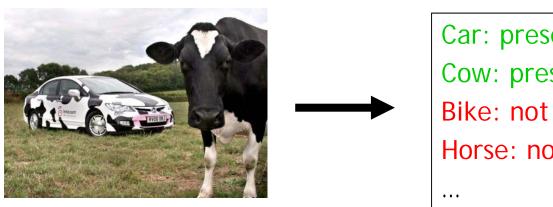
Bag-of-features for category classification

Cordelia Schmid

Category recognition

Image classification: assigning a class label to the image



Car: present

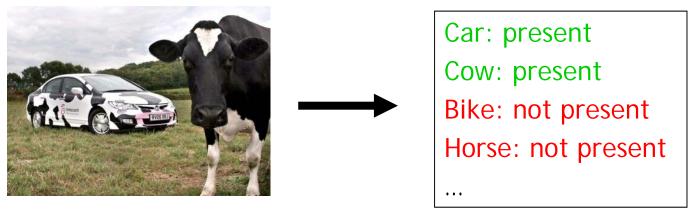
Cow: present

Bike: not present

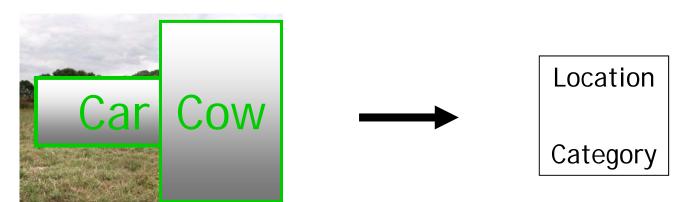
Horse: not present

Category recognition

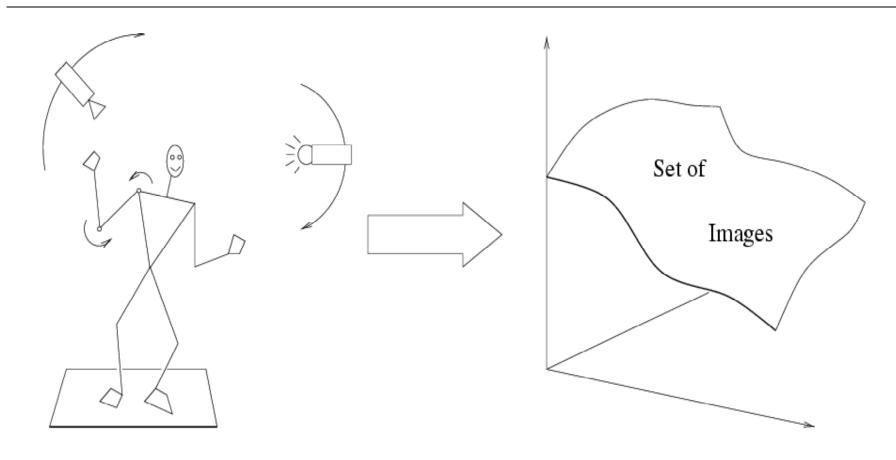
Image classification: assigning a class label to the image



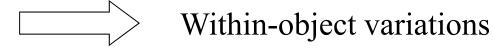
Object localization: define the location and the category



