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Abstract—Feature detection is used in many computer vision applications such

as image segmentation, object recognition, and image retrieval. For these

applications, robustness with respect to shadows, shading, and specularities is

desired. Features based on derivatives of photometric invariants, which we will

call full invariants, provide the desired robustness. However, because computation

of photometric invariants involves nonlinear transformations, these features are

unstable and, therefore, impractical for many applications. We propose a new

class of derivatives which we refer to as quasi-invariants. These quasi-invariants

are derivatives which share with full photometric invariants the property that they

are insensitive for certain photometric edges, such as shadows or specular edges,

but without the inherent instabilities of full photometric invariants. Experiments

show that the quasi-invariant derivatives are less sensitive to noise and introduce

less edge displacement than full invariant derivatives. Moreover, quasi-invariants

significantly outperform the full invariant derivatives in terms of discriminative

power.

Index Terms—Edge and feature detection, invariants, color.
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1 INTRODUCTION

FEATURE detection, such as edge and corner detection, plays an
important role in many computer vision applications such as
image segmentation, object recognition, and image retrieval [5]. A
large number of feature detectors is based on the differential
structure of images [1], [6], [9]. However, in real-world applica-
tions there are various physical phenomena which trigger
differential-based features, such as shadows, shading, specula-
rities, and object reflectance changes. It is important to differentiate
between the various physical causes of a feature.

An improvement in color understanding was the introduction of
the dichromatic reflection model by Shafer [14]. The model
separates the reflected light into body reflection (object color) and
surface reflection (specularities). This separation results in the
classification of physical events, such as shadows and highlights.
This is suited for photometric invariant segmentation, object
recognition, and retrieval [3], [8], [10]. However, these methods
are based on the zeroth order structure of images andmostly involve
the analysis of the RGB-values in color histograms. For the
photometric invariant theory to be applicable to differential-based
operations, other methods are needed.

The connection between differential-based features and photo-
metric invariance theory is proposed by Geusebroek et al. [2]. This
work provides a set of photometric invariant derivative filterswhich
uses them for invariant edge detection. However, the nonlinear
transformations used to compute photometric invariants have
several drawbacks such as instabilities and loss of discriminative
power. These drawbacks limit the applicability of operations based
on derivatives of these invariants. Traditionally, the effect of
instabilities is suppressed by ad hoc thresholding of the transformed
values [7], [11]. A more elaborate approach is to apply error
propagation through the various color spaces to compensate for

the undesired effects of instabilities and nonlinearities of the
different photometric invariant spaces [4]. However, this approach
is based on a proper noise estimation system which is not always
available in practice.

In this paper, we propose a new class of derivatives which we
refer to as photometric quasi-invariants. These derivatives link
derivative-based operations to the theory of photometric invar-
iance. Quasi-invariants are derived from the dichromatic reflection
model and are proven to differ from full photometric invariants by
a scaling factor. These quasi-invariants do not have the inherent
instabilities of full photometric invariants, and from theoretical
and experimental results it is shown that quasi-invariants have
better noise characteristics, discriminative power, and introduce
less edge displacement than full photometric invariants. The lack
of full photometric invariance limits the applicability of quasi-
invariants to methods which are based on a single image, such as
edge and corner detection. Quasi-invariants cannot be used for
applications in which responses between multiple images are
compared, such as invariant object recognition.

2 THE DICHROMATIC REFLECTION MODEL

In this section, the dichromatic reflection model is discussed [14].
The dichromatic model divides the reflection in the body (object
color) and surface reflection (specularities or highlights) compo-
nent for optically inhomogeneous materials. Assuming a known
illuminant, ci ¼ ð�; �; �ÞT , and neutral interface reflection, the
RGB vector, f ¼ ðR;G;BÞT , can be seen as a weighted summation
of two vectors,

f ¼ eðmbcb þmiciÞ; ð1Þ

in which cb is the color of the body reflectance, ci the color of the
surface reflectance, mb and mi are scalars representing the
corresponding magnitudes of body and surface reflection, and e
is the intensity of the light source. For matte surfaces, there is no
interface reflection and the model further simplifies to

f ¼ embcb; ð2Þ

which is the well-known Lambertian reflection. For more on the
validity of the photometric assumptions see [2], [3], [14] and for
calibration [4].

