such ‘simple’ Grassmann tensors “projects on to the
sor duals of one another.

The sub I nlikelihood simple part ofu® “ " in the sense that it is insensi-
€ subspace 10g-uniikelinod tive to the ‘non-simple partii®--ax—1larybo--brl £

1+ x*(U|M,N) 0.

1 - . .
~ Trace ! (N ) U(UTMU)_lUT) For convenience we introduce the notation
Haoboalbl R akbk]] to denote [a0a1 “e. ak][bobl ce bk]
. . . on the index pairg;b; of a set of 2 index tensorge. antisym-
can be rewritten in terms of the Grassmann coordi-metrize separately over the first indices and the second indices

natesu® % by expanding the invergdJ ' MU)~! of the pairs.
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A similar process can be applied to the dual-I is thed x d unit matriX. If the plane passes ex-
form matricial log-unlikelihoodl + x?(W | X, N) actly through the mode of the point distribution, we
given above, to derive the dual Grassmann log-would expect its likelihood to depend only weakly

unlikelihood on its orientation: any plane passing right through
9 “+const the observation should be about equally good as far
L+ x (WX, N) = as the least squares error is concerned. Since the
Xk1bret . Xabd oy g Wy denominator was chosen to be almost independent

(X —(d— k)XNX)Ck+1dk+1 Xckiadisa ... XCada. of orientation, the numerator must also depend only

weakly on orientation. But this implies that the rate
of decay of the likelihood as the plane moves away
whereX = M~! andN,, X = 1. Once again the from the point isalsoindependent of orientation: the

log-unlikelihood has the biquadric form, this time only remaining parameter is a direction-independent
in the dual coordinatesr,, ,...q,- The information  scalar peak width. However in general the point dis-
and normalization tensors are again ‘simple’ in thetribution is not spherically symmetric and the rate of
Grassmann sense. This can also be derived by tensefecay of the plane distribution ought to be different
dualization of the contravariant Grassmann formula.in different directions. In summary, it is not possible

'W0k+1"'0d de+1"'dd

Note that in the affine casNX = (1)(1 x7). to have all three of(j) an isotropic likelihoodat the
observation{ii) an anisotropic decagway fromthe
6.3 Hyperplanes observationjiii) an isotropic normalizeN"’. The

Hyperplanes (codimension one subspaces) are a pafr'-rSt two are essential to represent the data correctly,
. . . so we are forced to deal with non-isotropic normal-
ticularly important special case of the above. The:

b : . L
log-unlikelihood for the location of a hyperplane izers N e_lnd h_ence (if the plane IS b_elng fitted tq

. . . . . several points) incommensurable distributions. This
w,x% = 0 given an uncertain point on it follows

immediately from the above dual-form matrix or 'S not_ 5|mply a problem with the pr_OJecjuve theory:
. classical affine least squares also gives incommensu-
Grassmann formulae: s o
rable distributions for subspace fitting.§.orthogo-
14 x%(wa | X, N) +eonst X% wowy, nal regression). In fact, the projective point of view
e (X — XNx)Cd WWy makes the situation clearer by unifying the classi-
cally separate theories of point and plane fitting.

Dually to the point case, the log-unlikelihood is a bi-
guadric in the hyperplane coordinates. For an affine

distribution this becomes 6.4 Normalization & Covariance
(dT)—( + 6)2 The above formulae for subspace log-unlikelihoods
X2 (wo | X, N) e are only correct up to an additive constant. The

d'Xd modes (maximum likelihood values) of the subspace
wherew, is (¢ d'), andx andX are the classical distributions can be found directly from the un-
mean and covariance. shifted information tensors, but if subspace covari-

The denominator plays a much more actisder” ances are required the correct shift factors must be
in hyperplane and&-subspace estimation than it did estimated.
in the point fitting problem. Let us examine the hy- In fact, it is straightforward to show that the nor-
perplane case a little more closely to find out why. malization sumiTrace(N - M~!) for the subspace-

First of all, there is nothing intrinsically wrong fitted-to-point distributions is alwayg) instead of
with hyperplane distributions with ‘simple’ normal- 1. The reason is simply that even when the point dis-
izersN™. It is just that in the case of point-plane tribution is narrow the resulting subspace distribu-
fitting the correct answer can not be quite so simple tion always has &) dimensional modali . maxi-
Consider a hyperplane distribution with a ‘slowly mum likelihood) subspace iploo-ax] correspond-
varying’ denominatoiN"’w,wy. For exampIeNab ing to the(g) different ‘directions’ in which thek-
could be thed+1) x (d+1) unit matrix in some ba- 2This gives the conventional normalization for Euclidean
sis, or the affine hyperplane normaliz(%r(l)), where  hyperplanes, with a constant offset and a unit direction vector.
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subspace can pass right through the centre of théaken from different positions, a pa{txA,xA'} of
point distributior?. image points corresponds to some 3D point if and
Since Trace(N - M~1) = ( ) for the (zﬂ) di-  only if the epipolar constraint F 44 x*x4 = 0
mensional subspace information tensor, the approxis satisfied, wherd& 4 4 is the3 x 3 rank 2funda-
imate shift equation predicts a normalizing shift of mental matrix. The pointx“ gives rise to a cor-
M — M+ (( ) — 1) - N. However this approxi- respondingepipolar line F 44x? in the opposite
mation is not recommended as it is likely to be quiteimage 4’ and all potentially matching*" lie on
inaccurate for such large shift factors. On the otherthis line. The epipolar lines all pass through a point
hand, whenever subspace-through-point likelihoodscalled theepipolee”’. This is the image of the pro-
from several points are combined, the resulting dis-jection Centre of the Opposite camera and satisfies
tribution tends to be much better localized becauseF 4 4-¢*” = 0. Similarly for x* " Faox? ande?.
the null directions from different points tend to can- We can estimateF' from a set of correspond-
cel each other out, leaving a single reasonably weling uncertain point pairs by viewing the epipolar
defined mode. In this case (and modulo the usuatonstraint from each pair as a single linear con-
correction for the accumulation of the ‘1’s in the straint onF. Intuitively, the smaller the deviations
(1 + x?)'s) the shift factor required to normalize |Faax Ax4'| are, the better the fit will be, but we
the combined subspace distribution tends to be muchvant to make this into a more rigorous approximate
smaller. maximum likelihood estimate. The situation is anal-
The (dil) dimensional Grassmann parameteriza-0gous to that of hyperplane estimatioR:44/ can
tion is global but redundant and it is often con- be viewed as defining a projective hyperplane in the
venient to re-express the mode and covariance i X 3 — 1 = 8 dimensional projective space of ten-
terms of some minimal local parameterization, saysors P44’, and the data can be mapped bilinearly
z® wherea = 1,...,(d — k)(k + 1). Given Grass-  into this space vigx?,x*} — xx*". In fact,
mann information and normalization matricd it turns out that we can re-use our projective least
and N, the Grassmann mode can be found by thesquares equations for hyperplanes.
usual minimum eigenvector procedure. The ex- Suppose that the uncertainties in the positions
pressionuc - (z) for the Grassmann parame- of x* and x*" can be modelled by independent
terization in terms ofz® must then be inverted at normalized biquadric distribution§M 5, N a5}
the Grassmann mode to find th&-space mode. and {Mup,Nup} with covariancesX4# =
(This may require the solution of nonlinear equa- (M~1)4Z andX4'5" = (M~1)4'5", Since the dis-
tions). Finally, thez®-space information matrix can tributions are independent their moments can be fac-
be found by evaluating the second derivatives oftorized. In particular

2 ap---a a o , ,
1+ x* (u% % (z*)| M, N) at thez*-space mode. (xAxA) (xBxE)
(NCDNC/D/)(XCXC/)(XDXD,)
7 Fundamental Matrix Estimation AxB A5 B
- <NCDXCXD ' NC/D/XCIXD/>

As another example of the use of projective least o
squares, consider the problem [3, 1] of estimating _ < xAxP > ) < x4'xP >

the fundamental matrix between two images from NopxCxP N prx©'xD’
a set of corresponding point pairs. Given any two

, _ < AB xA'B
2D projective images”4 and P4 of a 3D scene =X X

. . AB A/Bl
3The ‘directions’ of the modal subspace are generated byV'eW'ng MapMuap, NapNyp andX22X

the ({) choices ofk directionsuf, ..., uf among thelinany ~ as 9 x 9 homogeneous symmetric matrices on
hyperplane not passing through the point m&de The cor-  the 8 dimensional projective spac’EAA/, we
:jesponc_ilnglcl subdsplacebls the S_ptad“out (m k)(k Thf)(g) have NapNa g - XABXAB  — 1 and (since
imensional modal subspace intersects(ihe- —1) di- AB~A'B Al . .
mensional Grassmann variety bfsubspacesi.e. simple ten- XX %Bcl\ggfcg/—géca is the |dent|1ty
sors) in the(d — k)(k — 2) dimensional variety of-subspaces ~ Operator orP~4) X 47X (MapMuarp)™".
throughx®. So rather remarkabiWI s M 4 g andN 4 gN 4/ g/
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define a correctly shifted biquadric distribution with so it should probably not be omitted if the epipoles
covariance XABXA'5" on PA4 | that correctly lie within the imagesé.g.frontal motion).