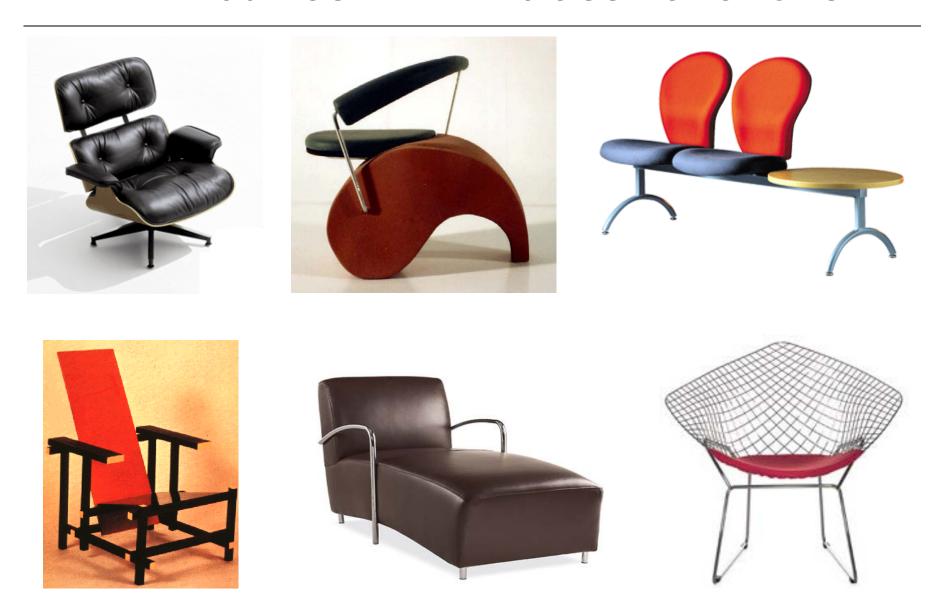
Difficulties: within object variations



Variability: Camera position, Illumination, Internal parameters

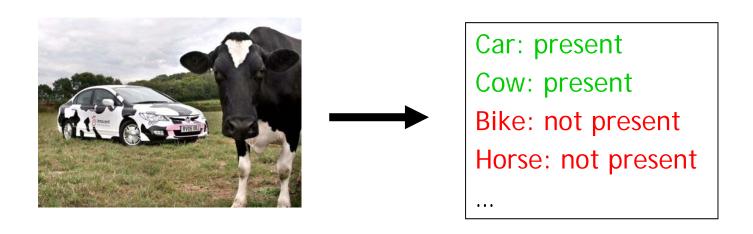


Difficulties: within-class variations



Category recognition

Image classification: assigning a class label to the image



Supervised scenario: given a set of training images

Image classification

Given

Positive training images containing an object class

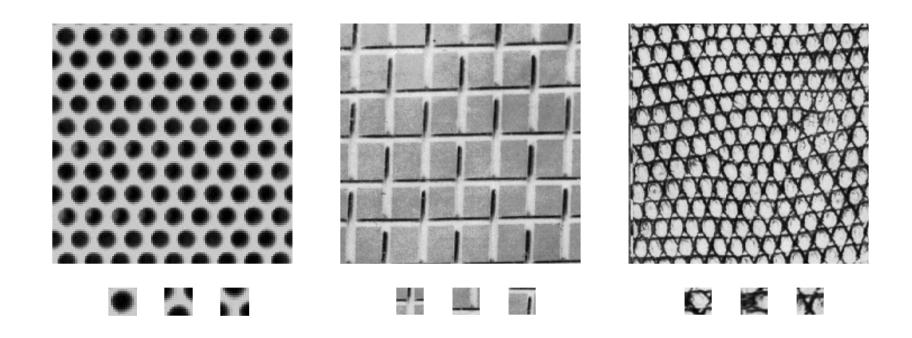
Negative training images that don't

Classify

A test image as to whether it contains the object class or not

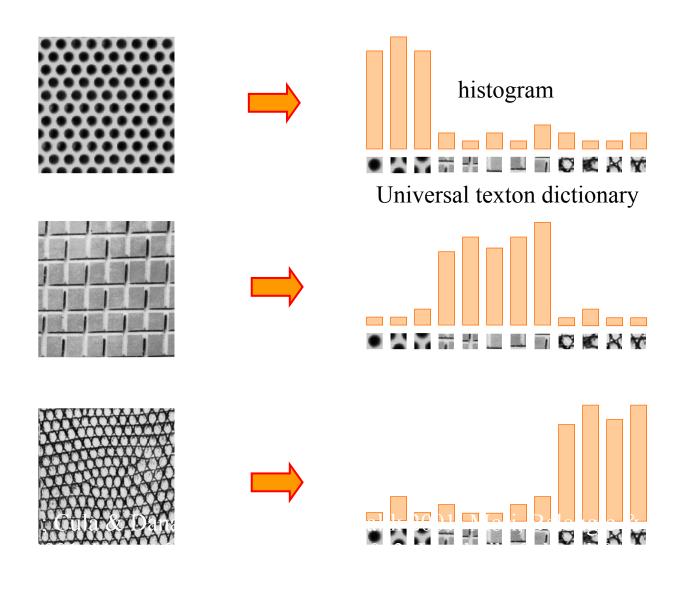
Bag-of-features for image classification

- Origin: texture recognition
 - Texture is characterized by the repetition of basic elements or textons

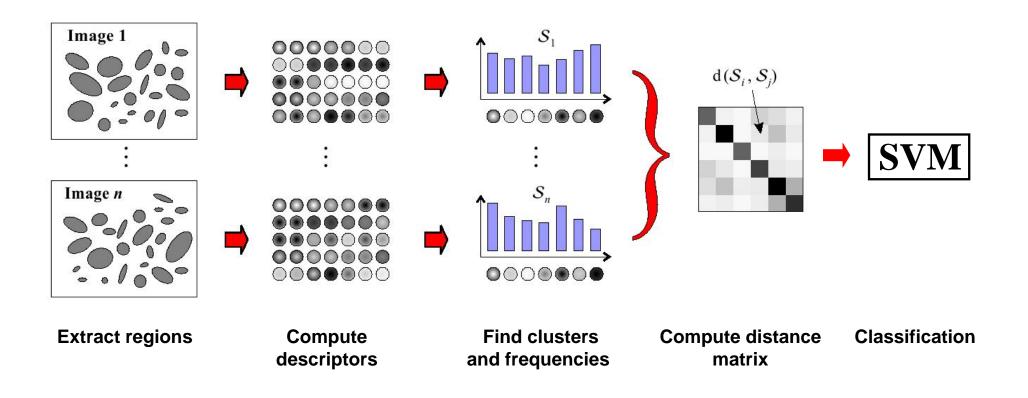


Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001 Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Texture recognition

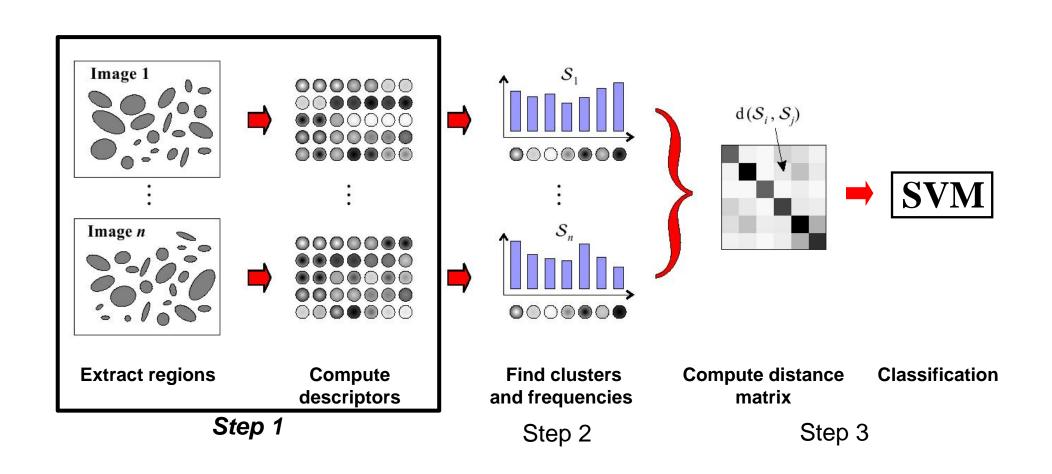


Bag-of-features for image classification



[Csurka et al. WS'2004], [Nowak et al. ECCV'06], [Zhang et al. IJCV'07]

Bag-of-features for image classification



Step 1: feature extraction

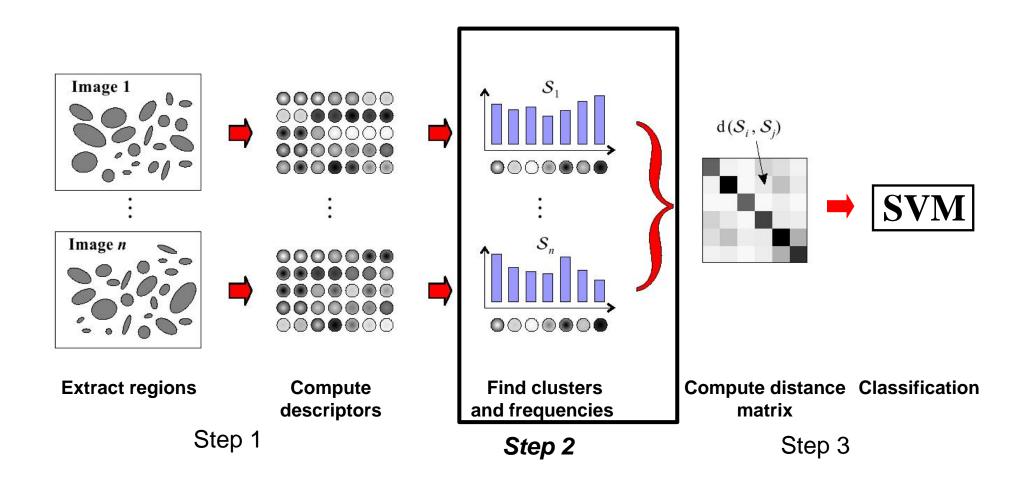
- Scale-invariant image regions + SIFT
 - Affine invariant regions give "too" much invariance
 - Rotation invariance for many realistic collections "too" much invariance
- Dense descriptors
 - Improve results in the context of categories (for most categories)
 - Interest points do not necessarily capture "all" features
- Color-based descriptors

