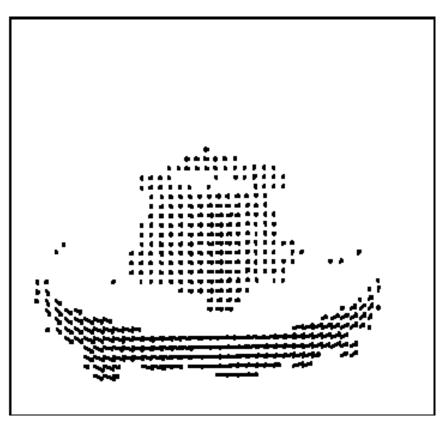
Optical flow

Cordelia Schmid

Motion field

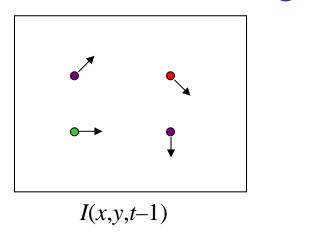
 The motion field is the projection of the 3D scene motion into the image

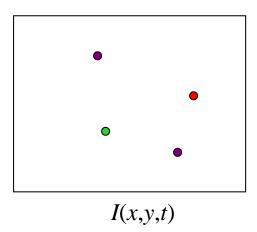


Optical flow

- Definition: optical flow is the apparent motion of brightness patterns in the image
- Ideally, optical flow would be the same as the motion field
- Have to be careful: apparent motion can be caused by lighting changes without any actual motion
 - Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination

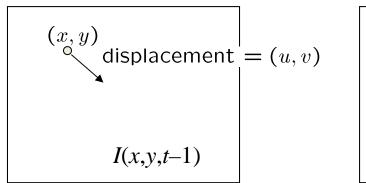
Estimating optical flow





- Given two subsequent frames, estimate the apparent motion field u(x,y) and v(x,y) between them
- Key assumptions
 - Brightness constancy: projection of the same point looks the same in every frame
 - Small motion: points do not move very far
 - Spatial coherence: points move like their neighbors

The brightness constancy constraint



$$(x + u, y + v)$$

$$I(x,y,t)$$

Brightness Constancy Equation:

$$I(x, y, t-1) = I(x + u(x, y), y + v(x, y), t)$$

Linearizing the right side using Taylor expansion:

$$I(x, y, t-1) \approx I(x, y, t) + I_x u(x, y) + I_y v(x, y)$$

Hence,
$$I_x u + I_y v + I_t \approx 0$$

The brightness constancy constraint

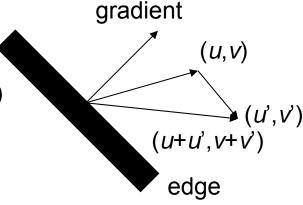
$$I_x u + I_y v + I_t = 0$$

- How many equations and unknowns per pixel?
 - One equation, two unknowns
- What does this constraint mean?

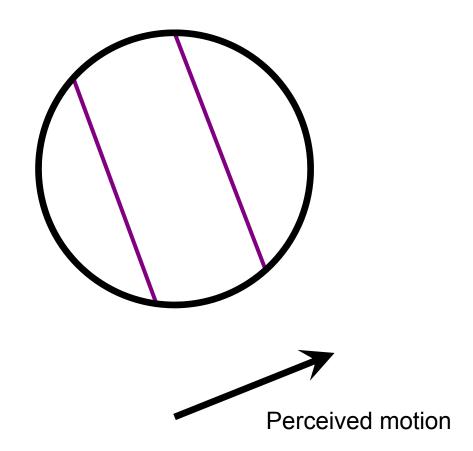
$$\nabla I \cdot (u, v) + I_t = 0$$

• The component of the flow perpendicular to the gradient (i.e., parallel to the edge) is unknown

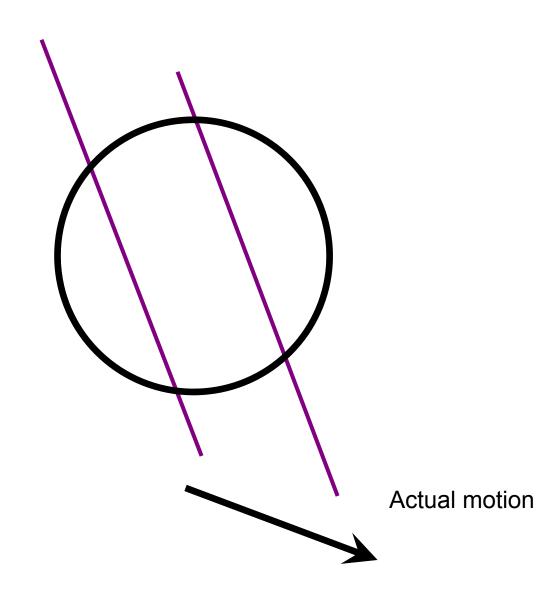
If
$$(u, v)$$
 satisfies the equation, so does $(u+u', v+v')$ if $\nabla I \cdot (u', v') = 0$



