
Basics on generative and discriminative classification

Machine Learning and Object Recognition 2016-2017

Jakob Verbeek

Course website:

http://thoth.inrialpes.fr/~verbeek/MLOR.16.17

Practical matters

• Online course information

– Updated schedule, links to slides and papers

– http://thoth.inrialpes.fr/~verbeek/MLOR.16.17.php

• Grading: Final grades are determined as follows

– 50% written exam, 50% quizes on the presented papers

– If you present a paper: the grade for the presentation can substitute
the worst grade you had for any of the quizes.

• Paper presentations:

– each student presents once

– each paper is presented by two or three students

– presentations last for 15~20 minutes, time yours in advance!

Classification in its simplest form

 Given training data labeled for two or more classes

Classification in its simplest form

 Given training data labeled for two or more classes

 Determine a surface that separates those classes

Classification in its simplest form

 Given training data labeled for two or more classes

 Determine a surface that separates those classes

 Use that surface to predict the class membership of new data

Classification examples in category-level recognition

 Image classification: for each of a set of labels, predict if it is relevant or not
for a given image.

 For example: Person = yes, TV = yes, car = no, ...

Classification examples in category-level recognition

 Category localization: predict bounding box coordinates.
 Classify each possible bounding box as containing the category or not.
 Report most confidently classified box.

Classification examples in category-level recognition

 Semantic segmentation: classify pixels to categories (multi-class)
 Impose spatial smoothness by Markov random field models.

Classification

 Goal is to predict for a test data input the corresponding class label.
– Data input x, e.g. image but could be anything, format may be vector or other
– Class label y, can take one out of at least 2 discrete values, can be more

► In binary classification we often refer to one class as “positive”, and the
other as “negative”

 Classifier: function f(x) that assigns a class to x, or probabilities over the
classes.

 Training data: pairs (x,y) of inputs x, and corresponding class label y.

 Learning a classifier: determine function f(x) from some family of functions
based on the available training data.

 Classifier partitions the input space into regions where data is assigned to a
given class

– Specific form of these boundaries will depend on the family of classifiers used

Generative classification: principle

 Model the class conditional distribution over data x for each class y:
► Data of the class can be sampled (generated) from this distribution

 Estimate the a-priori probability that a class will appear

 Infer the probability over classes using Bayes' rule of conditional probability

 Marginal distribution on x is obtained by marginalizing the class label y

p (y∣x)=
p (y) p(x∣y)

p (x)

p(x)=∑y
p(y) p(x∣y)

p(x∣y)

p(y)

Generative classification: practice

 In order to apply Bayes' rule, we need to estimate two distributions.

 A-priori class distribution
► In some cases the class prior probabilities are known in advance.
► If the frequencies in the training data set are representative for the true

class probabilities, then estimate the prior by these frequencies.

 Class conditional data distributions
► Select a class of density models

 Parametric model, e.g. Gaussian, Bernoulli, …
 Semi-parametric models: mixtures of Gaussian, Bernoulli, ...
 Non-parametric models: histograms, nearest-neighbor method, …
 Or more structured models taking problem knowledge into account.

► Estimate the parameters of the model using the data in the training set
associated with that class.

Estimation of the class conditional model

 Given a set of n samples from a certain class, and a family of distributions

 How do we quantify the fit of a certain model to the data, and how do we
find the best model defined in this sense?

 Maximum a-posteriori (MAP) estimation: use Bayes' rule again as follows:
► Assume a prior distribution over the parameters of the model
► Then the posterior likelihood of the model given the data is

► Find the most likely model given the observed data

 Maximum likelihood parameter estimation: assume prior over parameters is
uniform (for bounded parameter spaces), or “near uniform” so that its effect
is negligible for the posterior on the parameters.
► In this case the MAP estimator is given by
► For i.id. samples:

p(θ)

X={x1, ... , xn} P={pθ(x);θ∈Θ}

p(θ∣X)=p(X∣θ) p(θ)/ p(X)