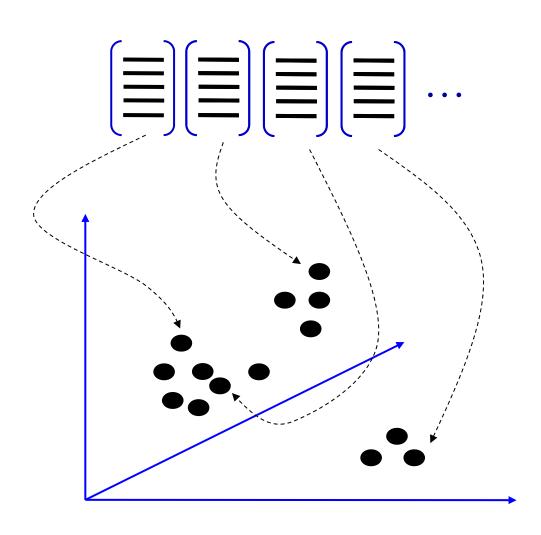
Dense features

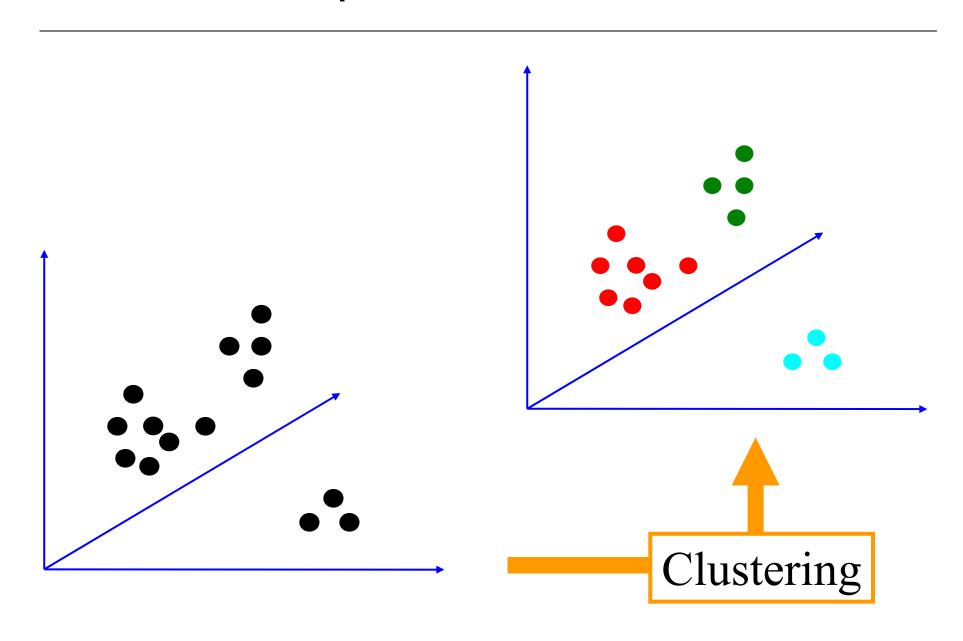


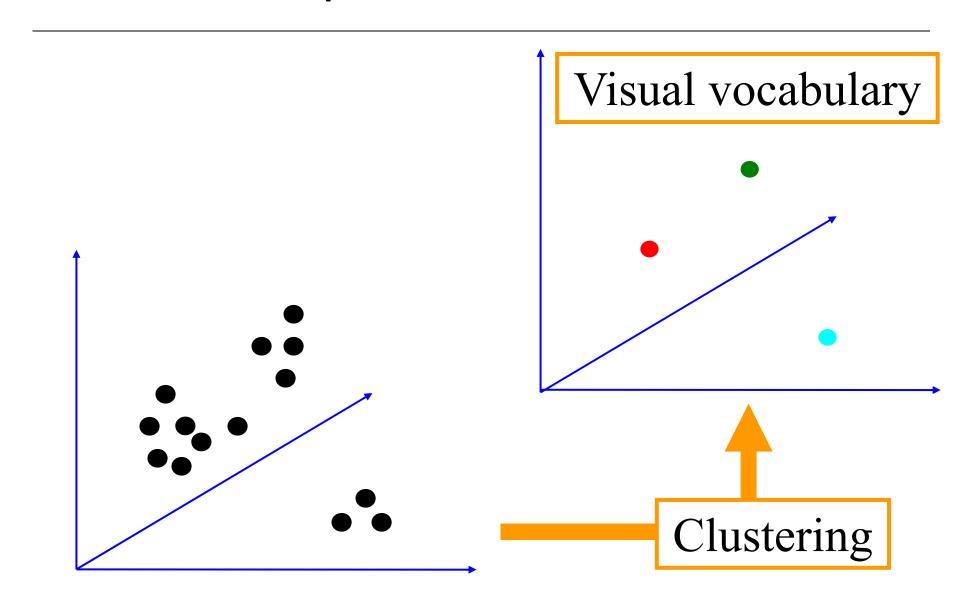
- Multi-scale dense grid: extraction of small overlapping patches at multiple scales
- Computation of the SIFT descriptor for each grid cells
- Exp.: Horizontal/vertical step size 3-6 pixel, scaling factor of 1.2 per level