models the uncertainty of the tensor-product image

point x*x4" to second order. This is notwithstand- . :

ing the fact that the space of all possibléx4’ is 8 Discussion & Future Work
only a 4 dimensional quadratic subvariety of the 8
dimensional projective tensor spag'4’. Since
the epipolar constrainF 4 4x*x4" = 0 defines a
projective hyperplane i®44" and we know how to
fit projective hyperplanes to points, we can immedi-
ately write down the log-unlikelihood @& givenx*

The results we have presented are obviously still
at the theoretical level and it remains to be seen
how useful projective least squares will turn out to
be in practice. However, it is becoming clear that
error modelling will become a central issue in vi-
sual reconstruction, not only to ensure the accuracy

andx4’: : -
of the final results, but also because the efficiency
14+ x2(Faa | x4, x) TR of intermediate stages such as correspondence and
. database indexing depends critically on the uncer-
XABXA B F 0 Fpp tainties involved. Given that projective least squares
(XCDXC’D’ _ (XNx)CD(X/fof)C’D/) . is both ‘projectively correct’ and relatively tractable

(notwithstanding the length of some of the equations

we have written), it seems likely that it will have a
Writing the information and normalization tensors part to play in all this.

as 9 x 9 symmetric matrices on the 9 dimen-
sional space of components Bf the biquadric log-

‘Foo'Fppr

On the technical level there are still many loose

- . . . ends. Analytical work is needed to clarify the sta-
unlikelihoods for different point pairs can be com- o . L
tus of the two approximations made in deriving

bined in the usual way. As in the hyperplane Case‘the basic error model, and the development of a

they are always incommensurable so nonlinear tech; o
. . central moment expansion’ based on the homoge-
niques are required.

If both of the points have affine distributions, con- nMeOorlés Trzzlﬁ:rajle nif?/v(i)%l:(ljd :ee Lrgaeﬁ“tlertgart:;\?gy frrg'léfs_l.
verting to3 x 3 matrix notation and denoting the P y pro)

homogeneous mee(r)ﬂ() by % and the homogeneous tive least squares methods for quadrics and higher

i . 0 0\ pyX hi order projective varieties, and for further types of
Z;Pj;\?@f”am% x) by X, we can re-express this subspace-subspace intersection and un@g. (-

tersection of subspaces at a point). It is also unclear

YA(F %, X, %, X) T how to extend the fundamental matrix estimation
g model to the trilinear and quadrilinear constraints

i} (x Fx ) - that exist when there are additional images [6, 7, 9].
X FX'FTx+ % TFTXFx' + Trace(FX'FTX)  Although the relation between the multilinear data
tensorsx4ix4i ... x4 and the corresponding con-
straint tensor is still linear, it is no longer a simple
scalar and it is not yet clear how to capture it cor-
rectly in a projective least squares error model.

This formula can also be derived by classi-
cal maximum likelihood calculations. The term
Trace(FX’FTX) is second order in the uncer-
tainty and is often ignored relative to the first or-
der terms: with this approximation the formula has
been used for nonlinear estimation of the fundamen-
tal matrix with good results [3]. Roughly, it says that [1] O.FaugerasThree-dimensional computer vision: a
the ‘primitive’ error measuréx’ ' Fx)? needs to be geometric viewpointMIT Press, 1993.

normalized by dividing by the sum of the variance [2] w. V. D. Hodge and D. PedoeMethods of Alge-
of each measured point orthogonal to the opposite braic Geometryvolume 1. Cambridge University
epipolar line. When one or both of the measured Press, 1947.

points lie near an epipole, the second order trace [3] .-T. Luong, R. Deriche, O. Faugeras, and T. Pa-
term is sometimes significant relative to the other padopoulo. On determining the fundamental ma-
terms and tends to have a stabilizing effect on the fit, trix: Analysis of different methods and experimen-
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Abstract — especially for hand-held cameras viewing un-

known scenes — motion or structure assumptions
We investigate the motions that lead to ambiguous Eu-are often rather dubious. Unfortunately, most au-
clidean scene reconstructions under several common caltocalibration methods have situations in which they
bration constraints, giving a complete description of suchfail or are exceptionally weak. Practically, it is im-
critical motionsfor: (i) internally calibrated orthographic portant to characterize and avoid thesiical sets.
and perspective camerasi) (in two images, for cam-  Criticality is often independent of the specific cam-
eras with unknown focal lengths, either different or equal. era calibrations, in which case we speakcofical
One aim of the work was to evaluate the potential of mod-motions.
ern algebraic geometry tools for rigorously proving prop-  «C|assical’ autocalibration assumes a moving pro-
erties of vision algorithms, so we use ideal-theoretic Ca"jective camera with constant but unknown intrin-
culations as well as classical algebra and geometry. Wejjc parameters [4, 18, 1, 23, 17]. Sturm [19, 20]
also present numerical experiments showing the effectgategorizes both the intrinsic and some algorithm-
of near-critical configurations for the varying and fixed specific critical motions for this. The uniformity

focal length methods. of the constraints makes this case relatively sim-
Keywords: structure from motion, critical motions, au- ple to analyze. But it is also somewhat unrealistic:
tocalibration, algebraic geometry. it is often reasonableg.g.to assume that the con-

stant skew actually vanishes (a stronger constraint),
. whereas focal length often varies between images (a
1 Introduction weaker constraint). Also, although he characterizes
the degeneracies fully, Sturm only manages to give a
‘Structure from Motion’ (SFM) is the problem of rather implicit description of the corresponding crit-
recovering 3D scene geometry from several im-ical motions. For practical purposes a more explicit
ages. Using projective image measurements, it igjescription would be useful.
only possible to recover structure, camera poses Thjs paper derives explicit critical motions for Eu-
(‘motion’) and camera internal parameters (‘calibra- ¢idean SFM under several simple two image ‘un-

tions’) up to an unknown 3D projectivity [8, 5]. With  ynown focal length’ calibration constraints [6, 16,
additional scene, motion or calibration constraints, o4 o 9]. However, we start by giving a complete

one can reduce the ambiguity to a Euclidean simi-gescription of criticality forknowncalibrations, for
larity [13, 4, 12, 7].Autocalibration is the recovery 5 perspective and orthographic cameras in mul-
of Euclidean structure, motion and calibration us- tiple images. Although this analysis does not result
ing partial (often qualitative) constraints on the cam-;, any new ambiguities, it rules out the possibility of
era calibrationse.g. vanishing skew or equal focal any further unknown ones.

lengths between images. It is useful because cam- A second goal of our work — one aspect of our
eras often obey such constraints rather well, wherea%ur0|0ean project GMULI — was to investigate the

This paper appeared in CVPR'99. The work was supported byuse of formal algebraic reasoning tools to deduce
Esprit LTR project CUMULI. rigorous properties of vision algorithms. Sturm [19]
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relies mainly on geometric intuition. This is un-

reliable in our less symmetrical situation and we
have used a mixture of geometry, classical algebra
and ideal-theoretic algebraic geometry calculations

Annexe A. Autres papiers

Qj = diag(1,1,1,0) in any Euclidean frame.lN
is Q%'s unique null vector:Q% M., = 0. Q%'s im-
age projection iy, = PQLPT = KK, a dual im-
age conic that encodes the camera calibrations

(Grobner bases, ideal quotient, radical and decomrecoverable fromwy, or its dual image point conic

position) in MAPLE and MACAULAY 2. However
we will focus on giving geometric interpretations of
our algebraic results whenever possible.

We consider only autocalibration degeneracies:

W = 51 by Cholesky factorizationcy, and t
are proper virtual (positive definite) so long as the
camera centre is finite. In calibrated image coordi-
nateK = I, W, = w, = |. We often use the abbrevi-

scene and motion constraints are explicitly excludedations (D)(I)AC for Qual)(l mage)AbsoluteConic.

from consideration. Also, for both projective and

False absolute conics: Given only a 3D pro-

Euclidean reconstruction there are certain scene ggective reconstruction derived from uncalibrated im-

ometries for which SFM is inherently ambiguous
[12, 15, 11, 10]. We exclude sudatritical sur-

ages, the true absolute coffis, is not distinguished
in any way from any other proper virtual planar

facesby assuming that the scene is generic enougltonic in projective space. In fact, given any such

to allow unambiguous recovery of projective struc-
ture. Hence,criticality occurs iff the calibration
constraints admit alternative Euclidean ‘interpreta-
tions’ of the given projective structure.

2 Background

Image projection: We assume familiarity with the
modern projective formulation of vision geometry
[3, 12, 23]. A perspective (pinhole) camerais
modeled in homogeneous coordinates by the projec
tion equationx ~ P X whereX = (X,Y,Z,W)" is a
3D world point,x = (x,y,2) " isits 2D image an® is
the 3x 4 camergprojection matrix . In a Euclidean
frameP can be decomposed

- (35%)

into a rotationR and translatiort encoding the cam-
era’s 3D posegxtrinsic parameters), and a 3x 3
upper triangularcalibration matrix K encoding its
internal geometry. Herd, is thefocal length, a the
aspect ratio, s the skew and (up, Vo) the principal
point.