θ̂=argmaxθ p(θ∣X)=argmax θ{ln p(θ)+ ln p(X∣θ)}

θ̂=argmaxθ∏i=1

n
p(x i∣θ)=argmaxθ∑i=1

n
ln p(xi∣θ)

θ̂=argmaxθ p(X∣θ)

Generative classification methods

 Generative probabilistic methods use Bayes’ rule for prediction
► Problem is reformulated as one of parameter/density estimation

 Adding new classes to the model is easy:
► Existing class conditional models stay as they are
► Estimate p(x|new class) from training examples of new class
► Re-estimate class prior probabilities

p (y∣x)=
p (y) p(x∣y)

p (x)
p (x)=∑y

p (y) p (x∣y)

Example of generative classification

 Three-class example in 2D with parametric model
– Single Gaussian model per class, uniform class prior
– Exercise 1: how is this model related to the Gaussian mixture model we

looked at before for clustering ?
– Exercise 2: characterize surface of equal class probability when the

covariance matrices are the same for all classes

p (y∣x)=
p (y) p(x∣y)

p (x)p(x∣y)

Density estimation for class-conditional models

 Any type of data distribution may be used, preferably one that is modeling
the data well, so that we can hope for accurate classification results.

 If we do not have a clear understanding of the data generating process, we
can use a generic approach,

► Gaussian distribution, or other reasonable parametric model
 Estimation often in closed form or relatively simple process

► Mixtures of parametric models
 Estimation using EM algorithm, not more complicated than single

parametric model

► Non-parametric models can adapt to any data distribution given enough
data for estimation. Examples: (multi-dimensional) histograms, and
nearest neighbors.
 Estimation often trivial, given a single smoothing parameter.

Histogram density estimation

 Suppose we have N data points use a histogram with C cells
 Consider maximum likelihood estimator

 Take into account constraint that density should integrate to one

 Exercise: derive maximum likelihood estimator

 Some observations:
► Discontinuous density estimate
► Cell size determines smoothness
► Number of cells scales exponentially

with the dimension of the data

θ̂=argmaxθ∑i=1

n
ln pθ(xi)=argmaxθ∑c=1

C
nc ln θc

θC :=1−(∑k=1

C−1
vkθk)/vC

Histogram density estimation

 Suppose we have N data points use a histogram with C cells
 Data log-likelihood

 Take into account constraint that density should integrate to one

 Compute derivative, and set to zero for i=1,..., C-1

 Use fact that probability mass should integrate to one, and substitute

L(θ)=∑i=1

N
ln pθ(xi)=∑c=1

C
nc ln θc

θC :=1−(∑k=1

C−1
vkθk)/vC

∂ L(θ)
∂θi

=
ni

θi
−

nc

θc

vi

vc

θi vi=
θc vc

nc

ni

∑i=1

C
θi vi=

θC vC

nC
∑i=1

C
ni=

θC vC

nC

N=1

θi=
ni

vi N

The Naive Bayes model

 Histogram estimation, and other methods, scale poorly with data dimension
► Fine division of each dimension: many empty bins
► Rough division of each dimension: poor density model

 Even for one cut per dimension: 2D cells, eg. a million cells in 20 dims.

 The number of parameters can be made linear in the data dimension by
assuming independence between the dimensions

 For example, for histogram model: we estimate a histogram per dimension
► Still CD cells, but only D x C parameters to estimate, instead of CD

 Independence assumption can be unrealistic for high dimensional data
► But classification performance may still be good using the derived p(y|x)
► Partial independence, e.g. using graphical models, relaxes this problem.

 Principle can be applied to estimation with any type of density estimate

p(x)=∏d=1

D
p(x (d))

Example of a naïve Bayes model

 Hand-written digit classification
– Input: binary 28x28 scanned digit images

– Desired output: class label of image

 Generative model over 28 x 28 pixel images: 2784 possible images
– Independent Bernoulli model for each class
– Probability per pixel per class
– Maximum likelihood estimator is average value

per pixel/bit per class

 Classify using Bayes’ rule: p (y∣x)=
p (y) p(x∣y)

p (x)

p (x∣y=c)=∏d
p (xd∣y=c)

p (xd=1∣y=c)=θcd

p (xd=0∣y=c)=1−θcd

k-nearest-neighbor density estimation: principle

 Instead of having fixed cells as in histogram method,
► Center cell on the test sample for which we evaluate the density.
► Fix number of samples in the cell, find the corresponding cell size.