Bag-of-features for image classification

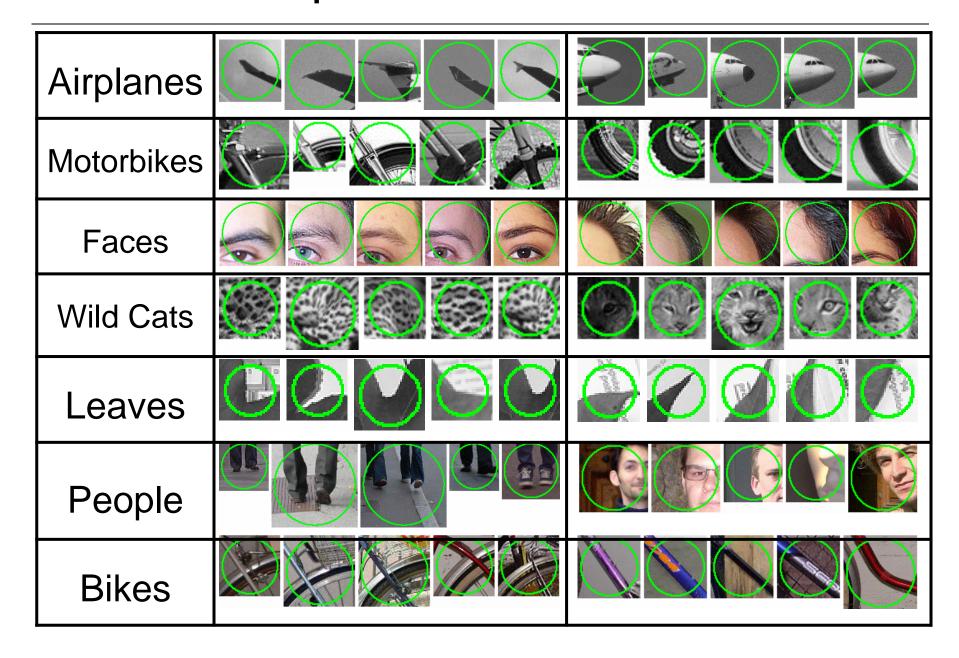








Examples for visual words

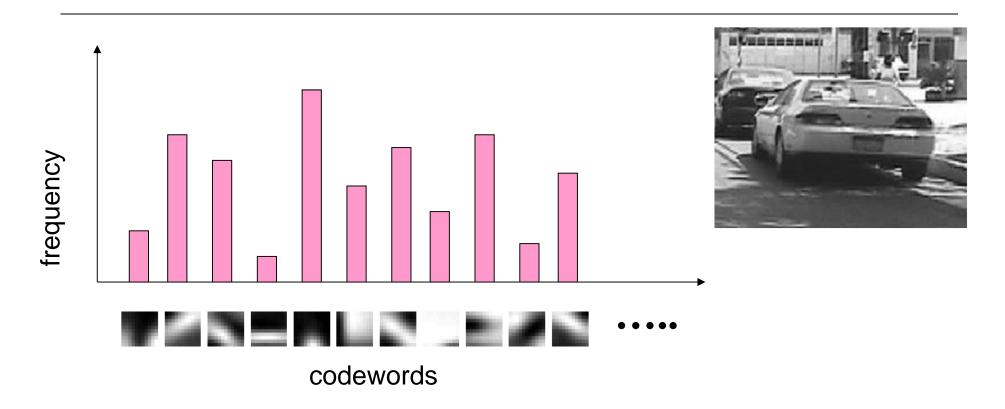


- Cluster descriptors
 - K-means
 - Gaussian mixture model
- Assign each visual word to a cluster
 - Hard or soft assignment
- Build frequency histogram

Hard or soft assignment

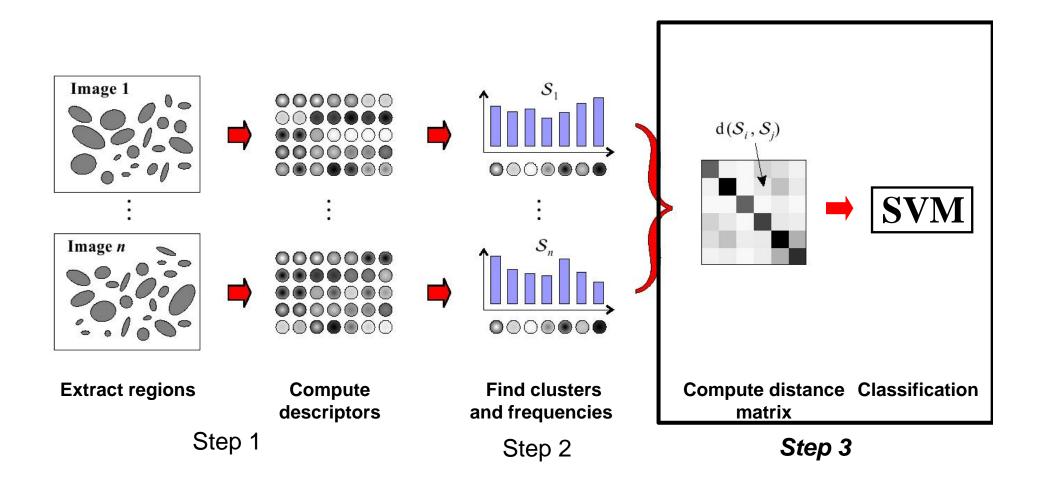
- K-means → hard assignment
 - Assign to the closest cluster center
 - Count number of descriptors assigned to a center
- Gaussian mixture model → soft assignment
 - Estimate distance to all centers
 - Sum over number of descriptors
- Represent image by a frequency histogram

Image representation



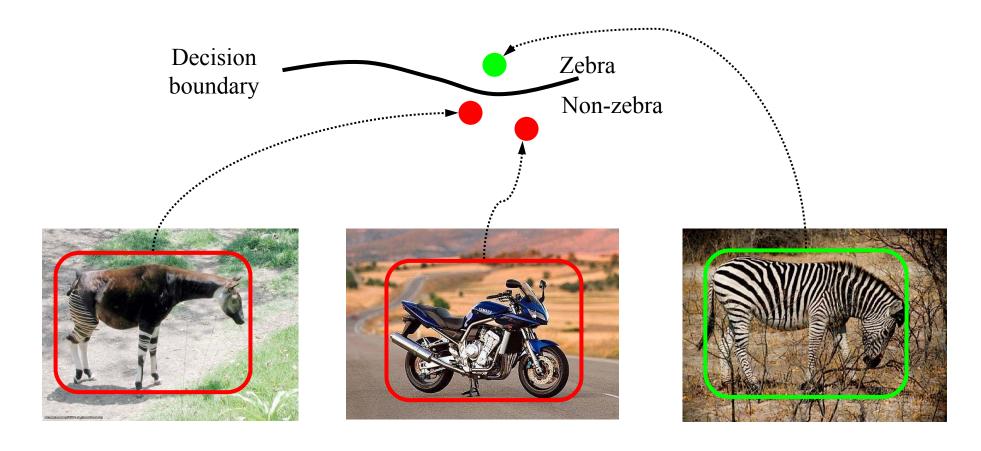
- each image is represented by a vector, typically 1000-4000 dimension, normalization with L2 norm
- fine grained represent model instances
- coarse grained represent object categories

Bag-of-features for image classification



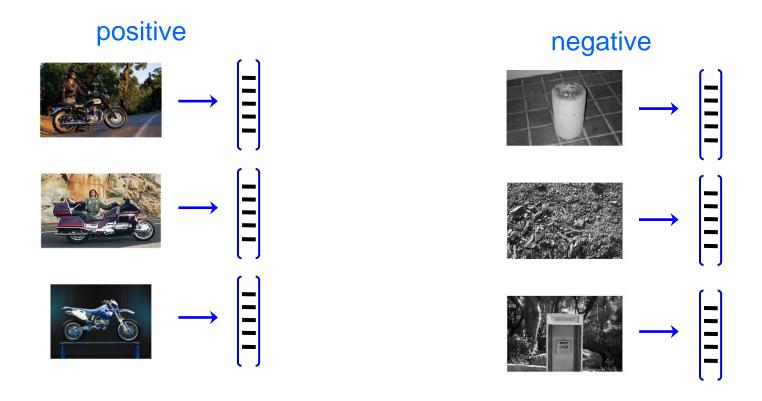
Step 3: Classification

 Learn a decision rule (classifier) assigning bag-offeatures representations of images to different classes