Absolute Conic: Projective geometry encodes
only collinearity and incidence. Affine structure
(parallelism) is encoded projectively by singling out
a plane at infinity M. of direction vectors or
points at infinity, and Euclidean (similarity) struc-
ture by a proper virtual conic ofl,. This abso-
lute conic Q. gives dot products between direction
vectors. Its dual, thdual absolute conicQ,, gives
those between plane normaf®;, is a 4x 4 symmet-
ric rank 3 positive semidefinite contravariant matrix.

f fsuw
0faw
00 1

P=KR(I3x3| —t)

conic Q*, it is easy to find a ‘rectifying’ projective
transformation that converts it to the Euclidean DAC
form QJ, = diag(1,1,1,0) and hence defines a false
Euclidean structure. To recover the true structure,
we need constraints that single out the t€ue and

M from all possible ‘false’ ones. In this paper we
will constrain only the camera intrinsic parameters
Ki, or equivalently the images of the true absolute
conicwy,; = KiK;". The constraints may apply to in-
dividual image conics€.g. vanishing skews = 0),

or link them as a groupe(g.equal but unknown fo-
cal lengthsf; = f for all i). Ambiguity arises only if
some non-absolute conic and its images satisfy the
constraints. We call such conip®tential or false
absolute conics They correspond one-to-one with
possible false Euclidean structures for the scebe.
denotes a potential 3D absolute corfir; its dual,

w its image andw* its dual image. True absolute
conics are denote@.,, Q% , W, W, .

Affine camera: A camera whose optical plane
coincides withlM,, is affine [14]. This is a good
approximation for distant (and therefore large focal
length) cameras viewing small objects. All visual
rays except those ofl, become parallel and the
dual image absolute coniw}, degenerates to rank
2. An orthographic camera is a calibrated affine
one and hasy, = diag(1,1,0).

Kruppa constraints: Given image conics in sev-
eral images, there may or may not be a 3D quadric
having them as image projections. Constraints
which guarantee this in two images are called
Kruppa constraints. Any proper image conic is
tangent to exactly two epipolar lines (possibly com-
plex and/or coincident). It turns out [12, 3, 24] that
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| supporting 3 ApproaCh

planes
14

%PF We want to explicitly characterize theitical mo-
AN tions (relative camera placements) for which par-
\ ticular calibration constraints are insufficient to
: uniquely determine Euclidean 3D structure. We as-
vswal £ ) A sume that projective structure is available. Alter-
o/ native Euclidean structures correspond one-to-one
/ with possible locations for the absolute conic in the
optitcla | centre § t2 projective reconstruction. Any proper virtual pro-
: jective plane conic is potentially absolute, so we
look for such conic2 whose images also satisfy

Figure 1 Intersecting the visual cones of two image con- the given calibration constraints. There is ambiguity

ics satisfying the Kruppa constraints generates a pair offf more than one such conic exists. We watu-
3D conics. clideancritical motions, so we work in a Euclidean

frame where the true absolute cofilg has its stan-
dard coordinates.

there is a corresponding 3D quadric iff the tangent Several general properties help to simplify the
lines in the two images are in epipolar correspon-problem:
dence (see fig. 1). In fact, for non-coincident im- Calibration invariance: The calibration constraints
age centres and proper image conics satisfying thgue use assert either equality between images, or
Kruppa constraints, there is always a linear one pathat certain parameters have their ‘calibrated’ val-
rameter family of 3D dual quadrics with these im- ues(f,a s u,v) = (1,1,0,0,0). They are satisfied
ages. This family contains exactly two planar (rank for a set of cameras iff they are also satisfied when
3) dual quadrics, and also the rank 2 one defineceach image is premultiplied by its true inverse cal-
by (the symmetric outer product of) the two cameraipration Ki‘l. Hence, we are free to assume that
centres. If the image conics are virtual, the planareach camera is actually calibratéd,= |. The only
3D quadrics are too and hence can serve as potentigfifference from the fully calibrated case is that our
absolute conics. Thusn two images with distinct fi-  weaker knowledge does not allow every false conic
nite centres, a pair of proper virtual conics defines a with oy # | to be excluded outright.
potential 3D absolute conic iff it satisfies the Kruppa Rotation invariance: For known-calibrated cam-
constraints, and in this case it always defines exactlyeraswy, = I, the image of any false AC must be iden-
two potential 3D absolute conits tical to the image of the true one which is invariant to

The Kruppa constraints have several algebraiccamera rotations. Hencegjticality depends only on
formulations [12, 3, 24]. Below we will use the fol- the camera centres, not on their orientatioriore
lowing 3x 3 symmetric rank 2 matrix version link- generally, any camera rotation that leaves the cali-

ing the two dual image conics, the fundamental ma-Pration constraints intact is irrelevant. For example,
trix and one epipole: arbitrary rotations about the optical axis and 180

flips about any axis in the optical plane are irrelevant

if (a,s) is either(1,0) or unconstrained, an@ip, Vo)
Flap F ~ [e]wi [e]} is either(0,0) or unconstrained.

Translation invariance: For true or false absolute

This vanishes when dotted with the epipole and Onlyconlcs on th_e pl_ane at infinity, translations are_lrrel-
evant so criticality depends only on camera orienta-

holds up to scale, so it gives only two independentt_
constraints. lon

potential /
absolute
conics

In essence, Euclidean structure recovery in pro-

Iwith more than two images the situation is more delicatejecnve space is a matter of parametrizing all of

and the pairwise Kruppa constraints aatalways sufficientto  the possible proper virtual plane conics, then using
guarantee the existence of a corresponding 3D quadric. the calibration constraints on their images to alge-
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braically eliminate parameters until only the unique conics satisfy the Kruppa constraints iff they define
true absolute conic remains. More abstractlyCif a (pair of) corresponding 3D potential absolute con-
parametrizes the possible conics ahdhe camera ics — but it does not extend so easily to multiple
geometries, the constraints cut out some algebraiémages.

variety in(C,X) space. A constraint set is useful for

Euclidean SFM only if this variety generically inter- .

sects the subspacxi: Xoinone )(/Ogl’ at most Zt few) 4 Calibrated Cameras

points (C, Xp), as each such intersection represents

an alternative Euclidean structure for the reconstruc-We start with fully calibrated perspective cameras:

tion from that camera geometry. A set of Camerarpacrem 4.1 Given projective structure and cali-

pose@( s cri_ticgl_ for the con§traints hf ithas excep- prated perspective cameras atm3 distinct finite
tionally (?-9-'”f!”'te'y) ma”Y |ntersect|on§. ~ camera centres, Euclidean structure can always be
For elimination calculations, algebraic varieties racovered uniquely. With e 2 distinct centres there

are described bydeals (the sets of polynomi- g g\ays exactly a 2-fold ambiguity corresponding
als that vanish on them), which in turn are char- to a ‘twisted pair’

acterized by certain ‘exhaustive’ polynomial sets
called Grobner bases Varieties can also bee-  Proof: The camera orientations are irrelevant be-
composedinto irreducible components — a gen- cause any false absolute conic has the same rota-
eralization of polynomial factorization that we of- tion invariant images as the true one. Assuming that
ten use as an aid to interpreting results. These& = | does not change the critical motions. Cal-
are all ‘standard’ algebraic geometry calculationsibrated cameras never admit false absolute conics
available in specialized tools like MCAULAY 2 on M, as the (known) visual cone of each cam-
(http://www.math.uiuc.edu/Macaulay2/) andiNS  era intersects1, in a unique conic, which is the
GULAR, and in slightly less powerful form in general true AC. Given a finite false AC, work in a frame
systems like M\PLE. in which it is diagonal and supported on thke=
Potential absolute conics can be represented i plane: Q* = diag(cs,Cp,0,¢c4). Since the cam-
several ways. The following parametrizations haveeras are calibrated and their orientations are irrele-
all proven relatively tractable: vant, the conic projection in each camera becomes
(i) Choose a Euclidean frame in whi€lt is diago- (1| —t)Q* (1| —t)" ~ 1. Itis easy to show that the
nal, and express all camera poses w.r.t. this [19, 20]only solutions to this ar@* ~ diag(1, 1,0,1/z?) and
This is symmetrical w.r.t. all the images and usu-t: = (0,0,+2)" for somez > 0. Hence, ambiguity
ally gives the simplest equations, but in a frameimplies that there are at most two camera centres,
that changes a®* does. To find explicit criti- and the false AC is a circle of imaginary radius
cal motions, one must revert to camera-based coeentred in the plane bisecting the two centres.
ordinates which is sometimes delicate. The finite This two-fold ambiguity corresponds exactly to
and M, cases must also be treated separaely, the well-knowntwisted pair duality [11, 10, 15],

