Clustering with k-means and Gaussian mixture distributions

Machine Learning and Category Representation 2014-2015

Jakob Verbeek, November 21, 2014

Course website:

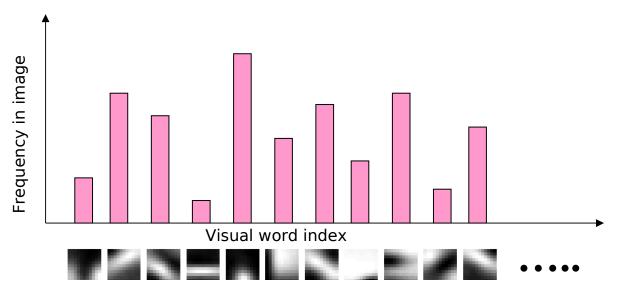
http://lear.inrialpes.fr/~verbeek/MLCR.14.15

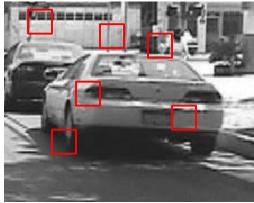
Bag-of-words image representation in a nutshell

- 1) Sample local image patches, either using
 - Interest point detectors (most useful for retrieval)
 - Dense regular sampling grid (most useful for classification)
- 2) Compute descriptors of these regions
 - For example SIFT descriptors
- 3) Aggregate the local descriptor statistics into global image representation
 - This is where clustering techniques come in
- 4) Process images based on this representation
 - Classification
 - Retrieval

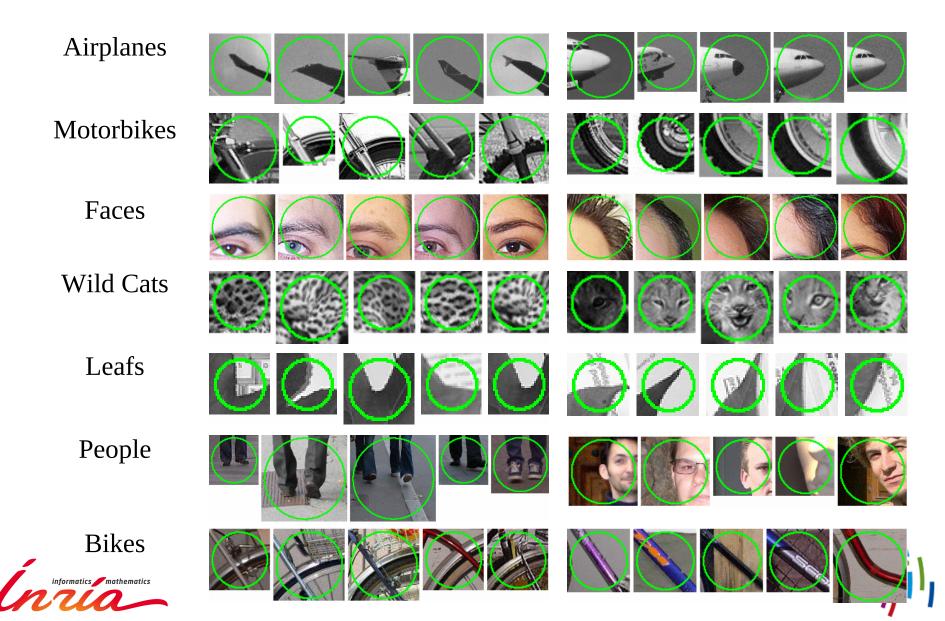
Bag-of-words image representation in a nutshell

- 3) Aggregate the local descriptor statistics into bag-of-word histogram
 - Map each local descriptor to one of K clusters (a.k.a. "visual words")
 - Use K-dimensional histogram of word counts to represent image



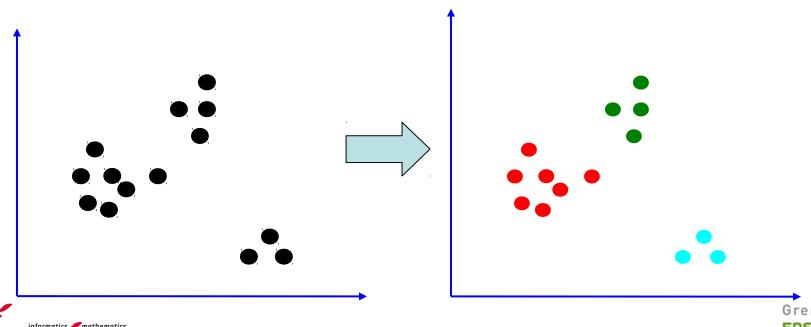


Example visual words found by clustering



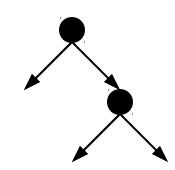
Clustering

- Finding a group structure in the data
 - Data in one cluster similar to each other
 - Data in different clusters dissimilar
- Maps each data point to a discrete cluster index in {1, ..., K}
 - "Flat" methods do not suppose any structure among the clusters
 - "Hierarichal" methods