 Probability to find a point in a sphere A centered on x
0
 with volume v is

 A smooth density is approximately constant in small region, and thus

 Alternatively: estimate P from the fraction of training data in A:
– Total N data points, k in the sphere A

 Combine the above to obtain estimate
► Same per-cell density estimate as in histogram estimator

 Note: density estimates not guaranteed to integrate to one!

P(x∈A)=∫A
p(x)dx

P(x∈A)=∫A
p(x)dx≈∫A

p(x0)dx=p(x0)v A

P(x∈A)≈
k
N

p(x0)≈
k

NvA

k-nearest-neighbor density estimation: practice

 Procedure in practice:
► Choose k
► For given x, compute the volume v which contain k samples.
► Estimate density with

 Volume of a sphere with radius r in d dimensions is

 What effect does k have?
► Data sampled from mixture

of Gaussians plotted in green
► Larger k, larger region,

smoother estimate
► Similar role as cell size for

histogram estimation

p(x)≈
k

Nv

v (r , d)=
2rdπd /2

Γ(d /2+ 1)

K-nearest-neighbors for classification

 Use Bayes' rule with kNN density estimation for p(x|y)

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates

► Estimate class prior probabilities

► Calculate class posterior distribution as fraction of k neighbors in class c

p(x∣y=c)=
k c

N c v

p(y=c)=
N c

N

p(y=c∣x)=
p(y=c) p(x∣y=c)

p(x)

=
1

p (x)

k c

Nv

=
k c

k

p(x)=
k

N v

Smoothing effects for large values of k: data set

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c

N c v

p(x)=
k

N v

Smoothing effects for large values of k, k=1

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c

N c v

p(x)=
k

N v

Smoothing effects for large values of k, k=5

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c

N c v

p(x)=
k

N v

Smoothing effects for large values of k, k=10

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c

N c v

p(x)=
k

N v

Smoothing effects for large values of k, k=100

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c

N c v

p(x)=
k

N v

Summary generative classification methods

 (Semi-) Parametric models, e.g. p(x|y) is Gaussian, or mixture of …
► Pros: no need to store training data, just the class conditional models
► Cons: may fit the data poorly, and might therefore lead to poor

classification result

 Non-parametric models:
► Pros:

 flexibility, no assumptions distribution shape, learning is trivial
 KNN can be used for anything that comes with a distance.

► Cons of histograms:
• Only practical in low dimensional data (<5 or so), application in high

dimensional data leads to exponentially many and mostly empty cells
• Naïve Bayes modeling in higher dimensional cases

– Cons of k-nearest neighbors
• Need to store all training data (memory cost)
• Computing nearest neighbors (computational cost)

Discriminative classification methods

 Generative classification models
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

 In discriminative classification methods we directly estimate class probability
given input: p(y|x)
► Choose class of decision functions in feature space
► Estimate function that maximizes performance on the training set
► Classify a new pattern on the basis of this decision rule.

Binary linear classifier

 Decision function is linear in the features:

 Classification based on the sign of f(x)

 Orientation is determined by w
 Offset from origin is determined by b

 Decision surface is (d-1) dimensional

hyper-plane orthogonal to w, given by

w

f(x)=0
f (x)=wT x+ b=b+∑i=1

d
w i xi

f (x)=wT x+ b=0

Common loss functions for classification

 Assign class label using
 Measure how model quality on a test sample using loss function

► Zero-One loss:
► Hinge loss:
► Logistic loss:

L(y i , f (x i))=[y i f (xi)≤0]
L(y i , f (x i))=max (0,1− y i f (xi))
L(y i , f (x i))=log2 (1+e−yi f (xi))

y=sign (f (x))

Common loss functions for classification

 Assign class label using
► Zero-One loss:
► Hinge loss:
► Logistic loss:

 The zero-one loss counts the number of misclassifications, which is
the “ideal” empirical loss
► Discontinuity at zero makes optimization intractable

 Hinge and logistic loss provide continuous and convex
upperbounds, which allow for continuous optimization

L(y i , f (x i))=[y i f (xi)≤0]
L(y i , f (x i))=max (0,1− y i f (xi))
L(y i , f (x i))=log2 (1+e−yi f (xi))

y=sign (f (x))

Dealing with more than two classes

 First idea: construction from multiple binary classifiers
► Learn binary “base” classifiers independently

 One vs rest approach:
► 1 vs (2 & 3)
► 2 vs (1 & 3)
► 3 vs (1 & 2)

 Problem: Region claimed by several classes

Dealing with more than two classes

 First idea: construction from multiple binary classifiers
► Learn binary “base” classifiers independently

 One vs one approach:
► 1 vs 2
► 1 vs 3
► 2 vs 3

 Problem: conflicts in some regions

Dealing with more than two classes

 Instead: define a separate linear score function for each class

 Assign sample to the class of the function with maximum value

 Exercise 1: give the expression for points

where two classes have equal score

 Exercise 2: show that the set of points

assigned to a class is convex
► If two points fall in the region, then also all points on connecting line

f k (x)=wk
T x+ bk

y=arg maxk f k (x)

Logistic discriminant for two classes

 Map linear score function to class probabilities with sigmoid function

► For binary classification problem, we have by definition

► Exercise: show that

and thus

p(y=+ 1∣x)=σ(wT x+ b)

p(y=−1∣x)=1−p (y=+ 1∣x)

p(y=−1∣x)=σ (−(wT x+b))

p(y∣x)=σ(y (wT x+b))

σ(z)=
1

1+ exp(−z)

Logistic discriminant for two classes

 Map linear score function to class probabilities with sigmoid function
 The class boundary is obtained for p(y|x)=1/2, thus by setting linear

function in exponent to zero

w

p(y|x)=1/2

f(x)=-5

f(x)=+5

Multi-class logistic discriminant

 Map score function of each class to class probabilities with “soft-max” function
► Absorb bias into w and x

► The class probability estimates are non-negative, and sum to one.
► Relative probability of most likely class increases exponentially with the

difference in the linear score functions

► For any given pair of classes we find that they are

equally likely on a hyperplane in the feature space

p(y=c∣x)=
exp(f c (x))

∑k=1

K
exp(f k(x))

f k (x)=wk
T x

p(y=c∣x)
p (y=k∣x)

=
exp(f c (x))

exp (f k (x))
=exp(f c(x)−f k (x))

Maximum likelihood parameter estimation

 Maximize the log-likelihood of predicting the correct class label for training data
► Predictions are made independently, so sum log-likelihood of all training data

 Derivative of log-likelihood as intuitive interpretation

 No closed-form solution, but log-likelihood is concave in parameters
► no local optima, use general purpose convex optimization methods
► For example: gradient started from w=0

 w is linear combination of data points
 Sign of coefficients depends on class labels

Expected value of each
feature, weighting

points by p(y|x), should
equal empirical

expectation.

Indicator function
1 if y

n
=k, else 0

L=∑n=1

N
log p (yn∣xn)

∂L
∂wk

=∑n=1

N
([yn=k]− p(y=k∣xn)) xn=∑n=1

N
αn xn

Maximum a-posteriori (MAP) parameter estimation

 Let us assume a zero-mean Gaussian prior distribution on w
► We expect weight vectors with a small norm

 Find w that maximizes posterior likelihood

 Can be rewritten as following “penalized” maximum likelihood estimator:

► With lambda non-negative

 Penalty for “large” w, bounds the scale of w in case of separable data

 Exercise: show that for separable data the norm of the optimal w's would be
infinite without using the penalty term.

ŵ=argmaxw∑n=1

N
ln p (yn∣xn ,w)+ ln p(w)

ŵ=argmaxw∑n=1

N
ln p(yn∣xn ,w)−λ∥w∥2

2

Support Vector Machines

 Find linear function to separate positive and negative examples
 Which function best separates the samples ?