Q* =diag(c1, ¢, C3,C4) With eithercs or ¢4 zero. where one of the cameras is rotated by°1&®und
(i) Work in the first camera frame, encodir®j the axis joining their two centres. The improper self-
by its first imagew; and supporting planén’,1).  inverse projective transformation
Subsequent images’ ~ Hjw;H,' are given by

: ) . T 1000
the inter-image homographiég = R;+tin' where T-[(0100
(Ri| —t;) is theit" camera pose. The output is in the 8 8 1?23

first camera frame and remains well-defined even if

the conic tends to infinity, but the algebra required isinterchanges the true and false DAC®*T " ~ Q},
significantly heavier. and takes the projection matrices =Ry (I | —t4)

(i ) Parametriz&®* implicitly by two imagesw;, w; toP_.T-1=P_andP,T 1= —P,U whereU =
subject to the Kruppa constraints. In the 2 imagediag(—1,—1,1,1) is a 180 twisted pair rotation
case this approach is both relatively simple and rig-about thez axis. The ‘twist’ T represents a very
orous — as above, two proper virtual dual imagestrong projective deformation which cuts the scene
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in half, moving the plane between the cameras to in-coincide. By linearity, they therefore intersect in at
finity. By considering twisteds.non-twisted optical most one conic. All families intersect in the true
ray intersections, one can also show that it reverse®AC C =1, so no other intersection is possiblee.

the relative signs of the projective depths [21] of false structures are impossible for orthographic im-
each correspondence.g.as recovered by the equa- ages from> 3 distinct centres. That the one param-
tion A1 Fx1 = A2 (eAXz). Moreover,anyproper vir-  eter ambiguity for two cameras corresponds to the
tual Kruppa geometry (fig. 1) has such a ‘twisted bas relief‘flattening’ is well known [11, 10, 15, 22].
pair’ projective involution symmetry, soalibrated

or not, two image Euclidean structures always oc-
cur in twisted pairs However the twist is a simple
180 rotation only for axisymmetric DIACs.

Two image orthographic absolute conic geome-
try is easily understood in terms of the Kruppa con-
straints. These are well behaved as the cameras tend
to infinity, and hence still define a one parameter

Theorem 4.2 Given projective structure and m3  family of dual quadrics. However as the cameras
scaled orthographic cameras with distinct projec- recede and their focal length increases, their DIACs
tive centres i(e. viewing directions, with diametri- become progressively flatter and this constrains the
cally opposite ones identified), Euclidean structure 3D family to be flatter too, until in the limit all mem-
can always be recovered uniquely. With only=r2  bers of the family become infinitely flat rank 3 disk
distinct centres there is a one parameter family ofquadrics squashed onft..

possible structures corresponding to the bas relief

ambiguity [11, 10, 15, 22]. 5 Focal Lengths from 2 Images

Proof: Choose coordinates in which camera 1 has o _
orientationR; = |. Orthographic and affine cam- For two cameras, projective geometry is encapsu-
eras havél, as their optical planes, $b. is known lated in the 7 d.o.f. fundamental matrix, and Eu-
and any potential AC must lie on it. Potential DACs clidean geometry in the 5 d.o.f. essential matrix.
have the formQ* = (09 8) for symmetric 3x 3  Hence, from 2 projective images we might hope to
C. The Orthographic calibration constraint is that estimate Euclidean structure plus two additional cal-
UCUT ~ diag(1,1) whereU is the first two rows ibration parameters. Hartley [6] gave a method for
of R. In image 1 this give€;1 — Co»=Ci1,=0and  the case where the only unknown calibration pa-
two analogous constraints in image 2. Representingameters are the focal lengths of the two cameras.
R, by a quaterniorg and eliminatingCy; between ~ This was later elaborated by Newsaitral.[16], and

these constraints gives Zeller & Faugeras and Bougnoux [24, 2]. Hippisley-
Cox & Porrill [9] give a related method for equal
((9001 + G203)C13+ (0002 — G103)C23) - but unknown focal lengths and aspect ratios. All

2 2\ (2 2 of these methods are Kruppa-based. We will give
@+ @) (@te) =0 a unified presentation and derive the critical motions
This must hold for any motion satisfying the con- for the Hartley-Newsam-Bougnoux (unequgland
straints. The first two terms correspond to opti- Newsam (equaf) case.

cal axis rotations and 18(lips that leave the op- Suppose that we can write all pairs of dual im-
tical centre fixed, and are therefore excluded byage conics satisfying the calibration constraints as a
the statement. Solving fo€ in terms ofq us-  parametric family(w;(A), w5(A)). As they already
ing the final term gives a linear family of solutions obey the calibration constraints, pairs of nonsingu-
C~al+B(010) +020] ) whereo; = (0,0,1)" and lar conics in this family represent possible 3D ab-
0, = (the third row ofR) are the optical centres, and solute conics iff they also satisfy the Kruppa con-
(a,B) are arbitrary parameters. Givénand any straints, F" wj(A\)F = p[e], wi(A)[e], for some
false DACC 2 I, we can uniquely recover the fam- scalarp. Solving these equations faru gives the

ily and its two camera centres (the three rank 2 mem-yossible image DIACs and hence 3D absolute con-
bers of the family each decompose into point pairs,ics. If w'(A) are linear in their parameteds the

but only one of these is real). Since each family en-system is bilinear if\, L. In particular, for zero skew
codes its centres, families with distinct centres neverand known principal poinp;, w' () is linear in f?
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and(g fi)z. For knowng; and unconstrained, this  the two evident singularities of Bougnoux’ equa-
gives fully linear equations ip fZ, pand f2: tions: () p;, Fpp=0and (i) p, FD[e]xp1=0.

T/ ¢2 T Case {) occurs when the principal points are in
F (f2 D+pe |O2> F epipolar correspondencee. the optical axes inter-
— [e]x ((H 2)D + pps pD e]] sect. (i) occurs whenever the poif|e], p; on the
line at infinity in the first camera lies on the epipolar
whereD = diag(1,1,0). Writing the 3<3 symmet-  line F pz of the other principal point. This con-
ric rank 2 matricess ' DF, ..., [e]. p1p; [€]] as dition is actually symmetric between the images. If
6 vectors gives a & 4 rank 3 homogeneous linear P1=P2=(0,0,1)", (ii) occurs wheneveF " p; con-
systemMgy4 (f2, 1, w2, W) T = 0. This can easily tains the direction orthogonal to the epipolar line
be solved foy, f;, f,. There are multiple solutions [€]x P1, i.e. whenever the epipolar plane of optical
for f; — and hence ambiguous Euclidean structures?Xispz is orthogonalto that of axisp, [16]. If either
— iff the coefficient matrixM g4 has rank< 2. We  Principal point coincides with an epipole, botf) (
will study this case below. Newsaet.al.[16] use and (i) apply and a second order singularity occurs.
the SVD ofF to project 3 independent rows out of
this system. Bougnoux [2] uses properties of funda-
mental matrices to solve it in closed form:

Theorem 5.2 For the known a equal f problem,
there is a unique solution for f everywhere outside
the critical variety of the unequal f method. On

2 _ _(p{FD (€] p1) (P Fp1) this variety there are generically exactly two solu-
2 = pIFTDFD [e]x p1 tions corresponding to the two roots of the single
surviving quadratic in p. Both solutions may be

If the focal lengths are known to be equdl =  yeal, or one may be imaginary tf< 0). There

f, = f, the system takes the forlhg, 2(1) (ff) =0  are more than two real solutions (in fact any f is

where Mg, »(1) is linear inp and generically has Possible) only on the following subvarieties of the
rank 2. This system has a nontrivial solution iff all corresponding-principal-point variety, Fp1 = 0,

of its 2x 2 minors vanish — a set of quadratic con- Where (R(q),t) is the relative pose of the second
straints on. If the focal lengths really are equal, camera with quaternion:

at most two of these quadratics are linearly indepen{i) 30z —t203+t10o = 0 and g0 —t103 —t20o =0
dent and we can generically eliminate foeterm (i) t101+t02+1t303 =0 and b0y —taGp +t30o =0
between them, solve linearly fqr, substitute into (i) qg=0and =0

M2 (Which then has rank 1) and solve uniquely for (V) gz=0and ¢ =0

f2. This fails iff all of the quadratics arei)( propor-
tional — in which case the single quadratic gives ex-
actly two possible solutions farand f; (ii) zero — ) o . o
in which caseMg,.» — 0 and anyf is possible. We responding principal pqlnt varletyul()_and (v) cor-

will return to these cases below. Finallg. [9]), respohd to parallel optlf:a! axes (ax_ls rotations, and
equal but unknown aspect ratios and focal Iengthslsq) flips about any axis in the optical plane, plus
a —ay—a, f1 = f,— f, give a 6x 3 rank 3 system e_lrbltrary translation). i) reqwres_ bqth plar_lar mo-
Mexa(l) (2, (af)2,1)T = 0, which has a solution fuonq-t:_O and correspondmg prmmpal points. The
iff the determinant of any of its nontrivial 8 3 mi- intersection of these two varieties has two compo-

nors vanishes — a single cubic in giving at most nents: &) arbitrary planar motions when the optical
3 solutions fon, f, a axes lie in the planee(g.a driving car with forwards-