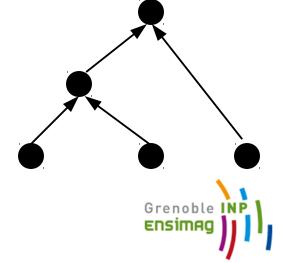


Hierarchical Clustering

- Data set is organized into a tree structure
 - Various level of granularity can be obtained by cutting-off the tree
- Top-down construction
 - Start all data in one cluster: root node
 - Apply "flat" clustering into K groups
 - Recursively cluster the data in each group

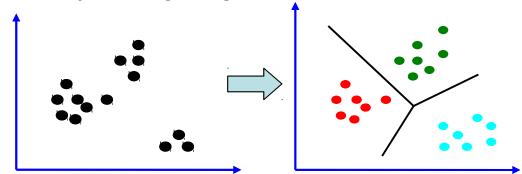


- Bottom-up construction
 - Start with all points in separate cluster
 - Recursively merge nearest clusters
 - Distance between clusters A and B
 - E.g. min, max, or mean distance between elements in A and B

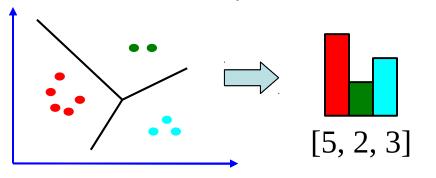


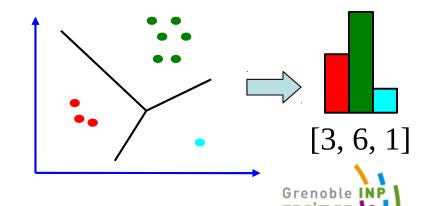
Clustering descriptors into visual words

- Offline clustering: Find groups of similar local descriptors
 - Using many descriptors from many training images



- Encoding a new image:
 - Detect local regions
 - Compute local descriptors
 - Count descriptors in each cluster





Definition of k-means clustering

- Given: data set of N points x_n, n=1,...,N
- Goal: find K cluster centers m_k, k=1,...,K
 that minimize the squared distance to nearest cluster centers

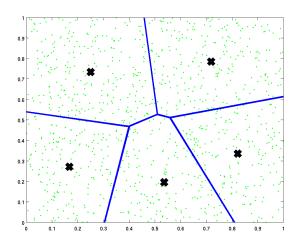
$$E(\{m_k\}_{k=1}^K) = \sum_{n=1}^N \min_{k \in \{1, \dots, K\}} ||x_n - m_k||^2$$

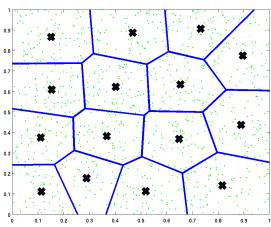
- Clustering = assignment of data points to nearest cluster center
 - Indicator variables $r_{nk}=1$ if x_n assigned to m_k , $r_{nk}=0$ otherwise
- For fixed cluster centers, error criterion equals sum of squared distances between each data point and assigned cluster center

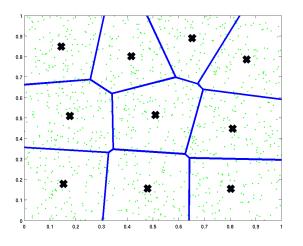
$$E(\{m_k\}_{k=1}^K) = \sum_{n=1}^N \sum_{k=1}^K r_{nk} ||x_n - m_k||^2$$

