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Boundary Conditions for Young - van Vliet
Recursive Filtering

Bill Triggs, Michäel Sdika

Abstract— Young & van Vliet have designed computationally efficient
methods for approximating Gaussian-based convolutions by running a
recursive IIR filter forwards over the input signal, then running a
second IIR filter backwards over the first filter’s output. To transition
between the two filters, they use a suboptimal heuristic that produces
significant amplitude and phase distortion for all points within about
3 standard deviations of the right-hand boundary. We derive a simple
linear transition rule that eliminates this distortion.

Index Terms— Gaussian smoothing, bidirectional recursive filtering,
boundary conditions.

I. I NTRODUCTION

Young & van Vliet (YvV) have developed computationally efficient
forwards-backwards IIR recursions for Gaussian filters [1], Gaussian
derivatives [2], and Gabor filters [3]. See [3] for their most recent
design rules for Gaussians, and [4] for space-variant extensions and a
performance comparison with other IIR Gaussian methods including
Deriche’s original method [5], [6]. Our approach also applies to the
analogous recursion [7] for B-spline based signal processing. All of
the YvV filters work forwards, recursively calculating a running sum
ut as a linear combination of the input signalit and thek previous
u values, then work backwards calculating a running sumvt as a
linear combination ofut and thel previously-calculatedv values:

ut = it +
Pk

j=1 aj ut−j t = 1, . . . , n (1)

vt = ut +
Pl

j=1 bj vt+j t = n, . . . , 1 (2)

The final output is a scaled version ofvt, and {aj,j=1...k} and
{bj,j=1...l} are suitably chosen filter coefficients. For Gaussians, YvV
choosek=l and a=b [1], [3]. For other filters,it may be a linear
transformation of the original input signal,e.g. a discrete derivative
for derivative filters [1].

II. T HE PROBLEM WITH HEURISTIC BOUNDARY CONDITIONS

To complete the specification (1, 2), we must fix initial conditions
for u neart=1 and forv neart=n. For u, we can pretend that the
signal existed and took some nominal constant valuei− (typically
either0 or i1) for all t<1. The correct initialization att=1 is then to
set allu1−j,j=1...k to i−/(1−

Pk
j=1 aj), the steady state response to

an infinite stream ofi−’s. Similarly, if we could suppose that for all
t>n, ut took some constant valueu+, the correct condition att=n
would be to setvn+j,j=1...l to u+/(1 −

Pl
j=1 bj), the steady state

response to an infinite stream ofu+’s. YvV apparently do exactly
this, with i−=i1 and u+=un (c.f. [3] equations (20,21)). Another
plausible choice foru+ would bei+/(1−

Pk
j=1 aj), the steady state

u resulting from an infinite stream of constant input valuesi+ above
t=n (typically, i+ would be eitherin or 0).

Unfortunately, neither choice foru+ is correct. If the forwards
filter were continued tot�n with input i+, its output would decay
smoothly fromun to i+/(1−

Pk
j=1 aj) within a few standard devia-

tions, and the corresponding backwards filter would take all elements
of this “advance warning” signal into account when calculating its
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Fig. 1. Impulse responses for points at various numbers of standard deviations
from the right boundary, for a YvV Gaussian filter, with the standard YvV
boundary heuristicu+=un (top) and with our new boundary correction (14)
(bottom). The corrected responses are much closer to the desired (truncated
Gaussian) form.

response. In fact, the forwards-backwards processonly gives the
correct overall impulse response when the full double recursion is run
without truncation. Incorrect truncation causes significant amplitude
and phase (geometric position) distortion for all points within about
3 standard deviations of the boundary. Fig. 1 illustrates the extent of
the problem.