Now consider the critical motions of the above PCINting camera), andj ‘turntable rotations’ about
methods. Assume fini@ f andt £ 0. the mtersectlo_n pomt of the two optlcgl gxes, when
these do not lie in the plane. Subvarietl) €orre-
Theorem 5.1 For the known a, unequal f problem, sponds to casé). Case @) has two solutions foff
the critical motions for the Hartley, Newsam and but is generically nonsingular.
Bougnoux methods are all identical and intrinsic to  The above results are straightforward but fairly
any method for this problem. In fact, they are exactly heavy to prove using the automated algebraic tools

Each of these subvarieties has codimension 2 in the
space of all motions, and codimension 1 in the cor-
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Figure 2 Relative errors in quasi-linear and bundle-  Figure 3 Errors in quasi-linear and bundle-baskdand
based 3D structures.camera elevation, for unequal and 3D structure with unknown and knowf, for equal f
equalf methods. methods.

we are studying here. (Newsaghal.[16] — aref-  to the 512x 512 images. For each pose, an opti-
erence we were unaware of while completing thismal projective structure and fundamental matrix is
work — give a fairly simple SVD-based proof for estimated by projective bundle adjustment, the fo-
their unequalf method, but an incomplete result cal length(s) are estimated quasi-linearly as above,
for the equalf one). Since we were initially scep- Euclidean bundle adjustment is applied to get Eu-
tical that the general Kruppa approach and Boug-clidean structure, and the resulting 3D error is calcu-
noux’ detailed manipulations [2] introduced no spu- lated by Euclidean alignment. Means over 100 trials
rious ambiguities, we proved the results twice: onceare shown. The Bougnoux and Newsam unedual
in a fundamental matrix / Kruppa constraint based methods give essentially identical results: only the
parametrization, and once in an image conic / plandatter is plotted.
homography based one. In each case, given the Inthe first experiment, cameras(at2, —2,0) and
parametrization we can more or less mechanically(2,—2,0) focus on the origin. Their elevation an-
calculate and decompose the variety on which thegles are then varied, upwards for the left camera
constraints degenerate usingaABAULAY 2. The and downwards for the right one, so that their op-
calculations are ‘routine’, although the homographytical axes are skewed and no longer meet. Quasi-
based ones are near the limits of the current systemlinear focal lengths and bundle adjusted Euclidean
structures are estimated, both with and without the
equal f constraint. Fig. 2 shows the resulting RMS
6 Experiments errors as a function of elevation angle. At zero el-
evation, the optical axes intersect and the cameras
We have performed some synthetic experiments tare equidistant from this intersection, so both equal
evaluate the effects of critical motions. We will fo- and unequaf methods are critical. This can be seen
cus on the question of how far from critical two clearly in the graphs. The unequilmethod also
cameras must be to get reasonable estimates of fdsreaks down when the epipolar planes of the optical
cal length and Euclidean 3D structure. The first ex-axes become orthogonal at around 8%evation —
periment studies the unequilcase, the second the the second component of the uneqtiaritical va-
equal f one. For both experiments, two unit fo- riety, but non-critical for the equal method. For
cal length perspective cameras view 25 points dis-geometries more than about 5°1fdom criticality,
tributed uniformly within the unit sphere. Gaus- the unequal and equdl bundles both give results
sian noise of 1 pixel standard deviation was addedvery similar to the optimal 3D structure obtained
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with knowncalibration.
In the second experiment, camerag-atl, —2,0)

and(1,—2,0) focus on the origin, then the left cam-
era is rotated so that its optical axis sweeps the world
planez= 0. This is always critical for the unequal

f method and the equdilone always gives two pos-
sible solutions. But in these trials, one is always
tiny or imaginary and can safely be discarded. In
fig. 3, the upper graph compares the quasi-linear [3]
equalf result with that obtained after optimal equal

f bundle adjustment. The lower graph compares [4]

the structures obtained with equéland known-

calibration bundle adjustments. At rotation angles
of around—27° the camera axes are parallel, and at
around+-27° their intersection is equidistant from

both cameras. These are intrinsic eqiaflegen-

eracies, clearly visible in the graphs. Moving about
5-10° from criticality suffices to ensure reasonably

accurate focal lengths and Euclidean structure.

7 Conclusions

We have explicitly described the critical motions for
a number of simple calibration constraints, ranging
from unknown focal lengths to fully calibrated cam-
eras. Numerical experiments studying the effects of

near-critical configurations were also presented.

One of our aims was to see what could be g
achieved in vision with formal ideal-theoretic cal-
culations. It is clear that although automated tools

for this (MACAULAY 2, SNGULAR, COCOA) have

progressed significantly in recent years, they can not10]
yet replace geometric intuition. Even when a cal-
culation terminates — and the ‘ceiling’ for this is [11]
still frustratingly low — the geometric interpreta-

tion of the results remains a difficult ‘inverse prob-
lem’. However when it comes to rigorously proving [12]
formal properties of systems of equations we have
found these tools a powerful computational aid and
a good deal more reliable than ‘proof by intuition’.
Hence, we feel that these methods do have a place
in vision, particularly for studying singularities of
simple algebraic (auto)calibration and camera POS§14]

methods.

We are currently investigating critical motions

where even less is known about the calibratiem.

cameras having zero skew and unit aspect ratio, bu
with the other parameters unknown and possibly

varying.
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Abstract is reduced to 4 or 5ji() the results for a given num-
. _ - ber of points are (at least potentially) more stable,
We describe two direct quasilinear methods for camerays there is more prior knowledge and hence fewer

pose (absolute orientation) a_nd calibration from_ a Smgleunknowns to estimate from the input data. The im-
image of 4 or 5 known 3D points. They generalize the 6 ) -
4 point’ method assumes that the focal

point ‘Direct Linear Transform’ method by incorporating plementgd i )
partial prior camera knowledge, while still allowing some !€ngth f is the only unknown calibration parame-

unknown calibration parameters to be recovered. Onlyter, the ‘5 point’ one that the unknowns are focal
linear algebra is required, the solution is unique in non-length f and principal pointug, vy). Other one (4
degenerate cases, and additional points can be includegoint) or three (5 point) parameter linear calibration
for improved stability. Both methods fail for coplanar models could easily be implemented using the same

points, but we give an experimental eigendecompositiong .p i es. There are also associated multi-solution
based one that handles both planar and nonplanar Cases. 1hods canable of handling one additional calibra-
Our methods use recent polynomial solving technology, P 9

and we give a brief summary of this. One of our aims was 0N parameter apiece: at magt = 16 solutions
to try to understand the numerical behaviour of modernfor pose plus 2 calibration parameters in the 4 point
polynomial solvers on some relatively simple test casescase,4> = 16 for 4 in the 5 point one. We will
with a view to other vision applications. not consider these here as they yield too many solu-
Keywords: Camera Pose & Calibration, Direct Linear tions to be practically useful, and numerical stability
Transform, Polynomial Solving, Multiresultants, Eigen- is likely to be poor. However wwill consider a re-
systems. lated modification of the quasilinear 4 point method,
which has fewer degeneracies but which may return

. 2 or at most 4 solutions.
1 Introduction _ : .
Notation: X denotes 3D points andimage ones.

This paper describes two quasilinear methods forVe use homogeneous coordinates and the full pro-
camera pose (absolute orientation) and calibratiodective camera moddP = KR(l | —t) where: P
from a single image of 4 or 5 known 3D points. The is the camera’s x 4 projection matrix; the rotation
methods are ‘direct’ (non-iterative) and quasilinear, R and translatiort give its orientation and position;

a s ug

so: () only linear algebra is requiredi(they give  gndk = (0 1 w | is its internal calibration ma-
a unique solution in non-degenerate casii; 4d- 001/f

ditional points are easily included to improve stabil- [fiX- The calibration parameters a, s, (uo, vo) are

ity: and (v) all points are on an equal footing. The Ccalledeffective focal lengthaspect ratio skewand
classical ‘Direct Linear Transform’ (DLT) [1, 16] normalized principal point Numerically, we will
recovers the 5 internal and 6 pose parameters of 45Sume well-normalized image coordinates based
fully projective camera from the images of 6 known O Some nominal focal length and principal point
3D points. The new methods are analogous to thd®-9- the image centre). Fixed parameters are as-
DLT, but adopt more restrictive calibration models SUMed to have their nominal valugs s, uo, vo) =

so that: {) the minimum number of points required (1,0,0,0).