Training data

Vectors are histograms, one from each training image



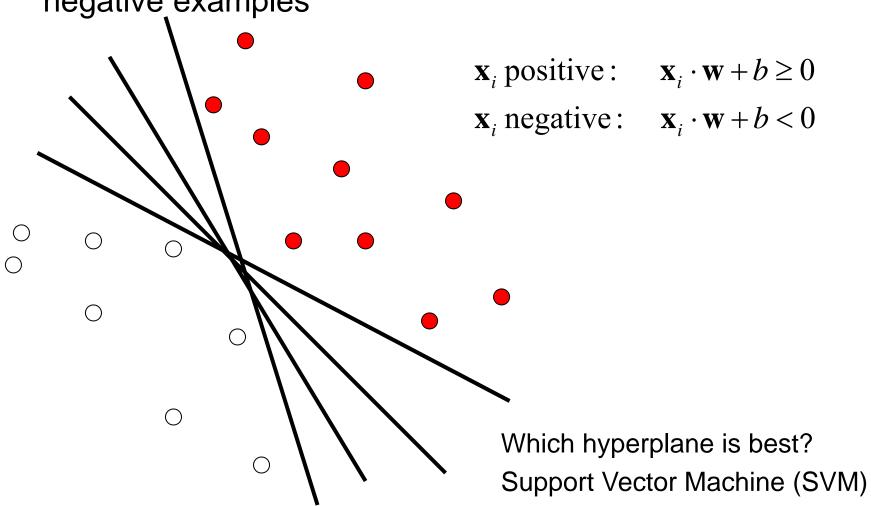
Train classifier, e.g. SVM

Nearest Neighbor Classifier

- For each test data point : assign label of nearest training data point
- K-nearest neighbors: labels of the k nearest points, vote to classify
- Works well provided there is lots of data and the distance function is good

Linear classifiers

 Find linear function (hyperplane) to separate positive and negative examples



Kernels for bags of features

• Hellinger kernel
$$K(h_1, h_2) = \sum_{i=1}^{N} \sqrt{h_1(i)h_2(i)}$$

- Histogram intersection kernel $I(h_1, h_2) = \sum_{i=1}^{N} \min(h_1(i), h_2(i))$
- Generalized Gaussian kernel $K(h_1, h_2) = \exp\left(-\frac{1}{A}D(h_1, h_2)^2\right)$
- D can be Euclidean distance, χ^2 distance etc.

$$D_{\chi^2}(h_1, h_2) = \sum_{i=1}^{N} \frac{\left(h_1(i) - h_2(i)\right)^2}{h_1(i) + h_2(i)}$$

Multi-class SVMs

 Mutli-class formulations exist, but they are not widely used in practice. It is more common to obtain multi-class SVMs by combining two-class SVMs in various ways.

One versus all:

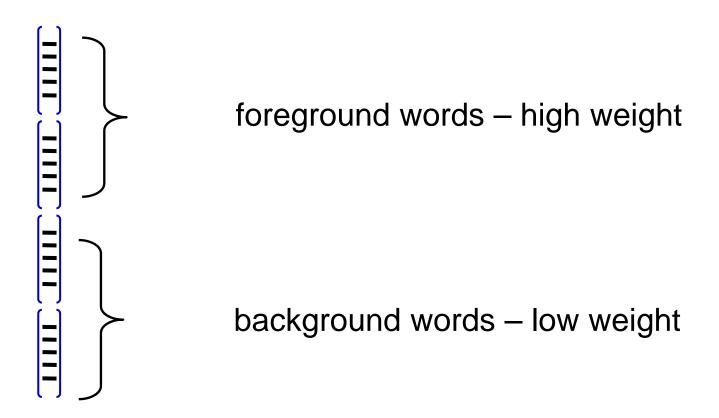
- Training: learn an SVM for each class versus the others
- Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

One versus one:

- Training: learn an SVM for each pair of classes
- Testing: each learned SVM "votes" for a class to assign to the test example

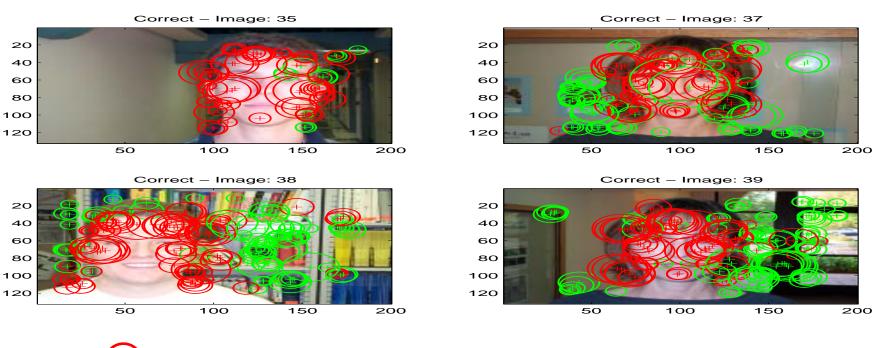
Why does SVM learning work?

Learns foreground and background visual words



Illustration

Localization according to visual word probability



foreground word more probable

background word more probable

Bag-of-features for image classification

Excellent results in the presence of background clutter

Examples for misclassified images

Books- misclassified into faces, faces, buildings

Buildings- misclassified into faces, trees, trees

Cars- misclassified into buildings, phones, phones

Bag of visual words summary

Advantages:

- largely unaffected by position and orientation of object in image
- fixed length vector irrespective of number of detections
- very successful in classifying images according to the objects they contain

Disadvantages:

- no explicit use of configuration of visual word positions
- poor at localizing objects within an image
- no explicit image understanding

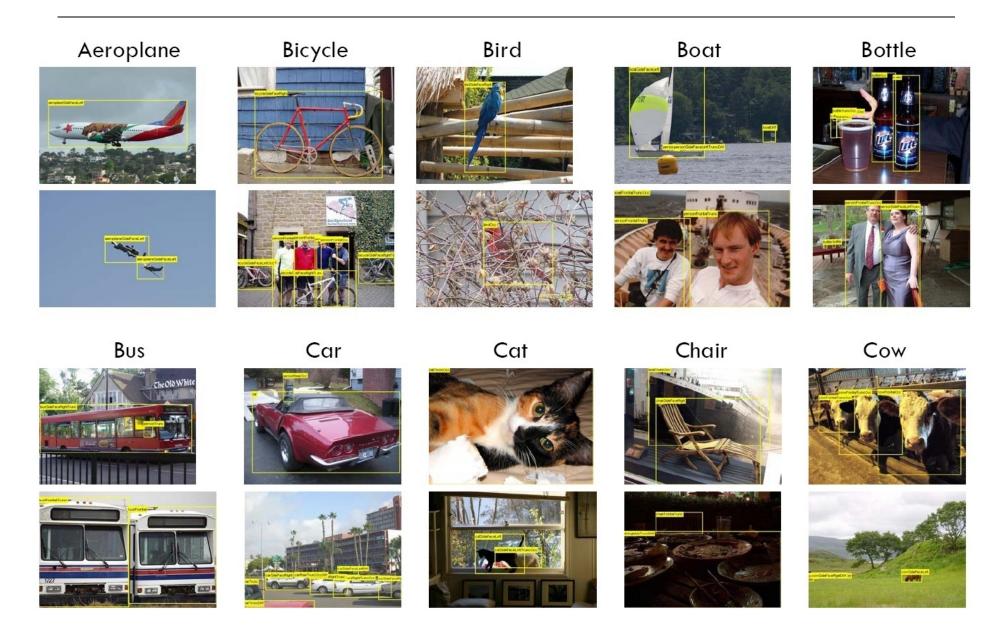
Evaluation of image classification (object localization)