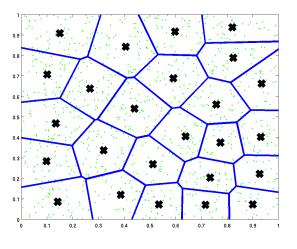
Examples of k-means clustering

- Data uniformly sampled in unit square
- k-means with 5, 10, 15, and 25 centers









Minimizing the error function

• Goal find centers m_k to minimize the error function

$$E(\{m_k\}_{k=1}^K) = \sum_{n=1}^N \min_{k \in \{1,...,K\}} ||x_n - m_k||^2$$

Any set of assignments, not necessarily the best assignment,
 gives an upper-bound on the error:

$$E(\{m_k\}_{k=1}^K) \le F(\{m_k\}, \{r_{nk}\}) = \sum_{n=1}^N \sum_{k=1}^K r_{nk} ||x_n - m_k||^2$$

- The k-means algorithm iteratively minimizes this bound
 - 1) Initialize cluster centers, eg. on randomly selected data points
 - 2) Update assignments r_{nk} for fixed centers m_k
 - 3) Update centers m_k for fixed data assignments r_{nk}
 - 4) If cluster centers changed: return to step 2
 - 5) Return cluster centers

Minimizing the error bound

$$F(\{m_k\},\{r_{nk}\}) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - m_k||^2$$

Update assignments r_{nk} for fixed centers m_k

 $\sum_{k} r_{nk} ||x_n - m_k||^2$

- Constraint: exactly one r_{nk}=1, rest zero
- Decouples over the data points
- Solution: assign to closest center
- Update centers m_k for fixed assignments r_{nk}
 - Decouples over the centers
 - Set derivative to zero
 - Put center at mean of assigned data points

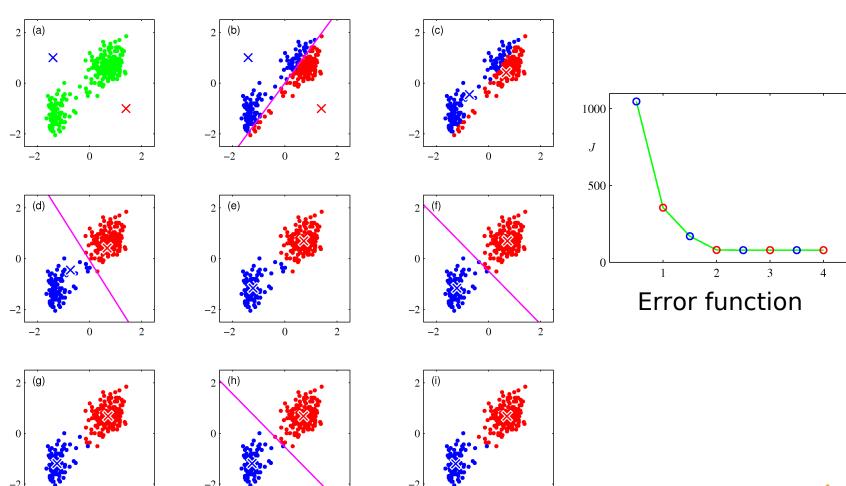
$$\frac{\partial F}{\partial m_k} = 2\sum_n r_{nk} (x_n - m_k) = 0$$

$$m_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$$

$$\sum_{n} r_{nk} ||x_n - m_k||^2$$

Examples of k-means clustering

Several k-means iterations with two centers



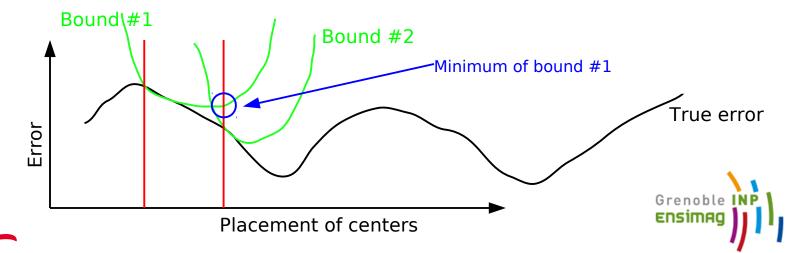
Minimizing the error function

$$E(\{m_k\}_{k=1}^K) = \sum_{n=1}^N \min_{k \in \{1, \dots, K\}} ||x_n - m_k||^2$$

- Goal find centers m_k to minimize the error function
 - Proceeded by iteratively minimizing the error bound