From the dichromatic reflection model, photometric invariants
can be derived (e.g., normalized RGB, hue). These invariants have
the disadvantage that they are unstable; normalized RGB is
unstable near zero intensity and hue is undefined on the black-
white axis. The instabilities can be avoided by analyzing the RGB
values in the RGB-histogram [8], [10]. That proved to be rather
difficult and slow since you need a meaningful segmentation to
generate a meaningful histogram and a meaningful histogram to
get a good segmentation.

Instead of looking at the zeroth order structure (theRGB-values),
we focus in this paper on the first order structure of the image. A
straightforward extension of the photometric invariance theory to
first order filters can be obtained by taking the derivative of the
invariants. However, these filters would inherit the undesired
instabilities of the photometric invariants. Therefore, we propose an
alternativeway to arrive at photometric derivatives by analyzing the
spatial derivative of the dichromatic reflection model.

The spatial derivative of the dichromatic reflection model (1)
gives the photometric derivative structure of the image:

fx ¼ embcbx þ exm
b þ emb

x

� �
cb þ emi

x þ exm
i

� �
ci: ð3Þ

Here, the subscript indicates spatial differentiation. Since we
assume a known illuminant and neutral interface reflection, ci is
independent of x. The derivative in (3) is a summation of three
weighted vectors, successively caused by body reflectance, shading-
shadow, and specular change. Further, we assume that shadows are
not significantly colored.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 4, APRIL 2005 625

. The authors are with the Intelligent Sensory Information Systems, Faculty
of Science, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam,
The Netherlands. E-mail: {joostw, gevers}@science.uva.nl.

Manuscript received 30 July 2003; revised 6 Sept. 2004; accepted 1 Nov. 2004;
published online 10 Feb. 2005.
Recommended for acceptance by S. Seitz.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0199-0703.

0162-8828/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society



In fact, the direction of the shadow-shading changes (Fig. 1a)

follows from (2). In the absence of interface reflection, the direction

of cb coincides with the direction of f̂f ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þG2þB2

p R;G;Bð ÞT . The
hat is used to denote unit vectors. The shadow-shading direction is

the multiplication of two scalars denoting two different physical

phenomena. First, exm
b indicates a change in intensity which

corresponds to a shadow edge. And emb
x is a change in the

geometry coefficient which represents a shading edge.
Another direction is the specular direction ci in which changes

of the specular geometry coefficient mi
x occur. In Fig. 1b, ci is

depicted for the case of a white light source for which

ĉci ¼ 1ffiffi
3

p ð1; 1; 1ÞT . The specular direction is multiplied by two

factors. First, emi
x is a change of geometric coefficient caused by

changes in the angles between viewpoint, object, and light source.

Second, the term exm
i representing a shadow edge on top of a

specular reflection.
Having the direction of two of the causes of an edge, we are

able to construct a third direction which is perpendicular to these
two vectors (Fig. 1c). This direction, named hue direction b̂b, is
computed by the outer product:

b̂b ¼ f̂f � ĉci

f̂f � ĉci
��� ��� : ð4Þ

If f̂f and ĉci are parallel, we define b̂b to be the zero vector. Note that
the hue direction is not equal to the direction in which changes of
the body reflectance occur, ĉcbx. It is perpendicular to the two other
causes of an edge. Hence, changes in the hue direction can only be
attributed to a body reflectance change.

In conclusion, changes in the reflection manifest themselves as
edges in the image. There are three causes for an edge in an image:
a hue change, a shadow-shading edge, or a specular change. We
indicated three directions: the shadow-shading direction, the
specular direction, and the hue direction. These directions are
the same as the directions indicated by Klinker and Shafer [8] for
the use of image segmentation. We use these directions for the
construction of photometric invariant spatial derivatives.