► Function inducing the largest margin

y i=+1 : wT x i+b>0

y i=−1 : wT xi+b<0

Support vector machines

 Without loss of generality, let function value at the margin be +/- 1
 Now constrain w to that all points fall on correct side of the margin:

 By construction we have that the “support vectors”, the ones that define the
margin, have function values

 Express the size of the margin

in terms of w.

Margin
Support vectors

y i(w
T x i+b)≥1

wT x i+b=y i

f(x)=+1

f(x)=0

f(x)=-1

Support vector machines

 Let's consider a support vector x from the positive class
 Let z be its projection on the decision plane

► Since w is normal vector to the decision plane, we have
► and since z is on the decision plane

 Solve for alpha

 Margin is twice distance from x to z

MarginSupport vectors

f (x)=wT x+ b=1

z=x−αw

f (z)=wT
(x−αw)+b=0

∥x−z∥2=∥x−(x−αw)∥2

∥αw∥2=α∥w∥2

∥w∥2

∥w∥2
2=

1
∥w∥2

wT
(x−αw)+b=0

wT x+b−αwT w=0
αwT w=1

α=
1

∥w∥2
2

Support vector machines

 To find the maximum-margin separating hyperplane, we
► Maximize the margin, while ensuring correct classification
► Minimize the norm of w, s.t.

 Solve using quadratic program with linear inequality constraints over
p+1 variables

Margin
Support vectors

∀ i : y i(w
T x i+b)≥1

f(x)=+1

f(x)=0

f(x)=-1

argminw ,b
1
2

wT w

subject to y i(w
T xi+b)≥1

Support vector machines: inseperable classes

 For non-separable classes we incorporate hinge-loss

 Recall: convex and piece-wise linear upper bound on zero/one loss.
► Zero if point on the correct side of the margin
► Otherwise given by absolute difference from score at margin

L(y i , f (x i))=max (0,1− y i f (xi))

Support vector machines: inseperable classes

 Minimize penalized loss function

► Quadratic function, plus piece-wise linear functions.

 Transformation into a quadratic program
► Define “slack variables” that measure the loss for each data point
► Should be non-negative, and at least as large as the loss

 Solution of the quadratic program has the property that w is a linear
combination of the data points.

minw ,b λ
1
2

wT w + ∑i
max (0,1− yi(w

T xi+b))

minw ,b , {ξi}
λ

1
2

wT w + ∑i
ξi

subject to∀i : ξi≥0 and ξi≥1− yi(w
T x i+b)

SVM solution properties

 Optimal w is a linear combination of data points

 Alpha weights are zero for all points on the correct side of the margin

 Points on the margin, or on the wrong side, have non-zero weight
► Called support vectors

 Classification function thus has form

► relies only on inner products between the test point x and data points
with non-zero alpha's

 Solving the optimization problem also requires access to the data only in
terms of inner products between pairs of training points

w=∑n=1

N
αn yn xn

f (x)=wT x+ b=∑n=1

N
αn yn xn

T x+ b

Relation SVM and logistic regression

 A classification error occurs when sign of the function does not match the
sign of the class label: the zero-one loss

 Consider error minimized when training classifier:
– Hinge loss:
– Logistic loss:

z= yi f (xi)≤0

ξi=max (0,1− y i f (x i))=max (0,1−z)
−log p (yi∣xi)=−logσ(yi f (x i))=log(1+ exp(−z))

 L2 penalty for SVM motivated by
margin between the classes

 For Logistic discriminant we find it via
MAP estimation with a Gaussian prior

 Both lead to efficient optimization
► Hinge-loss is piece-wise linear:

quadratic programming
► Logistic loss is smooth : smooth

convex optimization methods

Loss

z

Summary of discriminative linear classification

 Two most widely used linear classifiers in practice:
► Logistic discriminant (supports more than 2 classes directly)
► Support vector machines (multi-class extensions possible)

 For both, in the case of binary classification
► Criterion that is minimized is a convex bound on zero-one loss
► weight vector w is a linear combination of the data points

 This means that we only need the inner-products between data points to
calculate the linear functions

► The “kernel” function k(,) computes the inner products

w=∑n=1

N
αn xn

f (x)=wT x+ b

=∑n=1

N
αn xn

T x+ b

=∑n=1

N
αn k (xn , x)+ b

• 1 dimensional data that is linearly separable

• But what if the data is not linearly seperable?