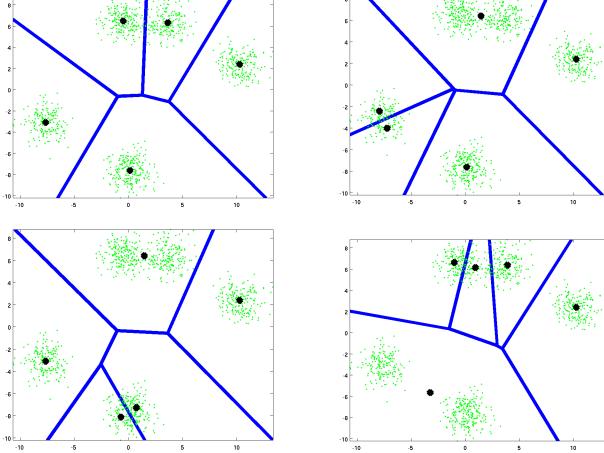
$$F(\{m_k\}_{k=1}^K) = \sum_{n=1}^N \sum_{k=1}^K r_{nk} ||x_n - m_k||^2$$

- K-means iterations monotonically decrease error function since
 - Both steps reduce the error bound
 - Error bound matches true error after update of the assignments



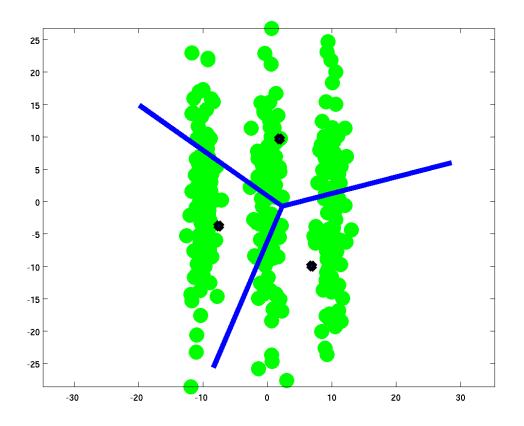
Problems with k-means clustering

- Result depends heavily on initialization
 - Run with different initializations
 - Keep result with lowest error



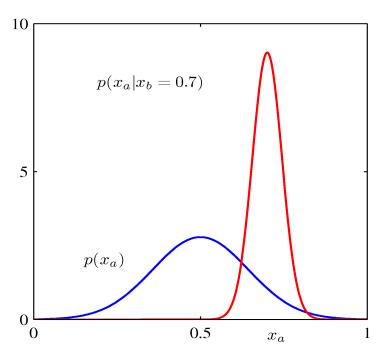
Problems with k-means clustering

- Assignment of data to clusters is only based on the distance to center
 - No representation of the shape of the cluster
 - Implicitly assumes spherical shape of clusters

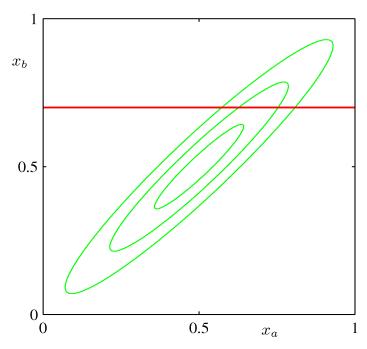


Clustering with Gaussian mixture density

- Each cluster represented by Gaussian density
 - Parameters: center m, covariance matrix C
 - Covariance matrix encodes spread around center,
 can be interpreted as defining a non-isotropic distance around center



Two Gaussians in 1 dimension



A Gaussian in 2 dimensions

Clustering with Gaussian mixture density

- Each cluster represented by Gaussian density
 - Parameters: center m, covariance matrix C
 - Covariance matrix encodes spread around center,
 can be interpreted as defining a non-isotropic distance around center

Definition of Gaussian density in d dimensions

$$N(x|m,C) = (2\pi)^{-d/2}|C|^{-1/2} \exp\left(-\frac{1}{2}(x-m)^T C^{-1}(x-m)\right)$$
Determinant of covariance matrix C
$$\begin{array}{c} & & \uparrow \\ & Quadratic function of point x and mean m \\ & Mahanalobis distance \end{array}$$

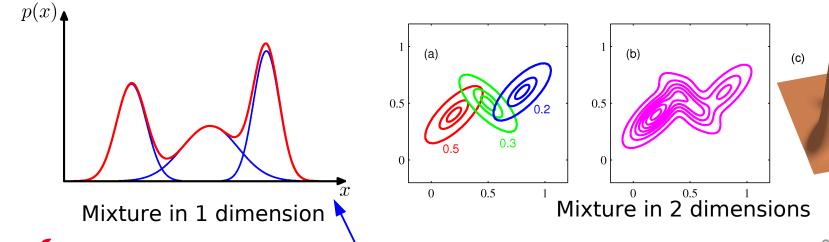
Mixture of Gaussian (MoG) density

- Mixture density is weighted sum of Gaussian densities
 - Mixing weight: importance of each cluster

$$p(x) = \sum_{k=1}^{K} \pi_k N(x|m_k, C_k)$$

Density has to integrate to 1, so we require

$$\sum_{k=1}^{K} \pi_{k} = 1$$



informatics mathematics

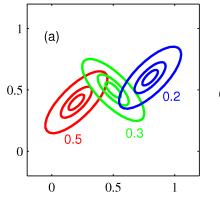
What is wrong with this picture ?!