3 PHOTOMETRIC VARIANTS AND QUASI-INVARIANTS

In this section, the goal is to propose a new set of photometric
variants and quasi-invariants. To this end, the derivative of an
image, fx ¼ ðRx;Gx; BxÞT , is projected on three directions found in
the previous section. We will call these projections variants. For
example, the projection of the derivative on the shadow-shading
direction results in the shadow-shading variant. By removing the
variance from the derivative of the image, we construct a
complementary set of derivativeswhichwewill call quasi-invariants.

The projection of the derivative on the shadow-shading
direction is called the shadow-shading variant and is defined as

Sx ¼ fx � f̂f
� �

f̂f : ð5Þ

The dot indicates the vector inner product. The second f̂f indicates
the direction of the variant. The shadow-shading variant is the part
of the derivative which could be caused by shadow or shading.
Due to correlation of the hue and specular direction with the
shadow-shading direction, part of Sx might be caused by changes
in hue or specular reflection.

What remains after subtraction of the variant is called the
shadow-shading quasi-invariant, indicated by superscript c.

Sc
x ¼ fx � Sx: ð6Þ

The quasi-invariant Sc
x consists of that part of the derivative which

is not caused by shadow-shading edges (Fig. 2b), hence, only
contains specular and hue edges.

The same reasoning can be applied to the specular direction
and results in the specular variant and the specular quasi-invariant

Ox ¼ fx � ĉci
� �

ĉci;

Oc
x ¼ fx �Ox:

ð7Þ

The specular quasi-invariant is insensitive to highlight edges
(Fig. 2c).

Finally, we can construct the shadow-shading-specular variant
and quasi-invariant by projecting the derivative on the hue direction
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Fig. 1. (a) Shadow-shading direction ĉcb, (b) specular direction ĉci, and (c) hue direction b̂b.

Fig. 2. Various derivatives applied to Fig. 4a: (a) color gradient (fx), (b) shadow-shading quasi-invariant (Sc
x), (c) the specular quasi-invariant (Oc

x), and (d) the specular-

shadow-shading quasi-invariant (Hc
x).



Hc
x ¼ fx � b̂b

� �
b̂b;

Hx ¼ fx �Hc
x:

ð8Þ

Hc
x does not contain specular or shadow-shading edges (Fig. 2d).

4 RELATIONS OF QUASI-INVARIANTS WITH

FULL INVARIANTS

In this section, the resemblances and differences are analyzed
between quasi-invariants and full invariants. A geometrical
relation in RGB-space between the two is found by investigating
underlying color space transformations. Conclusions with respect
to stability are made. With stability it is meant that small changes
in the RGB-cube do not cause large jumps in the invariant space.
Further, we discuss the characteristics of quasi-invariants.

4.1 Spherical Color Space

An orthogonal transformation which has the shadow-shading
direction as one of its components is the spherical coordinate
transformation. Transforming the RGB-color space results in the
spherical color space or r�’-color space. The transformations are,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þG2 þB2

p
¼ fj j

� ¼ arctan
G

R

� �

’ ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þG2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þG2 þ B2

p
 !

:

ð9Þ

Since r is pointing in the shadow-shading direction, its derivative
corresponds to Sx.

rx ¼ RRx þGGx þ BBxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þG2 þ B2

p ¼ fx � f̂f ¼ Sxj j: ð10Þ

The quasi-invariant Sc
x is the derivative energy in the plane

perpendicular to the shadow-shading direction. The derivative in
the �’-plane is given by

Sc
x

�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r’xð Þ2þ r sin’�xð Þ2

q
¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
’xð Þ2þ sin’�xð Þ2

q
:

ð11Þ

To conserve the metric of RGB-space, the angular derivatives are
multiplied by their corresponding scale factors which follow from
the spherical transformation. For matte surfaces, both � and ’ are
independent ofmb (substitution of (2) in (9)). Hence, the part under
the root is a shadow-shading invariant.

By means of the spherical coordinate transformation, a relation
between the quasi-invariant and the full invariant is found. The
difference between the quasi-invariant Sc

x

�� �� and the full invariant
sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
’xð Þ2þ sin’�xð Þ2

p
is the multiplication with rwhich is the L2 norm

for the intensity (see (9)). In geometrical terms, the derivative
vector which remains after subtraction of the part in the shadow-
shading direction is not projected on the sphere to produce an
invariant. This projection introduces the instability of the full
shadow-shading invariants for low intensities,

lim
r!0

sx does not exist

lim
r!0

Sc
x

�� �� ¼ 0:
ð12Þ

The first limit follows from the nonexistence of the limit for both ’x

and �x at zero. The second limit can be concluded from
limr!0 r’x ¼ 0 and limr!0 r�x ¼ 0. Concluding, the multiplication
of the full-invariant with fj j resolves the instability.