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear Classification

Slide credit: Andrew Moore

Φ: x → φ(x)

Kernels for non-linear classification

 General idea: map the original input space to some higher-dimensional
feature space where the training set is separable

 Exercise: find features that could separate the 2d data linearly

Slide credit: Andrew Moore

Nonlinear classification with kernels

 The kernel trick: instead of explicitly computing the feature transformation
φ(x), define a kernel function K such that

 K(xi , xj) = φ(xi) · φ(xj)

 Conversely, if a kernel satisfies Mercer’s condition then it computes an inner
product in some feature space, possibly with large or infinite number of
dimensions

► Mercer's Condition: The square N x N matrix with kernel evaluations for
any arbitrary N data points should always be a positive definite matrix.

 This gives a nonlinear decision boundary in the original space:

f (x) = b+ wT
ϕ(x)

= b+∑i
αiϕ(xi)

T ϕ(x)

= b+∑i
αi k (xi , x)

Kernels for non-linear classification

 What is the kernel function that corresponds to this feature mapping ?

Φ: x → φ(x)

ϕ(x)=(
x1

2

x2
2

√2 x1 x2
)

k (x , y)=ϕ(x)T ϕ(y)=?

=x1
2 y1

2
+ x2

2 y2
2
+ 2x1 x2 y1 y2

=(x1 y1+ x2 y2)
2

=(xT y)
2

Kernels for non-linear classification

 Suppose we also want to keep the original features to be able to still
implement linear functions

Φ: x → φ(x)

ϕ(x)=(
1
√2 x1

√2 x2

x1
2

x2
2

√2 x1 x2

)
k (x , y)=ϕ(x)T ϕ(y)=?

=1+ 2xT y+ (xT y)
2

=(xT y+ 1)
2

Kernels for non-linear classification

 What happens if we use the same kernel for higher dimensional data
► Which feature vector corresponds to it ?

► First term, encodes an additional 1 in each feature vector
► Second term, encodes scaling of the original features by sqrt(2)
► Let's consider the third term

► In total we have 1 + 2D + D(D-1)/2 features !
► But the kernel is computed as efficiently as dot-product in original space

(xT y)
2
=(x1 y1+ ...+ xD yD)

2

k (x , y)=(xT y+ 1)
2
=1+ 2xT y+ (xT y)

2

=∑d=1

D
(xd yd)

2
+ 2∑d=1

D

∑i=d+ 1

D
(xd yd)(xi yi)

=∑d=1

D
xd

2 yd
2
+ 2∑d=1

D

∑i=d+ 1

D
(xd xi)(yd yi)

ϕ(x)=(1 ,√2 x1 ,√2 x2, ... ,√2 xD , x1
2 , x2

2 , ... , xD
2 ,√2 x1 x2 , ... ,√2 x1 xD , ... ,√2 xD−1 xD)

T

Original features Squares Products of two distinct elements

ϕ(x)

Common kernels for bag-of-word histograms

 Hellinger kernel:

 Histogram intersection kernel:

► Exercise: find the feature transformation, when h(d) is a bounded
integer

 Generalized Gaussian kernel:

► d can be Euclidean distance, χ2 distance, Earth Mover’s Distance, etc.
See also:
J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid,
Local features and kernels for classification of texture and object categories: a
comprehensive study. Int. Journal of Computer Vision, 2007

k (h1 ,h2)=∑d
min(h1(d) ,h2(d))

k (h1 , h2)=exp(− 1
A

d (h1 , h2))

k (h1 ,h2)=∑d √h1(i)×√h2(i)

Logistic discriminant with kernels

 Let us assume a given kernel, and weight vectors
► Express the score functions using the kernel