This paper appeared in ICCV’'99. The work was supported by Ratlor_]ale &_ EXI?tlng Work: Our methods use
Esprit LTR project CUMULL. | would like to thank Peter Sturm  SOmMe prior calibration knowledge, and are best seen
for comments. as intermediate between classical 3—-4 point pose-

183
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with-known-calibration algorithms [16, 8, 15], and [21, 10, 18, 22] solve the 4 point planar pose + fo-
> 6 point DLT-like ones which assume completely cal length problem rather stably (barring fronto- and
unknown calibration [1, 16]. They were motivated other axis parallelisms). Unfortunately, these meth-
mainly by the need for approximate camera pose +ods fail for more than about 5% non-coplanarity,
calibration to initialize bundle adjustment in close so it would be useful to develop algorithms for the
range industrial photogrammetry problems. Userdifficult (but practically common) near-planar case.
convenience dictates the use of as few referencé will describe a preliminary version of such a 4
points as possible: accurate 3D references are troypoint method below, which uses recent eigenvector-
blesome and expensive to acquire and maintain, antbased polynomial solving technology to separate the
application constraints often mean that only a fewtrue root from the false ones. The underlying tech-
points are visible from any given location. As the nique is worth knowing about as it potentially ap-
bundle adjustment can correct quite a lot of residualplies to many other vision problems with degenera-
error, stability is more important than high precision. cies and/or multiple roots.

This suggests the use of simple approximate camera Contents: §2 outlines our general approact8
models with minimal free parameters. Aspect ratio covers the necessary material on polynomial solv-
a and skews are both stable and easily measured, sang, §4 summarizes the algorithms and gives imple-
they can usually be pre-calibrated. In contrast, thementation details§5 describes experimental tests,
‘optical scale’ parameters focal lengfhand princi-  and§6 concludes.

pal point(ug, vo) are difficult to pre-calibrate. Even

with a fixed lens they vary slightly with focus, aper-

ture, mechanical/theyrmarI)/mo%ionyof the lens m(F;unt,2 Approach

and (with lens distortion) image position. Radial
lens distortion is also significant in many close range
applications, but we will not consider it here as it is
difficult to handle in our DLT-like framework. See
[16, 2] for extensions of the DLT which partially ac-
count for lens distortion.

Each image of a known 3D point gives two linear
constraints on the projection matrRR, or equiva-
lently two norlinear ones on the camera pose and
calibration. So fromm > 3 points we can estimate
at most the 6 pose parameters &md— 6 calibra-
tion ones. These minimal cases lead to polynomial
Degeneracy is a significant problem for all cali- systems with multiple solutions. But we will see
bration methods USing near-minimal data: for cer-that by estimating one fewer parameter’ we can con-
tain relative positionings of the points and camera,yert such problems to linear null space computations
there are infinitely many solutions and the method\yhich generically yield a unique solution. Hence,
fails. Coplanar reference objects are especially easye can estimate pose plas — 7 = 1,3,5 cali-
to manufacture and measure. But all 6 point DLT- pration parameters quasilinearly froms, 6 points.
like methods fail for planar scenes, aady method 6 points is the standard DLT, so we focus on the 4
with free focal length (including all of ours) fails gnd 5 point cases. For 4 points we develop meth-
for frontoparallel planes, as forward motion is in- ggs for pose + focal lengtlf; for 5 points, pose
distinguishable from zoom. This is problematic as + f + principal point(ug,vo). Other selections of
near-planarity and frontoparallelism are common in1_3 of the 5 linear camera parametgrs, s, u, vy
practice. A planar scene gives only two constraintscan be handled analogously. The basic idea is to
on the calibration (“the images of the plane’s two enforce the constraint that the remaining entries of
circular points must lie on the image of the abso- (a, s, ug, vo) have their default valugd, 0,0, 0). ‘4’
lute conic” [20, 11, 18, 22]). As there are 5 cali- gnd ‘5 point’ really denote the calibration model as-
bration parameters, at least 3 prior constraints arggymed, not just the minimum number of points re-
required to recover from planarity. Our 5 point guired. All of our methods can incorporate further
method has only 2 prior constraints, so it Must points on an equal footing, if available.

(and does) fail for planes. The 4 point quasilinear Tr— o calibration f » |
. . . _ oriu parameter calipration trrom several kKnown planes,
method should do better, but in fact it also fails ow [18], [22] and (slightly later) | myself all independently de-

ing to an algorithm-specific rank deficiency. In con- yejgped essentially the same method, which is highly recom-
trast, relatively simple homography-based methodsnended.
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Direct formulations in terms of camera calibration K = diag(f, f,1), KKT = diag(f?, f2,1) and the
K and ) pose(R,t) (usinge.g.quaternions foR),  constraints (1) become
or (i) the camera-point distances.f( [8, 15]), are
possible, but seem to lead to rather unwieldy ma- “11 = “22 wiz = wiz = way = 0 (2)

trices. Instead, we proceed indirectly as follows: this oyerconstrained system of 4 homogeneous
() find the linear space &f x 4 projection matrices quadratics in 4 variableg,, .. . , us generically has

consistent with the given pointsi Xrecover the es- 4t most one solution. We will see below how to con-

timated projection matrid quasilinearly from this et sych a system into a rectangular multiresultant
subspace using the calibration constraini) €x-  mapix R whose unique null vector encodes the so-
tract the calibration and pos€, R, t from P in the 1 ion e can then estimate the null vector numeri-
usual way. We focus mainly on stepwhichisthe ¢4y (e.g.using SVD), extract the correspondipg

novel contribution. _ substitute intdP (1) to obtainP, and decomposP
Step 1is very similar to the standard 6 point DLT 1 opain full camera pose + calibration. In this case

[1, 16]. Given a 3D poinX and its ImageAx = hq resyitant matrix turns out to 88 x 56 — large,
P X, eliminate the unknown depthby forming the ;¢ still tractable.

cross-produck A (P X) n 0, and sele(?t two inde- The 5 point method is similar. It recoveis , j12)
pendent homogeneous linear constraintdoftom using the calibration constraints — 1, s — 0.
this. (In fact, | projectP X orthogonal tox using  These are no longer linear in the entrieskok T,
X's 3 x 3 Householder matrix. This is slightly differ- )+ fortunately theyare linear in those ofo~! =~
ent, but the overall effect is similar). The constraints (KKT)~!, whose uppeg x 2 submatrix is propor-
from n points can be assembled int@a x 12 ma- tonal to (1 =* 1 is proportional to the
trix which generically has rankain(2n,11). With _ (—s a2+82>' w IS proport o
the standard DLTp > 6, the rank is generically Matrix of cofactor.s .ofw, and hence quadratic in
11, and the 12 components of the unique null vec* = w(x) Or quartic iny. The system = 1,5 = 0
tor directly give the corresponding projection ma- O Wii = Wa, Wi = 0 becomes

trix P. Forn = 4,5 the rank is generically 8,10 2 2

leaving ad = 4,2 dimensional null space. In the WarWss —Was = Wi11Wss —Wis 3)
noiseless case, this still contains the true projection: wa1 wyz —wazwyn = 0

P =P = YL pi Pi where theP; are3 x 4 This overconstrained system of two homogeneous
projections corresponding to thivectors of a null  quartics in(u1, 1) yields an8 x 8 (Sylvester) resul-

space basis, angd; are unknown parameters. The tant matrix whose null vector again gives the solu-
null space is calculated numerically by SVD. Even tion quasilinearly.

if n > 4,5 and the rank is clearly greater than 8,10,

_ _ Notes: The globally optimalP lies somewhere in
we still take thel = 4, 2 smallest singular vectors to

) the nonlinear variety of projection matrix space cut
span the spacB(y) used in the next step. out by thed calibration constraints. It has low er-
Step 2recoversP () from theP; by estimating o o4 it is usually not far from the space spanned
p using the calibration constraints. By the decom- yhe smallest few singular vectors of the DLT con-
positionP =~ KR(I| —1), the4 x 4 Eucll?eoan straint matrixA. This motivates the choice of the
mvgnantabsolute dyal quadricmatrix = (00) subspaceP (). But with noisy dataP(y:) rarely
projects to thedual image of the absolute quadric  .,htains the exact global optimum. In fact, the cal-
(DIAC) 19, 9, 13] ibration system has 1 redundant d.o.f. Bfy), so
w=POP" ~ KKT 1 it sgldom hasanyexact_solution th_ere, I_et anr_1e an
optimal one. Worst still, step 2 finds its “unique”
We use this to convert constraints on the calibrationnear-solution by roughly minimizing some highly
K into ones on candidate projectiof ) or their  twisted heuristic form of the constraint residus;
associated DIAC'sy = w(u) = P(u) QP(u)". gardless of the resulting image erroFhe measured
For the 4 point method the only unknown calibra- data points contributenly to the estimation of the
tion parameter ig. The remaining parameters take “null” space P(u) in step 1. This is fine for mini-
their default valuest = 1, s = up = vg = 0 so  mal point sets wher® (1) is the true null space of
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the DLT constraints. But for noisy, non-minimal, A are truncated, but we will use only untruncated
well-conditioned dat& (1) generally contains sev- rows.
eral far-from-null directions and there is a risk that  We want to find the roots of a polynomial system
step 2 will return a solution with quite large resid- {p1(x),... ,pm(x)}, i.e. the pointsx at which all
ual. In summary, the multiresultant solution neither p,(x) = 0. It follows thaty", pi(x) q;(x) also van-
exactly satisfies the constraints, nor minimizes thejshes at all rootx, for any other polynomialsg; (x).
fitting error even within thd (1) subspace, let alone  As row vectors, such sums are linear combinations
outside it. Experimentally this is verifiedi)(non-  of rows x p;(x) from the multiplication matrices
linear refinement significantly reduces the residuaIMA(pi)_ Gather the (untruncated) rows of these
of the multiresultant solutions;iif the multiresul-  into a big ‘multiresultant’ matrixR. The vanishing
tant methods are most suited to near-minimal dataf x* p, at roots implies that the monomial vector
— as more data is added their performance improves-4 of any root isorthogonalto all rows of R: The
comparatively little, so for well-conditioned high- linear subspace of monomial vectors spanned by the
redundancy data the 6 point DLT is preferable. root vectorsx is contained in the right null space
of R.. It turns out that by makingd larger, this null
) ) space can often be made to ‘close in’ on the space
3 Solving Polynomial Systems spanned by the roots, until they eventually coincide.
If there is only one rook, x* can then be recovered
This section briefly sketches the multiresultant the-(modulo scale) as the unique null vector Rf x
ory required to understand our algorithms. Part ofthen follows easily by taking suitable ratios of com-
this material is classical, but it has seen a significantponents, with at most some trivial root extractions.