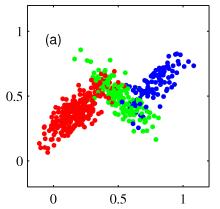
Sampling data from a MoG distribution

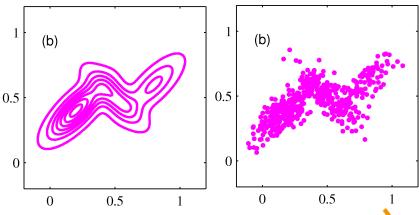
- Let z indicate cluster index
- To sample both z and x from joint distribution
 - Select z with probability given by mixing weight $p(z\!=\!k)\!=\!\pi_{k}$
 - Sample x from the z-th Gaussian $p(x|z=k)=N(x|m_k,C_k)$
- MoG recovered if we marginalize over the unknown cluster index

$$p(x) = \sum_{k} p(z=k) p(x|z=k) = \sum_{k} \pi_{k} N(x|m_{k}, C_{k})$$

Color coded model and data of each cluster





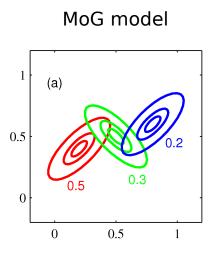


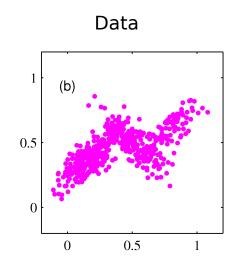
Soft assignment of data points to clusters

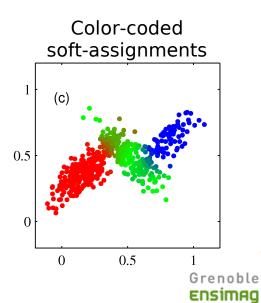
Given data point x, infer cluster index z

$$p(z=k|x) = \frac{p(z=k,x)}{p(x)}$$

$$= \frac{p(z=k)p(x|z=k)}{\sum_{k} p(z=k)p(x|z=k)} = \frac{\pi_{k} N(x|m_{k}, C_{k})}{\sum_{k} \pi_{k} N(x|m_{k}, C_{k})}$$







Clustering with Gaussian mixture density

- Given: data set of N points x_n, n=1,...,N
- Find mixture of Gaussians (MoG) that best explains data
 - Maximize log-likelihood of fixed data set w.r.t. parameters of MoG
 - Assume data points are drawn independently from MoG

$$L(\theta) = \sum_{n=1}^{N} \log p(x_n; \theta)$$

$$\theta = \{\pi_k, m_k, C_k\}_{k=1}^{K}$$

- MoG learning very similar to k-means clustering
 - Also an iterative algorithm to find parameters
 - Also sensitive to initialization of paramters

Maximum likelihood estimation of single Gaussian

- Given data points x_n, n=1,...,N
- Find single Gaussian that maximizes data log-likelihood

$$L(\theta) = \sum_{n=1}^{N} \log p(x_n) = \sum_{n=1}^{N} \log N(x_n | m, C) = \sum_{n=1}^{N} \left(-\frac{d}{2} \log \pi - \frac{1}{2} \log |C| - \frac{1}{2} (x_n - m)^T C^{-1} (x_n - m) \right)$$

Set derivative of data log-likelihood w.r.t. parameters to zero

$$\frac{\partial L(\theta)}{\partial m} = C^{-1} \sum_{n=1}^{N} (x_n - m) = 0 \qquad \frac{\partial L(\theta)}{\partial C^{-1}} = \sum_{n=1}^{N} \left(\frac{1}{2} C - \frac{1}{2} (x_n - m) (x_n - m)^T \right) = 0$$

$$m = \frac{1}{N} \sum_{n=1}^{N} x_n \qquad C = \frac{1}{N} \sum_{n=1}^{N} (x_n - m) (x_n - m)^T$$