 Where

► Express the L2 penalty on the weight vectors using the kernel

► Where

 MAP estimation of the alpha's and b's amounts to maximize

f c(x j)=bc+∑i=1

n
αic 〈ϕ(xi) ,ϕ(x j)〉=bc+∑i=1

n
αic k (xi , x j)=bc+α c

T k j

w c=∑i=1

n
αicϕ(xi)

〈w c , wc 〉=∑i=1

n

∑ j=1

n
αicα jc k (xi , x j)=αc

T K αc

∑i=1

n
ln p(yi∣xi)−λ

1
2∑c=1

C
α c

T K α c

α c=(α1c , ... ,αnc)
T

[K]ij=k (xi , x j)

k j=(k (x j , x1) , ... , k (x j , xn))
T

Logistic discriminant with kernels

 Recall that and

 Therefore we want to maximize

 Consider the partial derivative of this function with respect to the b's,
and the gradient with respect to the alpha vectors

► Essentially the same gradients as in the linear case, feature
vector is replaced with a column of the kernel matrix

p(yi∣xi)=
exp (f y i

(x i))

∑c
exp f c(xi)

∂E
∂bc

=∑i=1

n

([y i=c]−p(c∣xi))

∇α c
E=∑i=1

n

([yi=c]−p (c∣xi))k i−λ K αc

E ({αc}, {bc})=∑i=1

n

(f y i
(xi)−ln∑c

exp f y i
(xi))−λ

1
2∑c

αc
T K α c

f c(xi)=bc+α c
T k i

Support vector machines with kernels

 Minimize quadratic program

 Let us again define the classification function in terms of kernel
evaluations

 Then we obtain a quadratic program in b, alpha, and the slack
variables

minw , b , {ξi}
λ

1
2

wT w + ∑i
ξi

subject to∀i : ξi≥0 and ξi≥1− yi f (xi)

f (xi)=b+αT k i

minα ,b ,{ξi}
λ

1
2
αT K α + ∑i

ξi

subject to∀i : ξi≥0 and ξi≥1− yi (b+α
T ki)

Summary linear classification & kernels

 Linear classifiers learned by minimizing convex cost functions
– Logistic discriminant: smooth objective, minimized using gradient-based methods
– Support vector machines: piecewise linear objective, quadratic programming
– Both require only computing inner product between data points

 Non-linear classification can be done with linear classifiers over new
features that are non-linear functions of the original features
► Kernel functions efficiently compute inner products in (very) high-dimensional

spaces, can even be infinite dimensional in some cases.

 Using kernel functions non-linear classification has drawbacks
– Requires storing the support vectors, may cost lots of memory in practice
– Computing kernel between new data point and support vectors may be

computationally expensive (at least more expensive than linear classifier)

 The “kernel trick” also applies for other linear data analysis techniques
– Principle component analysis, k-means clustering, regression, ...

Reading material

 A good book that covers all machine learning aspects of the course is
► Pattern recognition & machine learning

Chris Bishop, Springer, 2006

 For clustering with k-means & mixture of Gaussians read
► Section 2.3.9
► Chapter 9, except 9.3.4
► Optionally, Section 1.6 on information theory

 For classification read
► Section 2.5, except 2.5.1
► Section 4.1.1 & 4.1.2
► Section 4.2.1 & 4.2.2
► Section 4.3.2 & 4.3.4
► Section 6.2
► Section 7.1 start + 7.1.1 & 7.1.2

 (Much) more on kernels: course “Advanced Learning Models” in MSIAM program

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Classification
	Discriminative vs generative methods
	Generative classification methods
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Histogram methods
	Slide 17
	The ‘curse of dimensionality’
	Example of a naïve Bayes model
	Slide 20
	Slide 21
	k-nearest-neighbor classification rule
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Summary generative classification methods
	Slide 29
	Linear classifiers
	Slide 31
	Slide 32
	Dealing with more than two classes
	Slide 34
	Slide 35
	Logistic discriminant for two classes
	Slide 37
	Multi-class logistic discriminant
	Parameter estimation for logistic discriminant
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Summary Linear discriminant analysis
	Nonlinear SVMs
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