revival Iately and we will use some recent results. For numerical accuracy, |arge-m0du|us components
There is no space for details here, but the materiabf x4 should be selected for these ratios.

deserves to be better known in the vision commu- gq, homogeneous polynomials, roots are
nity as large-scale polynomial solving is rapidly be- counted projectively in the homogeneous variables

coming a feasible proposition. Seeg.[4, 14] for (%o, ... ,2n). Bezout's theorem says that a system
references and further reading. of n such polynomials of degreed; has either

A polynomial p(x) = > pax* in variables exactly[]™, d; such complex roots (counted with
x = (21,... ,x,) is a finite sum ofcoefficientsp.  appropriate multiplicities), or (non-generically) an
timesmonomials x* = [[, z", with integer infinite number. Adding further polynomials gives
exponentsa. = (ai,... ,an) € Z". FOrhomo-  an overconstrained system that generically has no

geneouspolynomials, all exponents have the samergots at all. But if it does have one it is generi-
degree|a| = >, a;. Any polynomial can béo-  cally unique and can be recovered by the above
mogenizedby including an extra variabley at a  construction. In particular, fodensehomogeneous
suitable power in each term, and de-homogenizetholynomials (ones whose coefficients of the given
by settingzo = 1. The product of polynomialp,q  degrees are all nonzero and generic), Macaulay’s
is(pqg)(x) =>_, Zﬂ Pa—8 qg) x“. By choosing  classical multiresultant [12] choose$ to contain
some sufficiently large list of working exponents  all monomials of degre® = 1 + Y71 (d; — 1).

(to be specified below), we can represent polynomi- Taking all untruncated rows of the multiplication
als as row vectorp4 = (...pa...) and mono- matrices as above generally gives a rectangular ma-
mials as columnsc? = (...x“...)T, so that trix R. Macaulay gave a prescription for choosing
p(x) = p4 - x* is the usual row-column dot prod- a minimal set of rows (a squar®) that (generi-
uct. All of the nonlinearity is hidden in the “sim- cally) suffices to generate the null space. This is use-
ple” monomial evaluation mapping — x*. Poly-  ful for theory and most current multiresultant codes
nomial multiplication can be represented by matri- adopt it. But numerically it is ill-advised as noth-
cesM 4(q) acting on the right on row vectors: ing says that the selected rows are particularly well-
(Pa)a = paMu(q). Rowa of M 4(q) contains  conditioned. | prefer to include all available rows
the row vector ofx® q(x), i.e. the coefficients ofy  and use a stable numerical null space routine, either
‘shifted along’ bya. Coefficients shifted outside of pivoting to select suitable rows, or using an orthogo-
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nal decomposition like QR or SVD that averages er-M 4(q) into an Ny x N matrix M = (M; | My),
rors over all of them. This also allows any available and form theNVy x Ny reduced multiplication ma-
additional polynomials to be included on an equal trix
footing for better stability and/or reduced degener-
acy, simply by adding the appropriate rows of their M, (d|P1 ... pm) = MU = My — M; R{ Rq
multiplication matrices t@R. If some of the polyno- ) ) ) )
mial coefficients vanish the Macaulay construction "What is happening here is thTat the polynomials
may fail. Sparse ‘Newton’ multiresultants are avail- X~ P: (the rows ofR, acting viaR,;) have been used
able in such cases [7, 6, 4]. to ellmlna_te theA; gxponents of the polynomials
The above is all we need for the quasilinear 4Xa 4 Ieavmg.a matrlx.on.the reduced exponent set
and 5 point methods, as tH2, and hence (2), (3) Ay representingnultiplication byq followed by re-

are usually dense. However, as mentioned abovi duction modulo (multiples of) the;. The reduction

. . . eI'eaves the value af unchanged at all roots of the
the 4 point method fails unnecessarily for copla- . .
pi, as multiples op;(x) = 0 are added to it. Hence,

nar points. R develops 3 additional null vectors "’ :
. . . P using the above regeneration propefty, any root
in this case, corresponding roughly to infinite and .

x of the system{p; ... p,}, the monomial vector

zero focal lengths (though not necessarily to coher-_ , . : L
ent roots). The true root monomial still lies in this ™ '.S an eigenvector oM 4, (q) with eigenvalue
4D null space, but it is no longer isolated by the a(x) -

null space computation alone. This failure is an- M, (q) x2 = MxA = q(x) x2
noying, as coplanarity is not actually an intrinsic 0

degeneracy of the 4 point problem. Indeed, sta-Eyen if we can't reduce the null space B to
ble specialized methods exist for the planar casey single vector owing to multiple roots, ill condi-
[21, 10, 18, 22]. Unfortunately, these fail even for tjoning, et we can still obtain roots by solving a
mildly non-coplanar scenes. It would be useful to nonsymmetric eigenvalue problem. Giverfo we
develop a method that handled both cases simultagan recover as before, if necessary regenerating
neously, and in particular the difficult near-planar re- yA _ {7 x40 to do so. Possible problems with this
gion. To do this we need some more theory. construction are: i) it may be impossible to find
The columns of the resultant matrR are la-  an A, with well-conditionedR!| and non-constant,
belled by the exponent sgt. If we partition. A into  untruncatedy; (i) if the choseny takes similar val-
subsets4; + Ay, R can be partitioned conformably ues at several roots, the eigenvalue routine may fail

(after column permutation) aR = (Ri|Ryp). to separate the corresponding eigenspaces cleanly,
Choose the partition so thati) (R, has full col-  leading to inaccurate resultsii | post-processing is
umn rank Ny = |Ayl; (i) Ao is relatively small  required, as some of the recovered eigenvectors may

and compact in the sense given below. For any leftoe garbagei . vectors that define valid linear forms
pseudoinverseR! of R;, the column span of the on polynomials, but whose components do not cor-
N x Np matrix U = -RIRo ) contains the null  respond to the monomials of any root). Beware that
! nonsymmetric eigenproblems are intrinsically rather
delicate, and in this application can become spectac-
ularly unstable for ill-conditioned; or ill-chosen
q. This isnotimmediately obvious from the recov-
(RI Ry Vl) =(v)=V. ered eigenvalues or eigenvectors. However the con-
’ dition number of the eigenvector matrix is a fairly
reliable indicator.

This multiplication matrix approach to numerical
root-finding is quite recent [17, 14, 4], although its
roots go back a century. So far as | know, the ob-
servation that it continues to work whefy and U

2le., RIR; = I, «n,. SuchR! are easily calculated SPa@n more than the null space Bfis new. This
from most numerical decompositions Bf . is numerically useful, as it allows eigensystem size

space of the columns @&. In fact, U regenerates
null vectorsv from their 4o components:Rv =

R, vi+Rgo vy = 0impliesU vy = (-RIVPO‘O VO) =

Now choose a non-constant polynomig(x)
such that the row vectoss® q are untruncated il
forall a € Ap. (Itis to avoid truncation here that,
needs to be small and compagtcan have negative
exponents if necessary). Assemble thdgeows of
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to be traded against elimination stability. This ap- useRJ{ to form q’s reduced multiplication ma-
proach can be used to find all of Bezout’s projective trix, extract eigenvectorg“¢, and recover the
roots of a densex polynomial system by building solutionsy.

a Macaulay matrix withD = 14 >°" ,(d; — 1)

and choosing4, to contain all monomialk® with 4. (Optional) Refine the recovered roofs by

0 < a; < d;. Here,R; generically spans the col- Newton iter_ation against the original calibra-
umn space oR, so there are no extraneous eigen-  tlon constraints.

values. Sparse analogues also exist.