Parameters set as data covariance and mean

Maximum likelihood estimation of MoG

- No simple equation as in the case of a single Gaussian
- Use EM algorithm
 - Initialize MoG: parameters or soft-assign
 - E-step: soft assign of data points to clusters
 - M-step: update the mixture parameters
 - Repeat EM steps, terminate if converged
 - Convergence of parameters or assignments
- E-step: compute **soft-assignments**: $q_{nk} = p(z = k | x_n)$
- M-step: **update Gaussians** from weighted data points

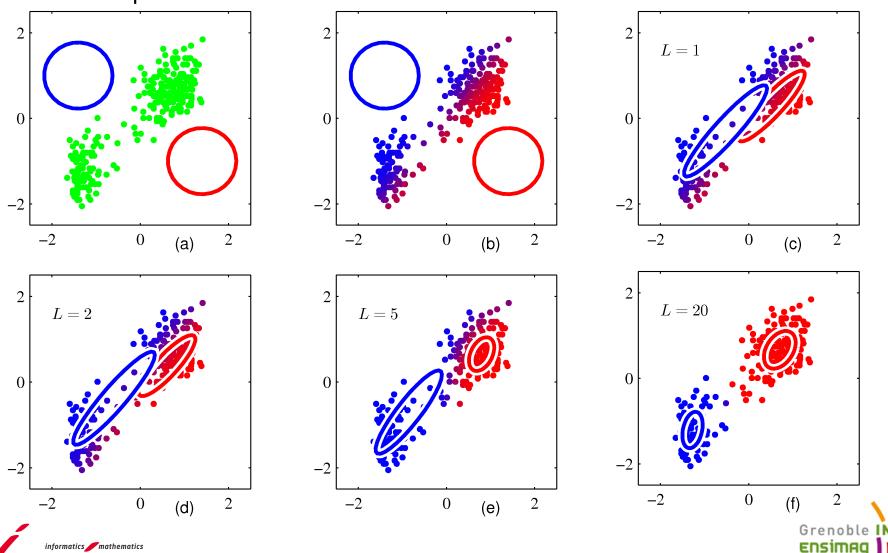
$$\pi_{k} = \frac{1}{N} \sum_{n=1}^{N} q_{nk}$$

$$m_{k} = \frac{1}{N \pi_{k}} \sum_{n=1}^{N} q_{nk} x_{n}$$

$$C_{k} = \frac{1}{N \pi_{k}} \sum_{n=1}^{N} q_{nk} (x_{n} - m_{k}) (x_{n} - m_{k})^{T}$$

Maximum likelihood estimation of MoG

Example of several EM iterations

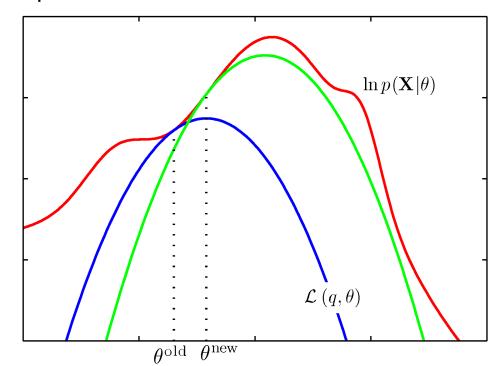


EM algorithm as iterative bound optimization

- Just like k-means, EM algorithm is an iterative bound optimization algorithm
 - Goal: Maximize data log-likelihood, can not be done in closed form

$$L(\theta) = \sum_{n=1}^{N} \log p(x_n) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k N(x_n | m_k, C_k)$$

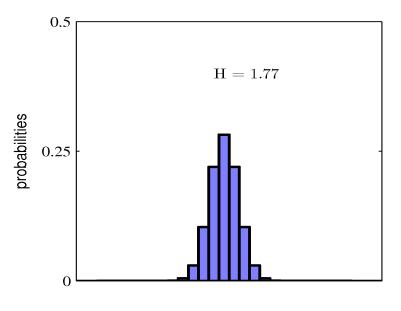
- Solution: iteratively maximize (easier) bound on the log-likelihood
- Bound uses two information theoretic quantities
 - Entropy
 - Kullback-Leibler divergence