An example of the responses for the shadow-shading invariant
and quasi-invariant is given in Fig. 3. In Fig. 3a, a synthetic image
of a red-blue edge is depicted. The blue intensity decreases along
the y-axis. Gaussian uncorrelated noise is added to the RGB
channels. In Fig. 3b, the normalized RGB response is depicted and
the instability for low intensities is clearly visible. For the shadow-
shading quasi-invariant (Fig. 3c), no instability occurs and the
response just diminishes for low intensities. Note that the instable
region is particularly inconvenient because shadow-shading edges
tend to produce low-intensity areas.

4.2 Opponent Color Space

The orthonormal transformation which accompanies the specular
variant is known as the opponent color space. For a known
illuminant ci ¼ ð�; �; �ÞT , it is given by

o1 ¼ �R� �Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
o2 ¼ ��Rþ ��G� ð�2 þ �2ÞBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ �2 þ �2ð Þ �2 þ �2ð Þ
p

o3 ¼ �Rþ �Gþ �Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2 þ �2

p :

ð13Þ

The relations with the variant and its complement are Oxj j ¼ o3x
and Oc

x

�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o12x þ o22x

p
.

4.3 The Hue Saturation Intensity Space

As discussed in Section 3, the shadow-shading-specular quasi-
invariant is bothperpendicular to the shadow-shadingdirection and
the specular direction. An orthogonal transformationwhich satisfies
this constraint is the hue-saturation-intensity transformation. It is
actually a polar transformation on the opponent color axis o1 and o2.

h ¼ arctan
o1

o2

� �

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o12 þ o22

p
i ¼ o3:

ð14Þ
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Fig. 3. (a) Red-blue edge, with a decreasing intensity of the blue patch going in the upward direction. Response of (b) normalized RGB derivative, and (c) shadow-

shading quasi-invariant (Sc
x). (d) Red-blue edge, with decreasing saturation going in the upward direction. Response of (e) hue derivative (hx), and (f) specular-shadow-

shading quasi-invariant (Hc
x).



The changes of h occur in the hue direction and, hence, the
derivative in the hue-direction is equal to the shadow-shading-
specular quasi-invariant,

Hc
x

�� �� ¼ s � hx: ð15Þ

The multiplication with the scale factor s follows from the fact that
for polar transformations the angular derivative is multiplied by
the radius.

The hue, h, is a well-known full shadow-shading-specular
invariant. Equation (15) provides a link between the derivative of
the full invarianthx and the quasi-invariant Hc

x

�� ��. A drawback of hue
is itsundefinedness forpoints on theblack-white axis, i.e., for small s.
Therefore, the derivative of hue is unbounded. In Section 3, we
derived the quasi-invariant as a linear projection of the spatial
derivative. For these projections, it holds that 0 < Hc

x

�� �� < fxj j and,
hence, the shadow-shading specular quasi-invariant is bounded. It
shouldbementioned that small changes round thegrayaxis, result in
large changes of the direction or “color” of the derivative, e.g., from
blue to red, in both the quasi-invariant and the full invariant.
However, the advantage of the quasi-invariant is that the norm
remains bounded for these cases. For example, in Fig. 3d a red-blue
edge is depicted. The blue patch becomesmore achromatic along the
y-axis. The instability for gray values is clearly visible in Fig. 3e
whereas, inFig. 3f, the responseof thequasi-invariant remains stable.