We will use the eigenvector method to stabi-
lize the 4 point quasilinear one against near-planar
scenes. Coplanarity increases the null space dimen-

sion of the 4 point multiresultanR from 1 t0 4. The routines have been implemented inc-O
So we need to choose four exponents/for the  tayg/MATLAB. The necessary multiresultant ma-
reduced exponent seto, and the routine will re-  yjces were calculated using aAWLE routine sim-
turn at most four potential roots. Currently | use the i, 1o [14] (available from the author). The null
four lowest degree exponen(ts, , iz, i3, 1) (Where  gnace methods are straightforward to implement, but
pa = 1is the homogenizing variable). This choice the ejgenvector one requires some care. The choice
parametrizes the true root and at least one false nuls the ‘pivoting’ exponent setd, is critical, and |
vector stably, but it is not ideal as the remaining 1-2 31, not happy with the current heuristic. In fact, |
false null vectors are mainly supported on ‘high’ ex- have tried only theus-based exponent set, but varied
ponents deep withiod,. | know of no way around  \yhjch of the projection matriceB; (the d smallest
this dilemma: the supports of the null vectors are tooright singular vectors of the DLT equations) is as-
widely separated to gather into aty supporting an  signed toy,. | tried various permutations and also
untruncatedq, even if we could isolate which ex- andom orthogonal mixings. None are wholly sat-
ponents were needed. With the heuristics discussegfactory and a more effective pivoting strategy is
below, the modified 4 point routine performs tolera- clearly required before the eigenvalue approach can
bly well despite the fact that boR] and the eigen- g routinely used to rescue resultants from multi-
value problem are often fairly ill-conditioned, but a 5ot degeneracies. For 4 points and near-planar
cleaner solution would be desirable. scenes, making®, correspond to thereatestof
the 4 singular values is by far the best choice. But
it performs erratically for non-coplanar scenes and
n > 4 points. Changing strategies makes enormous
differences to the conditioning @, but does not
necessarily stop the routine from working. Slight
(O(10~19)) damping of the pseudoinverse is also es-
sential with the currentdy, asR; actually becomes
1. Use SVD to estimate thel-D null space singular for.coplanar pomt_s. _

P(u) = 2%, u; P; of the DLT constraints Another issue for the eigenvector method is the

x A (PX) = 0. f:h0|ce of multlpller polynomialy(x). For _S|mpI|c-

ity | have used a lineadq;, although anything up to

2. SubstitutéP (1) into the 4 quadratic calibration 4" order could be handled. For maximum stability,

constraints (2) (4 point) or 2 quartic ones (3) (5 it is important thaig should take well-separated val-
point). ues at different roots. In practice, | randomly choose

a fewq's and take the one that gives the best condi-
3. Form the rectangular multiresultant matix  tioned eigensystem. The cost is negligible compared
of the resulting polynomials, use SVD to re- to the calculation oRJ{.
cover its unique null vector, and extracu. The current implementations use SVD for all null
For the eigenvector method, choose a splittingspace computations. This is perhaps overkill, but
Ay and a compatible random polynomig(y), it guarantees the stablest possible results. Speed is

5. Calculate the camera projection mati(u)
and decompose it as usual to get pose + cali-
bration.

4 Implementation

The steps of the new pose + calibration algorithms
are as follows, wherel = 4,2 for the 4,5 point
method:



Papier : Camera Pose and Calibration from 4 or 5 Known 3D Points — ICCV’99 189
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Figure 1 Left: Focal length & rotation errovs. noise, for each method’s minimal point number and preferred scene
flatness. Middle: Error vs. number of points for 0.5 pixels noisdRight: Error vs. scene flatness for minimal point
numbers.

adequate< 1 second), but might become anissue if The graphs show that all methods are quite sen-
the 4 point methods were used in a RANSAC loop. sitive to noise, but all scale linearly with it up to at
The rootsy, are recovered by selecting suitable least 50% relative error. The planar 4 pojirbnly
large-modulus components pf* and taking their method [21, 10, 18, 22] is both simpler and intrin-
ratios. Optionally, they may then be ‘refined’ by sically stabler than the 3D ones, but it can not tol-
a simple Newton iteration that minimizes the error erate more than about 5% non-coplanarity. Plane +
in the calibration polynomials (2),(3) over. For  parallax might be an interesting approach for pose
the best results the original calibration constraints+ calibration from flat scenes. The 5 and 6 point
should be used, not their resultant matix Full DLT’s fail for scenes within about 20% of planarity,
Newton rather than Gauss-Newton iteration is ad-whereas the 4 point DLT one (whose failure is al-
visable here, owing to the nonlinearity of the con- gorithmic not intrinsic) continues to work down to
straints. around 10%. The 4 point eigenvector method works
even for planar scenes, but overall it is somewhat
erratic. E.9. it gives better results for near-planar
5 Experiments scenes, and for 4 points rather than> 4). As
above, this is due to the lack of a good policy for
The graphs show some simple experimental tests othe choice of the residual exponent skt
synthetic data. The 3D test points are well spread The performance of the 5 point DLT is somewhat
and by default non-coplanar. They are viewed fromdisappointing. The traditional 6 point DLT is al-
about 5 scene diameters by E2 x 512 camera with  ways preferable when there are> 6 points, and
f =~ 1000 £ 400 and a default Gaussian noise of 0.5 for n > 10 even beats the 4 point DLT ofi (but
pixels (which is easily obtainable with marked target not on orientation). In general the relative rankings
points). Median errors over 300 trials are reported.depend somewhat on the error measure chosen. The
For flat scenes, the plane is viewed at at®ft 15° fact that the 6 point DLT does better than the 4-5
from normal to avoid the frontoparallel degeneracy, point ones for large numbers of points is annoying
which all of the algorithms here suffer from. but not unexpected. As discussed in section 2, it
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happens because the multiresultant step blindly miniNeither competes with the traditional 6 point DLT
imizes some sort of twisted constraint residual overwhen there are> 6 well-spaced points, and hence
the subspac® (1), without any consideration of the neither realizes my hopes that calibration constraints
image errors produced. For redundant dBfgu) could be used to stabilize the 6 point method. The
usually contains projections with significant image reason is basically the splitting of the problem into
error, hence the problem. | am currently working on ‘DLT’ and ‘multiresultant’ parts with different, in-
this, but for now the 4 and 5 point methods are mostcompatible error metrics. This sort of subdivision is
useful for minimal and near-minimal data. commonplace in vision geometry, but it is clear that

The ‘4pt DLT refined’ method runs Newton’s it prevents the data and constraints from being com-
method on the output of the linear 4 point one, bined very effectively. | am currently reflecting on
to minimize the RMS error of the calibration con- better ways to handle this. Also, the whole issue of
straints. Such nonlinear refinement is highly recom-scaling, pivoting, and the effective error metric used
mended, as it reduces the overall residual error byby polynomial methods like multiresultants remains
a factor of 2-5. A mini bundle adjustment over the very unclear. But the numerical side of this field is
resulting pose estimate would do even better, as ivery recent, and significant improvements are to be
would not be restricted to thé-D ‘null space’ of expected over the next few years.
the DLT constraints. The large reduction in residual The use of oversized, rectangular multiresultant
suggests that there is considerable scope for improvmatrices R improves the numerical conditioning
ing the heuristic least squares error function embod-and also allows redundant data to be included, so it
ied in the multiresultant root estimate. However, ex- should help to make polynomial-based initialization
cept for the initial DLT step, simple rescaling has of many vision optimization problems more feasi-
little effect: the multiresultant is insensitive to the ble. For more difficult cases where there are mul-
scaling of its input data over a range of at les®t2. tiple near-roots and other degeneracies, the eigen-

Use of the rectangular multiresultant is recom- vector method has considerable potential. However,
mended, as it makes the results significantly moreif my current experience with the 4 point eigen-
consistent, allows additional points to be incorpo- vector method is any guide, more work on pivot-
rated, and reduces errors by 20-40% compared ting/exponent choice strategies is essential to make
the square Macaulay resultant. numerically trustworthy.

All of the methods give more accurate relative re-
sults asf grows larger and the camera recedes, sim-
ply because a larger magnification camera with the
same pixel noise is a more accurate angle measurer{1] v. Abdel-Aziz and H. Karara. Direct linear trans-
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Annexe B

Autres activites scientifiques

Ici je regroupe bevement quelques autres indications de mes aggigtientifiquesecentes :
— congrencier invi€a:
— MICROSOFTRESEARCH Seattle (2 fois) ;
— workshop CVPR’98 MView'99 — Multi-View Modeling and Analysis of Visual Scenes
Fort Collins, Colorado ;
— workshop« J.-O Eklundh> en honneur du 60 anniversaire de Jan-OlofKEUNDH,
Stockholm, Saede;
— animateur du workshop majeuWision Algorithms : Theory and Practicea ICCV'99, avec
Andrew ZISSERMAN et Richard SELISKI ;
— responsableabut de (et collaborateur scientifique sur) le projet Esprit LTR 2190 QL1 ;
— membre du comitde programme des camnénces internationaux CVPR et ECCV et de divers
workshops ;

— relecteur pour plusieurs journaux et autres eagrices internationales (IJRR, 1JCV, PAMI,
CVGIP, ICCV, SIGGRAPH, RFIA).
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