The aperture problem



The aperture problem



Solving the aperture problem

- How to get more equations for a pixel?
- Spatial coherence constraint: pretend the pixel's neighbors have the same (u,v)
 - E.g., if we use a 5x5 window, that gives us 25 equations per pixel

$$\begin{bmatrix} I_{x}(\mathbf{x}_{1}) & I_{y}(\mathbf{x}_{1}) \\ I_{x}(\mathbf{x}_{2}) & I_{y}(\mathbf{x}_{2}) \\ \vdots & \vdots \\ I_{x}(\mathbf{x}_{n}) & I_{y}(\mathbf{x}_{n}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_{t}(\mathbf{x}_{1}) \\ I_{t}(\mathbf{x}_{2}) \\ \vdots \\ I_{t}(\mathbf{x}_{n}) \end{bmatrix}$$

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In International Joint Conference on Artificial Intelligence, 1981.

Lucas-Kanade flow

Linear least squares problem

$$\begin{bmatrix} I_{x}(\mathbf{x}_{1}) & I_{y}(\mathbf{x}_{1}) \\ I_{x}(\mathbf{x}_{2}) & I_{y}(\mathbf{x}_{2}) \\ \vdots & \vdots \\ I_{x}(\mathbf{x}_{n}) & I_{y}(\mathbf{x}_{n}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_{t}(\mathbf{x}_{1}) \\ I_{t}(\mathbf{x}_{2}) \\ \vdots \\ I_{t}(\mathbf{x}_{n}) \end{bmatrix}$$

$$\mathbf{A} \mathbf{d} = \mathbf{b}$$

$$n \times 2 \ 2 \times 1 \qquad n \times 1$$

Solution given by $(\mathbf{A}^T \mathbf{A}) \mathbf{d} = \mathbf{A}^T \mathbf{b}$

$$\left[\sum_{x} I_{x} I_{x} \quad \sum_{x} I_{x} I_{y} \right] \begin{bmatrix} u \\ v \end{bmatrix} = - \left[\sum_{x} I_{x} I_{t} \right]$$

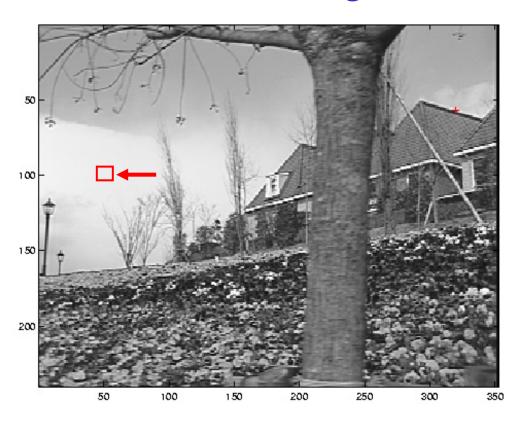
The summations are over all pixels in the window

Lucas-Kanade flow

$$\begin{bmatrix}
\sum_{x} I_{x} I_{x} & \sum_{x} I_{x} I_{y} \\
\sum_{x} I_{x} I_{y} & \sum_{x} I_{y} I_{y}
\end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum_{x} I_{x} I_{t} \\
\sum_{x} I_{y} I_{t}
\end{bmatrix}$$

- Recall the Harris corner detector: $M = A^T A$ is the second moment matrix
- When is the system solvable?
 - By looking at the eigenvalues of the second moment matrix
 - The eigenvectors and eigenvalues of M relate to edge direction and magnitude
 - The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change, and the other eigenvector is orthogonal to it

Uniform region

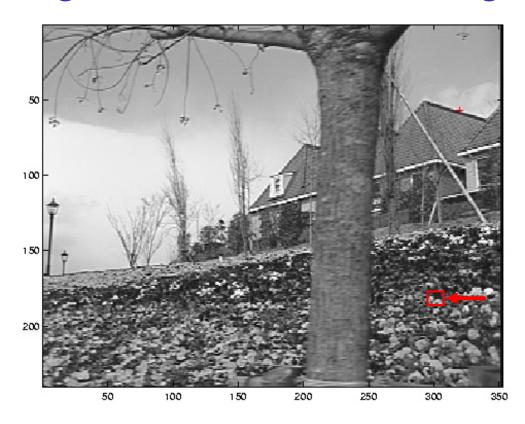


- gradients have small magnitude
- small λ_1 , small λ_2
- system is ill-conditioned