PASCAL VOC [05-12] datasets

PASCAL VOC 2007

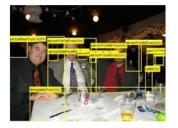
- Training and test dataset available
- Used to report state-of-the-art results
- Collected January 2007 from Flickr
- 500 000 images downloaded and random subset selected
- 20 classes manually annotated
- Class labels per image + bounding boxes
- 5011 training images, 4952 test images
- Exhaustive annotation with the 20 classes
- Evaluation measure: average precision

PASCAL 2007 dataset



PASCAL 2007 dataset

Dining Table



Dog

Horse

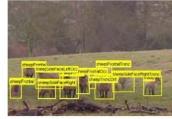
Motorbike

Person

Potted Plant

Sheep

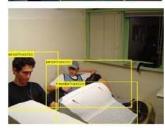




Sofa

Train

TV/Monitor



ImageNet: large-scale image classification dataset

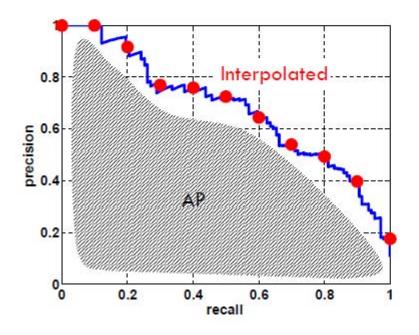
IMAGENET has 14M images from 22k classes

Standard Subsets

- ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC)
 - 1000 classes and 1.4M images
- ImageNet10K dataset
 - 10184 classes and ~ 9 M images

Evaluation

- Average Precision [TREC] averages precision over the entire range of recall
 - Curve interpolated to reduce influence of "outliers"



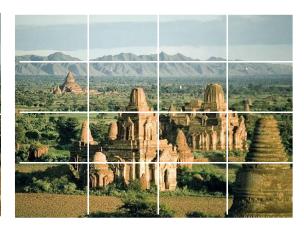
- A good score requires both high recall and high precision
- Application-independent
- Penalizes methods giving high precision but low recall

Results for PASCAL 2007

- Winner of PASCAL 2007 [Marszalek et al.]: mAP 59.4
 - Combining several channels with non-linear SVM and Gaussian kernel
- Multiple kernel learning [Yang et al. 2009]: mAP 62.2
 - Combination of several features, Group-based MKL approach
- Object localization & classification [Harzallah et al.'09]: mAP 63.5
 - Use detection results to improve classification
- Adding objectness boxes [Sanchez at al.'12]: mAP 66.3
- Convolutional Neural Networks [Oquab et al.'14]: mAP 77.7

Spatial pyramid matching

- Add spatial information to the bag-of-features
- Perform matching in 2D image space



[Lazebnik, Schmid & Ponce, CVPR 2006]

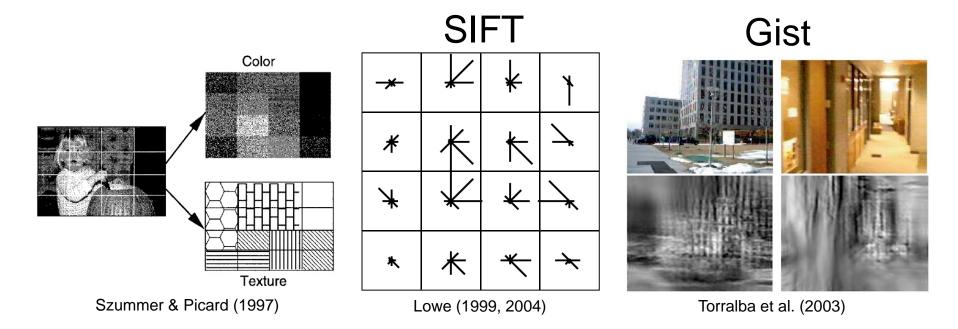
Related work

Similar approaches:

Subblock description [Szummer & Picard, 1997]

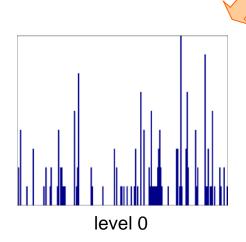
SIFT [Lowe, 1999]

GIST [Torralba et al., 2003]

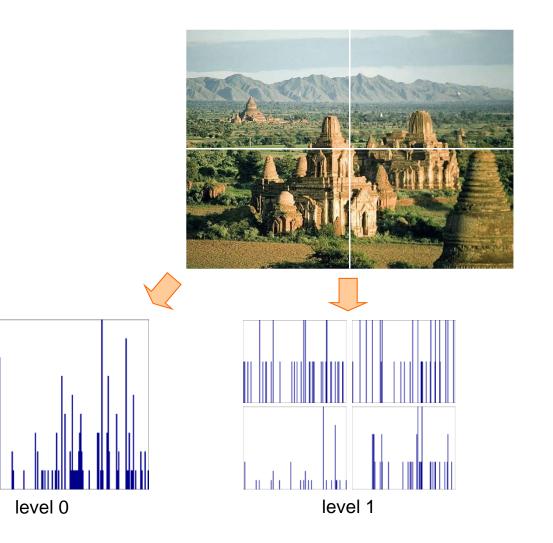


Spatial pyramid representation

Locally orderless representation at several levels of spatial resolution

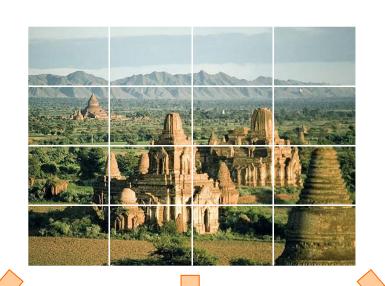


Spatial pyramid representation

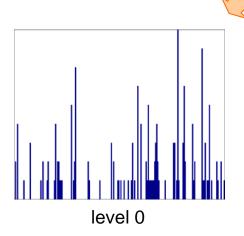


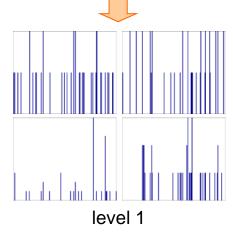
Locally orderless representation at several levels of spatial resolution

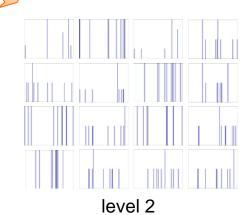
Spatial pyramid representation



Locally orderless representation at several levels of spatial resolution





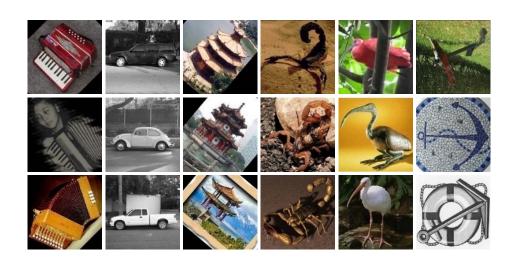


Scene dataset [Labzenik et al.'06]

