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3/21 Aim of the work

Object detection :
The aim is to determine for an object :

its location (bounding box)
and
its category

Used tools :
Ficher Vector
SIFT descriptor
color descriptor

Tests on datasets :
PASCAL VOC 2007
PASCAL VOC 2010
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5/21 Object detection

Sliding Window approaches
Detection windows of various scale and aspect ratios evaluated
at many positions accress the image.

(Viola and Jones) : cascade ⇒ less windows to examine
two or three-stage approaches : windows are discarded at
each stage + richer features
branch and bound scheme (non-exhaustive search)
prune the set of candidate windows without using class
specific information by relying on low-level contours and
image segmentation

The last idea is used there.
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6/21 Contributions

Fisher Vector
They were already used in previous approaches.
But here, normalization of the FVs.

Segmentation
image segmentation created for the detection
computation of a mask with a weight for each pixel linked
with its contribution to the descriptors.
suppression of the background
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7/21 Segmentation

State of the art
extraction of explicit segmentation for each object
detection hypothesis
scoring superpixels individually and then assemble them
into object detections
use of the output from a semantic segmentation to improve
object detection.

Here :
segmentation incorporated into the feature extraction step
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9/21 Segmentation

Steps
1 partition of the image into superpixels
2 hierarchically group the superpixel into a segmentation tree

(merging neighboring and visually similar segments)

This is repeated eight times with
4 different color spaces and
2 different scale parameters

to compure the superpixels.
⇒ rich set of segments of varying sizes and shapes
(around 1500 object windows per image)
It is far less windows than in a sliding window approach.



Segmentation
Driven Object

Detection
with Fisher

Vectors

Camille
Brasseur

Introduction

State of the
art

Method

Evaluation

Conclusions

10/21 Correct examples
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11/21 Incorrect examples
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12/21 Feature extraction

local features :
SIFT
color descriptor

Aggregation
Using Fisher vector representation
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13/21 Fisher vector

Normalized gradients
∂ ln p(x)
∂µkd

=
p(k|x)
√
πk

(xd − µkd
σkd

)
(1)

∂ ln p(x)
∂σkd

=
p(k|x)
√
πk

(
(xd − µkd)

2

σ2
kd

− 1
)

(2)

x local descriptor
µkd and σkd mean and standard derivation of the k-th Gaussian

in dimension d
πk mixing weight of the k-th Gaussian

p(k|x) soft assignment of x to the k-th Gaussian



Segmentation
Driven Object

Detection
with Fisher

Vectors

Camille
Brasseur

Introduction

State of the
art

Method

Evaluation

Conclusions

14/21 Candidate window

Representation :
1 sum the normalized gradients
2 weight the contribution of local descriptors by the averaged

segmentation masks

Final window descriptor :
concatenation of FV obtained over color and SIFT
FV over the full image to capture global scene context
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15/21 Compression

used tools
Product Quantization
Blosc compression
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17/21 First test

Performance on the development set with different
descriptors regions and with/without SPM

Desc. Regions Norm. SPM bus cat mbike sheep mAP
S W object no 22.2 35.8 26.3 16.6 25.2
S W object yes 47.6 45.0 54.2 30.0 44.2
S W cell yes 48.0 47.2 53.0 32.0 45.0
S G (train on W) cell yes 35.7 46.3 43.2 17.0 35.5
S M (train on W) cell yes 41.1 47.8 52.7 19.2 40.2
S M cell yes 44.0 48.8 51.4 30.8 43.8
S W+M cell yes 48.5 49.2 54.3 33.8 46.4

S+C W cell yes 47.3 48.2 54.4 35.8 46.4
S+C W+M cell yes 48.1 51.1 55.5 40.0 48.7
S+C W+M+F cell yes 50.3 51.6 54.8 41.9 49.6



Segmentation
Driven Object

Detection
with Fisher

Vectors

Camille
Brasseur

Introduction

State of the
art

Method

Evaluation

Conclusions

18/21 Second test

Performance on VOC07 with different descriptors and
regions.
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19/21 Third test

Comparison of this detector with and without context
with the state-of-the-art object detectors on VOC 2007.
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20/21 Fourth test

Comparison of our detector with and without context
with the state-of-the-art object detectors on VOC 2010.
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