Edge

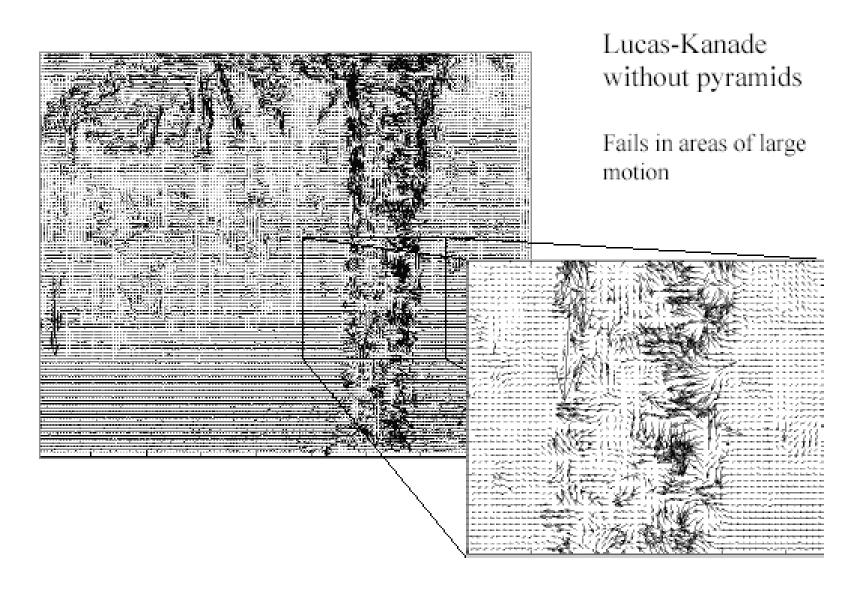
- gradients have one dominant direction
- large λ_1 , small λ_2
- system is ill-conditioned

High-texture or corner region

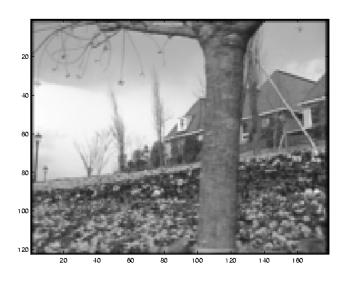


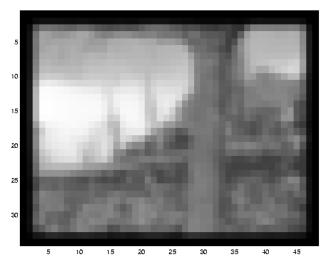
- gradients have different directions, large magnitudes
- large λ_1 , large λ_2
- system is well-conditioned