4.4 Characteristics of Quasi-Invariants

Full invariants are invariant with respect to a physical photometric
parameter like for instance the geometric term mb in the case of
normalized RGB. Hence, the first order derivative response of such
invariants does not contain any shadow-shading variation. Our
approach determines the direction in the RGB-cube in which
shadow-shading edges exhibit themselves. The derivative caused
by other than shadow-shading edges can than be computed. Sharing
with full invariants, the property that shadow-shading edges are
ignored. However, the quasi-invariant is not invariant with respect
tomb. For the shadow-shading quasi-invariant, subtraction from (3)
of the part in the shadow-shading direction cb results in

fx ¼ emb cbx � cbx � ĉcb
� �

; ð16Þ

which is clearly not invariant for mb and e. Also, in a similar way,
the specular-shadow-shading quasi-invariant can be proven to be
dependent on mb and e.

The dependency of the quasi-invariants on mb and e limits their
applicability. They cannot be used for applications where edge
responses are compared under different circumstances, such as
content-based image retrieval. However, they can be used in
applications which are based on a single frame, such as shadow-
edge insensitive image segmentation, shadow-shading-specular
independent corner detection, and edge classification.

Amajor advantageof thequasi-invariants is that their response to
noise is independent of the signal. In the case of additive uniform
noise, the noise in the quasi invariants is also additive and uniform
since it is a linearprojectionof thederivativeof the image.Thismeans
that thenoisedistortion is constant over the image. InSection4, itwas
shown that the full invariants differ from the quasi-invariants by
scaling with a signal depended factor (the intensity or saturation).
And, hence, their noise response is also signal depended. Typically,
the shadow-shading full invariant exhibits high noise distortion
round low intensities while the shadow-shading-specular full
invariant has high noise dependency for points around the
achromatic axis. This is shown in Fig. 3. The uneven levels of noise
throughout an image hinder further processing.

A second advantage of photometric variants and quasi-invar-
iants is that they are expressed in the same units (i.e., being
projections of the derivative they are in RGB-value per pixel). This
allows for a quantitative comparison of their responses. An example
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Fig. 4. (a) Input image with two superimposed dotted lines which are plotted in the images (c) and (d). (b) Edge classification result, with white object edges, black

shadow edges, and light gray specular edges. (c) and (d) The derivative strength along lines indicated in (a).

TABLE 1
The Displacement, �, and the Percentage of Missed Edges, ",

for Five Different Edge Detectors

Gaussian noise of standard deviation 5 and 20 was added.



is given in Fig. 4. Responses along two lines in the image are
enlarged in Figs. 4c and 4d. The line in Fig. 4c crosses two object
edges and several specular edges. It nicely shows that the specular-
variant almost perfectly follows the total derivative energy for the
specular edges in the middle of the line. In Fig. 4d, a line is depicted
which crosses two object edges and three shadow-shading edges.
Again, the shadow-shading variant follows the gradient for the
three shading edges. A simple classification scheme results in
Fig. 4b. Note that full-invariants cannot be compared quantitatively
because they have different units.

5 EXPERIMENTS

We compare the performance of the quasi-invariants with the full
invariants according to the following criteria 1) stability, 2) edge
displacement, and 3) discriminative power. For the improved
stability, a mathematical proof is given in chapter 5. Here, we will
test the invariants on edge displacement and discriminative power.

Since the specular quasi-invariant is well-known and it does

not counterpart a full invariant, its performance is not investigated

here. The experiments were performed with normalized RGB,

c1c2c3, l1l2l3, hue, Cw, and Hw [2], [3]. The results for the invariants

c1c2c3, l1l2l3, Cw, and Hw were similar or worse than the results for

normalized RGB and hue. Therefore, we have chosen normalized

RGB and hue as exemplary for the set of invariants and compared

them with the quasi-invariants. Implementation details of the

quasi-invariants can be found in [15]. For the experiments, a white

light source ĉci ¼ 1ffiffi
3

p ð1; 1; 1ÞT is used.