III. D ERIVATION OF L INEAR BOUNDARY CORRECTION

To correct for the effects of truncation, we notionally extend the
forwards-backwards pass tot→∞ assuming a constant input valuei+
abovet=n, and calculate the coefficients{vn+j,j=1...l} that would
result from this infinite extension, giveni+ and the final forwards
filter state{un−j,j=0...k−1}. The whole process is linear so thev’s
must be linear functions of theu’s andi+. First suppose thati+ = 0.
Gathering theu’s, v’s into runningk, l vectorsu, v, the forwards and
backwards passes become:

ut = A ut−1 = At−n un t > n, i+ ≡ 0 (3)

vt = I1 ut + B vt+1 t ≥ n (4)

whereAk = A · A · . . . · A (k terms) is thekth power ofA and

ut ≡

0B@ ut

...
ut−k+1

1CA A ≡

0BB@
a1 · · · ak−1 ak

1 · · · 0 0
...

. . .
...

0 · · · 1 0

1CCA (6)
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M =
1

(1+a1−a2+a3) (1−a1−a2−a3)
· (1+a2+(a1−a3) a3)

0@−a3a1+1−a2
3−a2 (a3+a1)(a2+a3a1) a3(a1+a3a2)

a1+a3a2 −(a2−1)(a2+a3a1) −(a3a1+a2
3+a2−1)a3

a3a1+a2+a2
1−a2

2 a1a2+a3a
2
2−a1a

2
3−a3

3−a3a2+a3 a3(a1+a3a2)

1A (5)

vt ≡

0B@ vt

...
vt+l−1

1CA B ≡

0BB@
b1 · · · bl−1 bl

1 · · · 0 0
...

. . .
...

0 · · · 1 0

1CCA (7)

and I1 = (1 0 . . . 0)>(1 0 . . . 0) is an l×k matrix with a1 in the
top left corner and zeros elsewhere. Combining these equations for
all t≥n, we havevn =

`P∞
i=0 Bi I1 Ai

´
un. We need to calculate

the l×k matrix M ≡
P∞

i=0 Bi I1 Ai that links the initial backwards
statevn to the final forwards oneun. By M ’s recursive definition:

M = I1 + B M A (8)

Writing M =

(
m1
...

ml

)
by rows as akl-element row vector

↔
M =

(m1, . . . , ml), and similarly forI1, converts (8) to:

↔
M =

↔
I1 +

↔
M

( b1 A A ··· 0...
...

...
...

bl−1A 0 ··· A
bl A 0 ··· 0

)
(9)

This sparse system is easily solved to give (e1 = (1, 0, . . . , 0)):

m1 = e1

 
I −

lX
j=1

bj Aj

!−1
, mi = m1 Ai−1, i = 2, . . . , l

(10)

Alternatively, if l � k, it may be preferable to writeM =
(m1, . . . , mk) by columns as akl element column vectorMl, so
that (8) becomes:

Ml = I1
l +

( a1 B B ··· 0...
...

...
...

ak−1B 0 ··· B
ak B 0 ··· 0

)
Ml (11)

with solution (e1 ≡ (1 0 . . . 0)>):

m1 =

 
I −

kX
j=1

aj Bj

!−1
e1 (12)

mi =

 
kX

j=i

aj Bj−i+1

!
m1 i = 2, . . . , k (13)

As an example, theM of the (k=l=3, a=b) Gaussian filter recom-
mended by YvV is given in (5) above.

Finally, to handle nonzeroi+, we can simply reduce to thei+=0
case by subtracting the constant-u responseu+ = i+/(1−

Pk
j=1 aj)

from each component ofun, applyM , then add back the correspond-
ing constant-v responseu+/(1−

Pl
j=1 bj) to getvn.

IV. SUMMARY OF METHOD

In summary, Young & Van Vliet recursive filters suffer from severe
amplitude and phase distortion at the right boundary unless the
backwards running coefficients are initialized from the forwards ones
as follows, whereM is given by (8), (5), (10) or (12, 13):0B@ vn

...
vn+l−1

1CA = M

0B@ un − u+
...

un−k − u+

1CA+

0B@v+
...

v+

1CA (14)

u+ =
i+

1−
Pk

j=1 aj

v+ =
u+

1−
Pl

j=1 bj

(15)

An implementation for 2D Gaussian image filtering is available on
the author’s web page. J.-M. Geusebroek has also incorporated the
technique in his IIR filtering package, available from his web site
http://www.science.uva.nl/∼mark/downloads.html
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