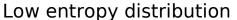


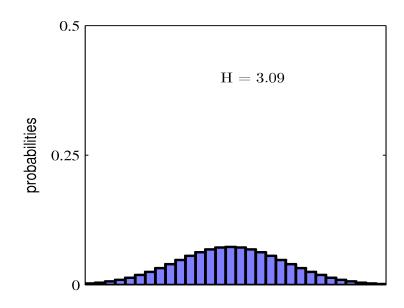
Entropy of a distribution

- Entropy captures uncertainty in a distribution
 - Maximum for uniform distribution
 - Minimum, zero, for delta peak on single value

$$H(q) = -\sum_{k=1}^{K} q(z=k) \log q(z=k)$$







High entropy distribution

Entropy of a distribution

$$H(q) = -\sum_{k=1}^{K} q(z=k) \log q(z=k)$$

- Connection to information coding (Noiseless coding theorem, Shannon 1948)
 - Frequent messages short code, rare messages long code
 - optimal code length is (at least) -log p bits
 - Entropy: expected (optimal) code length per message
- Suppose uniform distribution over 8 outcomes: 3 bit code words
- Suppose distribution: 1/2,1/4, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64, entropy 2 bits!
 - Code words: 0, 10, 110, 1110, 111100, 111101,1111110,111111
- Codewords are "self-delimiting":
 - Do not need a "space" symbol to separate codewords in a string
 - If first zero is encountered after 4 symbols or less, then stop. Otherwise, code is of length 6.

Kullback-Leibler divergence

- Asymmetric dissimilarity between distributions
 - Minimum, zero, if distributions are equal
 - Maximum, infinity, if p has a zero where q is non-zero

$$D(q||p) = \sum_{k=1}^{K} q(z=k) \log \frac{q(z=k)}{p(z=k)}$$

- Interpretation in coding theory
 - Sub-optimality when messages distributed according to q, but coding with codeword lengths derived from p
 - Difference of expected code lengths

$$D(q||p) = -\sum_{k=1}^{K} q(z=k) \log p(z=k) - H(q) \ge 0$$

- Suppose distribution q: 1/2,1/4, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64
- Coding with p: uniform over the 8 outcomes
- Expected code length using p: 3 bits
- Optimal expected code length, entropy H(q) = 2 bits
- KL divergence D(q|p) = 1 bit

EM bound on MoG log-likelihood

We want to bound the log-likelihood of a Gaussian mixture

$$p(x) = \sum_{k=1}^{K} \pi_k N(x; m_k, C_k)$$

- Bound log-likelihood by subtracting KL divergence D(q(z) || p(z|x))
 - Inequality follows immediately from non-negativity of KL

$$F(\theta,q) = \log p(x;\theta) - D(q(z)||p(z|x,\theta)| \le \log p(x;\theta)$$

- \triangleright p(z|x) true posterior distribution on cluster assignment
- ightharpoonup q(z) an **arbitrary** distribution over cluster assignment
- Sum per data point bounds to bound the log-likelihood of a data set:

$$F(\theta, \{q_n\}) = \sum_{n=1}^{N} \log p(x_n; \theta) - D(q_n(z) || p(z|x_n, \theta)) \le \sum_{n=1}^{N} \log p(x_n; \theta)$$

E-step:

- fix model parameters,
- update distributions q_n to maximize the bound

$$F(\theta, \{q_n\}) = \sum_{n=1}^{N} \left[\log p(x_n) - D(q_n(z_n) || p(z_n | x_n)) \right]$$

- KL divergence zero if distributions are equal
- Thus set $q_n(z_n) = p(z_n|x_n)$
- After updating the q_n the bound equals the true log-likelihood

- M-step:
 - fix the soft-assignments q_n ,
 - update model parameters

$$F(\theta, \{q_n\}) = \sum_{n=1}^{N} \left[\log p(x_n) - D(q_n(z_n) || p(z_n | x_n)) \right]$$

$$= \sum_{n=1}^{N} \left[\log p(x_n) - \sum_{k} q_{nk} (\log q_{nk} - \log p(z_n = k | x_n)) \right]$$

$$= \sum_{n=1}^{N} \left[H(q_n) + \sum_{k} q_{nk} \log p(z_n = k, x_n) \right]$$

$$= \sum_{n=1}^{N} \left[H(q_n) + \sum_{k} q_{nk} (\log \pi_k + \log N(x_n; m_k, C_k)) \right]$$

$$= \sum_{k=1}^{K} \sum_{n=1}^{N} q_{nk} (\log \pi_k + \log N(x_n; m_k, C_k)) + \sum_{n=1}^{N} H(q_n)$$

Terms for each Gaussian decoupled from rest!