Scene classification

L	Single-level	Pyramid
0(1x1)	72.2±0.6	
1(2x2)	77.9±0.6	79.0 ±0.5
2(4x4)	79.4±0.3	81.1 ±0.3
3(8x8)	77.2±0.4	80.7 ±0.3

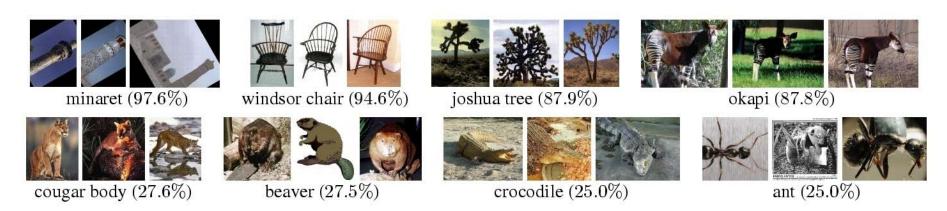
Category classification – CalTech101



L	Single-level	Pyramid
0(1x1)	41.2±1.2	
1(2x2)	55.9±0.9	57.0 ±0.8
2(4x4)	63.6±0.9	64.6 ±0.8
3(8x8)	60.3±0.9	64.6 ±0.7

CalTech101

Easiest and hardest classes



Sources of difficulty:

- Lack of texture
- Camouflage
- Thin, articulated limbs
- Highly deformable shape

Evaluation BoF – spatial

Image classification results on PASCAL'07 train/val set

(SH, Lap, MSD) x (SIFT,SIFTC)	AP
spatial layout	
1	0.53
2x2	0.52
3x1	0.52
1,2x2,3x1	0.54

Spatial layout not dominant for PASCAL'07 dataset Combination improves average results, i.e., it is appropriate for some classes

Evaluation BoF - spatial

Image classification results on PASCAL'07 train/val set for individual categories

	1	3x1
Sheep	0.339	0.256
Bird	0.539	0.484
DiningTable	0.455	0.502
Train	0.724	0.745

Results are category dependent!

→ Combination helps somewhat

Discussion

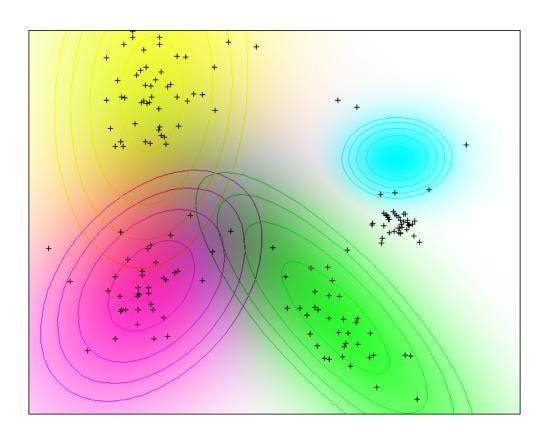
- Summary
 - Spatial pyramid representation: appearance of local image patches + coarse global position information
 - Substantial improvement over bag of features
 - Depends on the similarity of image layout
- Recent extensions
 - Flexible, object-centered grid
 - Shape masks [Marszalek'12] => additional annotations
 - Weakly supervised localization of objects
 - [Russakovsky et al.'12, Oquab'14, Cinbis'16]

Recent extensions

- Improved aggregation schemes, such as the Fisher vector, Perronnin et al., ECCV'10
 - More discriminative descriptor, power normalization, linear SVM
- ImageNet classification with deep convolutional neural networks, Krizhevsky, Sutskever, Hinton, NIPS 2012

Fisher vector

- Use a Gaussian Mixture Model as vocabulary
- Statistical measure of the descriptors of the image w.r.t the GMM
- Derivative of likelihood w.r.t. GMM parameters



GMM parameters:

 w_i weight

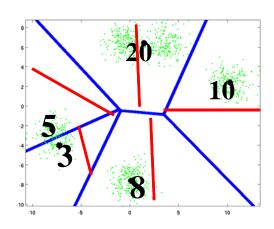
 μ_i mean

 σ_i co-variance (diagonal)

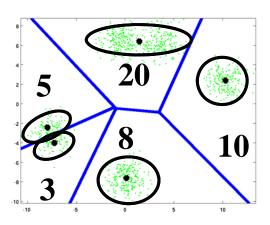
Translated cluster \rightarrow large derivative on μ_i for this component

Fisher vector image representation

 Mixture of Gaussian/ k-means stores nbr of points per cell



- Fisher vector adds 1st & 2nd order moments
 - More precise description of regions assigned to cluster
 - Fewer clusters needed for same accuracy
 - Per cluster store: mean and variance of data in cell
 - Representation 2D times larger, at same computational cost
 - High dimensional, robust representation



Fisher vector image representation

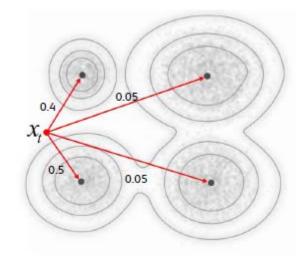
 $X = \{x_t, t = 1...T\}$ is the set of T i.i.d. D-dim local descriptors (e.g. SIFT) extracted from an image:

 $u_\lambda(x)=\sum_{i=1}^K w_i u_i(x)$ is a Gaussian Mixture Model (GMM) with parameters $\lambda=\{w_i,\mu_i,\Sigma_i,i=1\dots N\}$ trained on a large set of local descriptors: a **visual vocabulary**

FV formulas:

$$\mathcal{G}_{\mu,i}^{X} = \frac{1}{T\sqrt{w_i}} \sum_{t=1}^{T} \gamma_t(i) \left(\frac{x_t - \mu_i}{\sigma_i} \right)$$

$$\mathcal{G}_{\sigma,i}^{X} = \frac{1}{T\sqrt{2w_i}} \sum_{t=1}^{T} \gamma_t(i) \left[\frac{(x_t - \mu_i)^2}{\sigma_i^2} - 1 \right]$$



 $\gamma_t(i)$ = soft-assignment of patch x_t to Gaussian i

Fisher Vector = concatenation of per-Gaussian gradient vectors

Relation to BOF

FV formulas:

$$\mathcal{G}_{\mu,i}^{X} = \frac{1}{T\sqrt{w_i}} \sum_{t=1}^{T} \gamma_t(i) \left(\frac{x_t - \mu_i}{\sigma_i}\right)$$

$$\mathcal{G}_{\sigma,i}^{X} = \frac{1}{T\sqrt{2w_i}} \sum_{t=1}^{T} \gamma_t(i) \left[\frac{(x_t - \mu_i)^2}{\sigma_i^2} - 1\right]$$

Soft BOV formula:

$$\frac{1}{T}\sum_{t=1}^{T} \gamma_t(i)$$

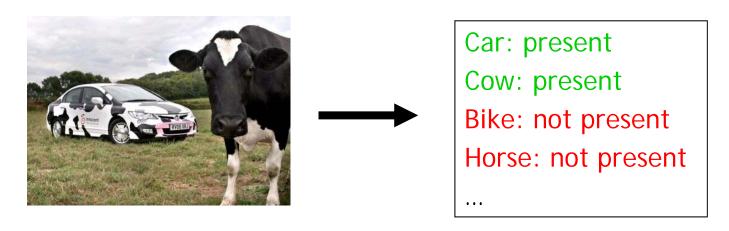
Like the (original) BOV the FV is an average of local statistics.