5.1 Edge Detection

First, we compare the edge detection performance of the quasi-

invariants with the invariants from literature. These results can also

be seen as an indication of the loss of discrimination due to

invariance. Edge detection is performed between the 1,012 different

colors from the PANTONE [12] color system. Every one of the

1,012 different RGB-values is combined with all other RGB-values,

resulting in a total of N ¼ 1; 012 � 1; 011=2 ¼ 511; 566 edges of M ¼
25 pixels length. The edge position is determined by computing the

maximum response path of the derivative energy in a region of

20 pixels around the actual edge. This results in an edge estimation

which is compared with the actual edge. We define two error

measures. First, the average pixel displacement�,

� ¼

P
xi;j ; xi;j�x0j j>0:5f g

xi;j � x0
�� ��

N �M ; ð17Þ

in which xi;j is the jth edge pixel of the ith edge. Because the actual

edge is located between two pixels, displacements equal to .5 pixels

are considered as a perfect match. The second error measure is the

percentage of missed edges, ". An edge was classified missed as the

variation over one edge,

varðiÞ ¼ 1

M

XM
j¼1

xi;j �
1

M

X
k

xi;k

�����
�����; ð18Þ
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Fig. 5. (a) Input image and corner detector results based on (b) RGB gradient (fx), (c) shadow-shading quasi-invariant (Sc
x), and (d) shadow-shading-specular quasi-

invariant (Hc
x).

Fig. 6. (a) and (e) Input images. Corner detection based on (b) RGB gradient ðfxÞ, (c) normalized RGB, (d) shadow-shading quasi-invariant ðSc
xÞ, (f) RGB gradient ðfxÞ,

(g) hue full invariant ðhxÞ, and (h) shadow-shading quasi-invariant ðHc
xÞ.



is larger than 1 pixel. For the Gaussian derivative, a scale � ¼ 1 is

chosen. The experiments were performed with uncorrelated

Gaussian noise of standard deviation 5 and 20.

The results are depicted in Table 1. For both cases, the shadow-

shading and shadow-shading-specular edges, the quasi-invariants

substantially outperform the invariants. For comparison, the

results without invariance based on the RGB gradient, fxj j, are
inserted. Obviously, the RGB gradient has the best discriminative

power. However, it will also find many edges which are caused

due to scene incidental events.

To provide more insight in what kind of edges were still

detected, we computed the average Euclidean RGB difference of

the missed edges for the case with Gaussian noise with a standard

deviation of 5. With dij ¼ f i � f j
�� �� the Euclidean distance between

patch i and j. For the RGB gradient-based method, we obtained an

average distance of d ¼ 4:6, for the shadow-shading quasi-invariant

d ¼ 86 and d ¼ 109 for the shadow-shading-specular invariant.

5.2 Photometric Invariant Corner Detection

Derivatives based on full photometric invariants are, due to their

instability, unreliable input for geometrical operations such as

photometric invariant corner detection, orientation estimation,

curvature estimation, etc. Quasi-invariants, on the other hand are

expected to be more stable in combination with geometrical

operations. We used the following straightforward extension of the

Harris corner detector [6] for color images

Hf ¼ fTx fx fTy f y � fTx f y
2
� kðfTx fx þ fTy fyÞ

2: ð19Þ

The overline indicates a Gaussian averaging window. The corner
detection results are given in Fig. 5. The shadow-shading quasi-
invariant detector does not find shadow-shading corners whereas
the shadow-shading-specular quasi-invariant also ignores the
specular corners.

In Fig. 6, the 30 most prominent Harris corners are detected for

two real-world images (Corel gallery). The detected points can be

used as interest points for object recognition [13]. Note that the

images break several of the assumptions of the dichromatic

reflection model (1). They do not have a known illuminant, nor

are they taken with a linear acquisition system. The results for the

full invariants are dominated by their instabilities. The shadow-

shading full invariant is unstable in the low intensity areas and

consequently finds most of the interest points in this area. The

shadow-shading specular full invariant is unstable along the whole

gray axis, which leads to false corners in gray areas. The RGB

gradient method focusses on large RGB value changes which

mostly coincide with light-dark transition which are rarely the

most discriminative points. It is apparent that the quasi-invariants

(Figs. 6d and 6h) suppress unwanted photometric variation and

focus on body reflectance changes only.

6 CONCLUSIONS

In this paper,weproposed a set of quasi-invariant derivatives. These

derivative filters are combined with derivative-based feature

detectors to perform photometric invariant feature detection.

Experiments show that they significantly outperform feature

detection based on full invariants on both stability and discrimina-

tive power.
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