- Derive the optimal values for the mixing weights
 - Maximize $\sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log \pi_k$
 - Take into account that weights sum to one, define

$$\pi_1 = 1 - \sum_{k=2}^{K} \pi_k$$

Set derivative for mixing weight j >1 to zero

$$\frac{\partial}{\partial \pi_{j}} \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log \pi_{k} = \frac{\sum_{n=1}^{N} q_{nj}}{\pi_{j}} - \frac{\sum_{n=1}^{N} q_{n1}}{\pi_{1}} = 0$$

$$\frac{\sum_{n=1}^{N} q_{nj}}{\pi_{j}} = \frac{\sum_{n=1}^{N} q_{n1}}{\pi_{1}}$$

$$\pi_{1} \sum_{n=1}^{N} q_{nj} = \pi_{j} \sum_{n=1}^{N} q_{n1}$$

$$\pi_{1} \sum_{n=1}^{N} \sum_{j=1}^{K} q_{nj} = \sum_{j=1}^{K} \pi_{j} \sum_{n} q_{n1}$$

$$\pi_{1} N = \sum_{n=1}^{N} q_{n1}$$

$$\pi_{j} = \frac{1}{N} \sum_{n=1}^{N} q_{nj}$$

- Derive the optimal values for the MoG parameters
 - For each Gaussian maximize $\sum_{n} q_{nk} \log N(x_n; m_k, C_k)$
 - Compute gradients and set to zero to find optimal parameters

$$\log N(x; m, C) = \frac{d}{2} \log(2\pi) - \frac{1}{2} \log|C| - \frac{1}{2} (x_n - m)^T C^{-1} (x_n - m)$$

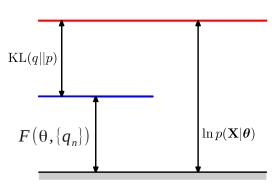
$$\frac{\partial}{\partial m} \log N(x; m, C) = C^{-1} (x - m)$$

$$\frac{\partial}{\partial C^{-1}} \log N(x; m, C) = \frac{1}{2} C - \frac{1}{2} (x - m) (x - m)^{T}$$

$$m_{k} = \frac{\sum_{n} q_{nk} x_{n}}{\sum_{n} q_{nk}} \qquad C_{k} = \frac{\sum_{n} q_{nk} (x_{n} - m)(x_{n} - m)^{T}}{\sum_{n} q_{nk}}$$

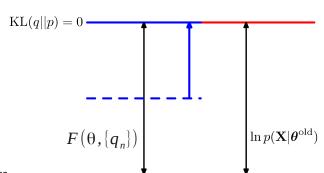
EM bound on log-likelihood

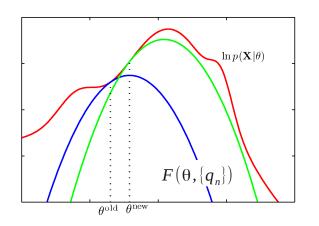
L is bound on data log-likelihood for any distribution q

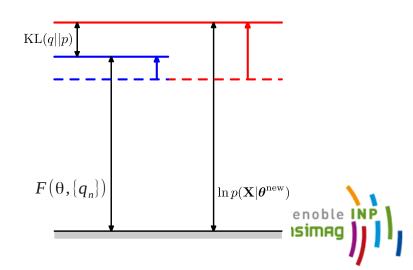


$$F(\theta, \{q_n\}) = \sum_{n=1}^{N} \left[\log p(x_n) - D(q_n(z_n) || p(z_n | x_n)) \right]$$

- Iterative coordinate ascent on F
 - E-step optimize q, makes bound tight
 - M-step optimize parameters

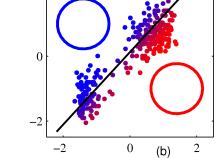






Clustering with k-means and MoG

- Assignment:
 - K-means: hard assignment, discontinuity at cluster border
 - MoG: soft assignment, 50/50 assignment at midpoint



- Cluster representation
 - K-means: center only
 - MoG: center, covariance matrix, mixing weight
- If mixing weights are equal and all covariance matrices are constrained to be $C_k = \epsilon I$ and $\epsilon \to 0$ then EM algorithm = k-means algorithm
- For both k-means and MoG clustering
 - Number of clusters needs to be fixed in advance
 - Results depend on initialization, no optimal learning algorithms
 - Can be generalized to other types of distances or densities

Reading material

- More details on k-means and mixture of Gaussian learning with EM
 - Pattern Recognition and Machine Learning,

Chapter 9

Chris Bishop, 2006, Springer