The FV extends the BOV and includes higher-order statistics (up to 2nd order)

Results on VOC 2007: BOV = $43.6\% \rightarrow FV = 57.7\% \rightarrow \sqrt{FV} = 62.1\%$

Large-scale image classification

Image classification: assigning a class label to the image

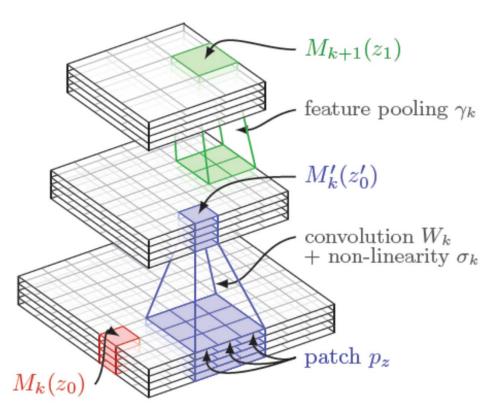


- What makes it large-scale?
 - number of images
 - number of classes
 - dimensionality of descriptor

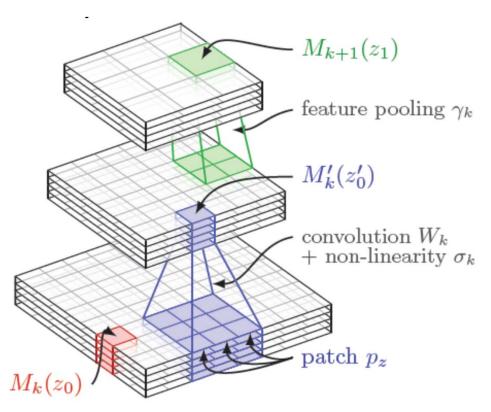
Current state of the art – image classification

- Deep convolutional neural networks
- •Convolutional networks [LeCun'98 ...]
- AlexNet [Krizhevsky'12]
- VGGNet [Simonyan'14]
- Google Inception [Szegedy'15]
- ResNet [He'16]

Convolutional neural network – one layer



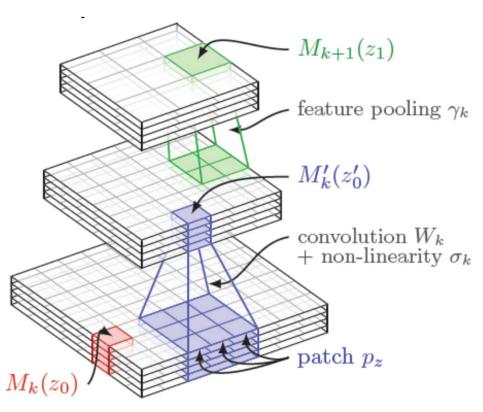
Convolutional neural network – one layer



Convolutions:

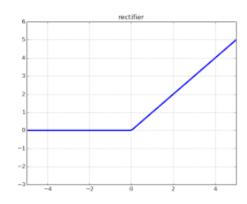
- Learn convolutional filters
- Translation invariant
- Several filters at each layer
- From simple to complex filters

Convolutional neural network – one layer

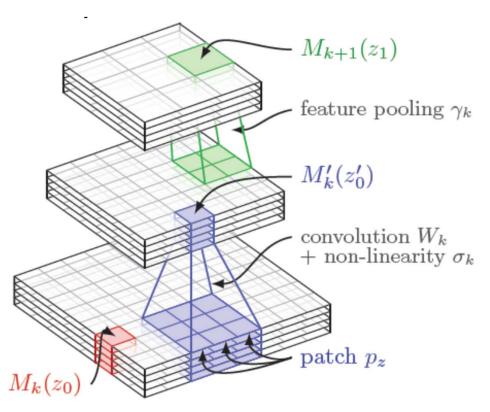


Non-linearity:

- Sigmoid
- Rectified linear unit (ReLU)
 - Simplifies backpropagation
 - Makes learning faster
 - Avoid saturation issues



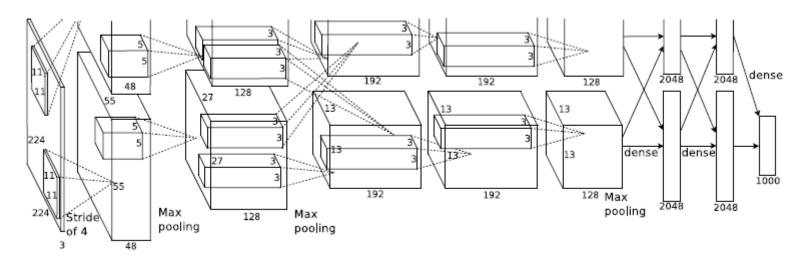
Convolutional neural network – one layer



Spatial feature pooling:

- Average or maximum
- Invariance to small transformations
- Larger receptive fields

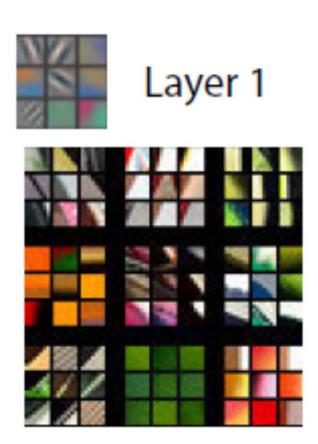
- First 5 layers: convolutional layer, last 2: full connected
- Large model (7 hidden layers, 650k units, 60M parameters)
- Requires large training set (ImageNet)
- GPU implementation (50x speed up over CPU)



Krizhevsky, Sutskever, Hinton, *ImageNet classification* with deep convolutional neural networks, NIPS'12

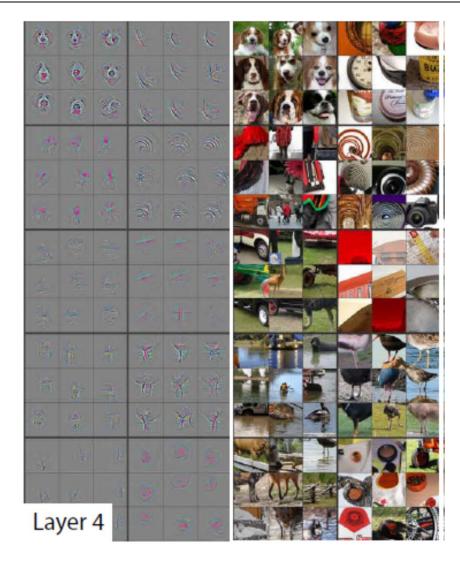
- State of the art result on ImageNet challenge
 - 1000 categories and 1.2 million images

Visualization of the convolution filters



Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV'14

Visualization of the convolution filters



Top nine activations