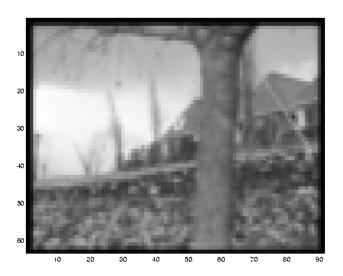
Optical Flow Results

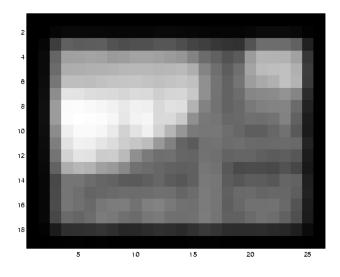


Multi-resolution registration

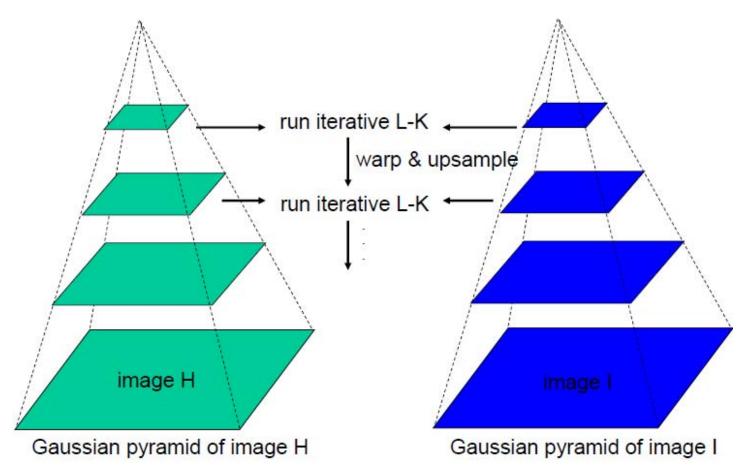




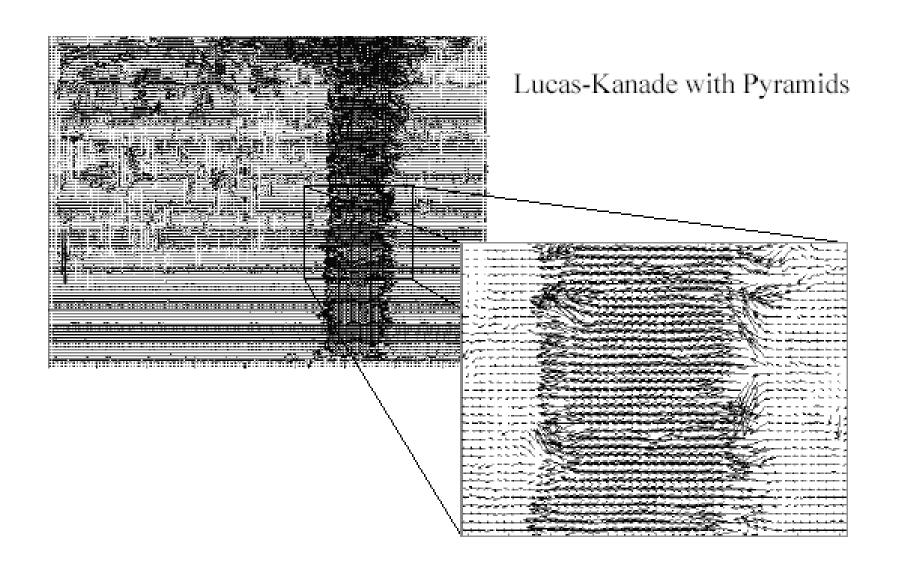




Coarse to fine optical flow estimation



Optical Flow Results



Horn & Schunck algorithm

Additional smoothness constraint:

- nearby point have similar optical flow
- Addition constraint $||\nabla u||^2$, $||\nabla v||^2$

$$e_s = \iint ((u_x^2 + u_y^2) + (v_x^2 + v_y^2)) dxdy,$$

Horn & Schunck algorithm

Additional smoothness constraint:

$$e_s = \iint ((u_x^2 + u_y^2) + (v_x^2 + v_y^2)) dxdy,$$

besides OF constraint equation term

$$e_c = \iint (I_x u + I_y v + I_t)^2 dx dy,$$

minimize e_s+λe_c

λ regularization parameter

Horn & Schunck algorithm

$$E(u(x,y),v(x,y)) = \iint (I_x u + I_y v + I_t)^2 + \alpha((u_x^2 + u_y^2) + (v_x^2 + v_y^2)) dxdy$$
Data term Smoothness term constancy
$$E(u,v) = \int_{\Omega} F(x,y,u,v,u_x,u_y,v_x,v_y) dxdy$$

Euler-Lagrange equations

$$F_{u} - \frac{\partial}{\partial x} F_{u_{x}} - \frac{\partial}{\partial y} F_{u_{y}} = 0 \qquad F_{v} - \frac{\partial}{\partial x} F_{v_{x}} - \frac{\partial}{\partial y} F_{v_{y}} = 0$$

According to the calculus of variations, a minimizer of E must fulfill the Euler-Lagrange equations

Horn & Schunck

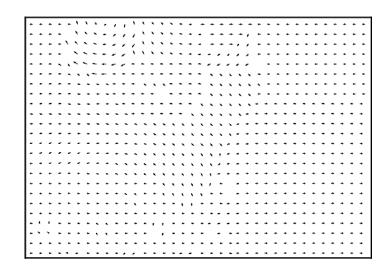
Solution:

1. Coupled PDEs solved using iterative methods and finite differences

2. Information spreads from corner-type patterns

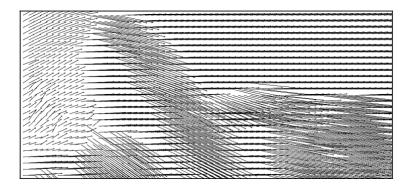
Horn & Schunck

- Works well for small displacements
 - For example Middlebury sequence



Large displacement estimation in optical flow

Large displacement is still an open problem in optical flow estimation



MPI Sintel dataset

Large displacement optical flow

Classical optical flow [Horn and Schunck 1981]

$$lackbreak ext{energy:} ext{$E(\mathbf{w}) = \iint E_{data} + \alpha E_{smooth} \mathbf{dx}$}$$
 color/gradient constancy smoothness constraint

- minimization using a coarse-to-fine scheme
- Large displacement approaches:
 - ► LDOF [Brox and Malik 2011] a matching term, penalizing the difference between flow and HOG matches

$$E(\mathbf{w}) = \iint E_{data} + \alpha E_{smooth} + \beta E_{match} \mathbf{dx}$$

- ► MDP-Flow2 [Xu *et al.* 2012] expensive fusion of matches (SIFT + PatchMatch) and estimated flow at each level
- DeepFlow [Weinzaepfel et al. 2013]
 deep matching + flow refinement with variational approach

