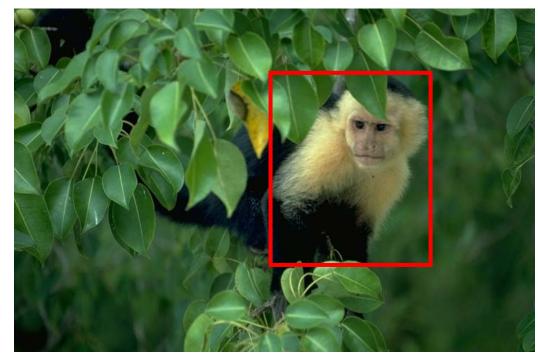
Category-level localization

Cordelia Schmid

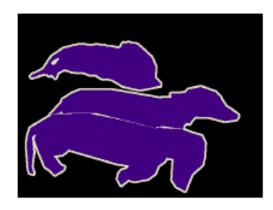
Recognition

- Classification
 - Object present/absent in an image
 - Often presence of a significant amount of background clutter

- Localization / Detection
 - Localize object within the frame
 - Bounding box or pixellevel segmentation



Pixel-level object classification



Difficulties

• Intra-class variations



- Scale and viewpoint change
- Multiple aspects of categories

Approaches

- Intra-class variation
 => Modeling of the variations, mainly by learning from a large dataset
- Scale + limited viewpoints changes
 => multi-scale approach
- Multiple aspects of categories

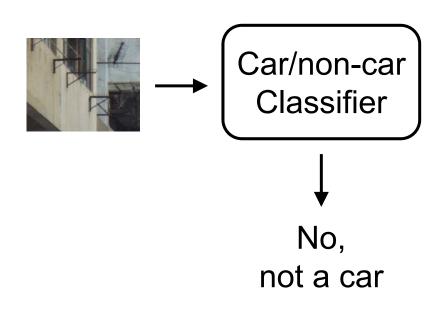
 > separate detectors for each aspect, front/profile face, build an approximate 3D "category" model
 > high capacity classifiers, i.e. Fisher vector, CNNs

Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients (HOG)
- 4. State of the art algorithms
- 5. PASCAL VOC and MSR Coco

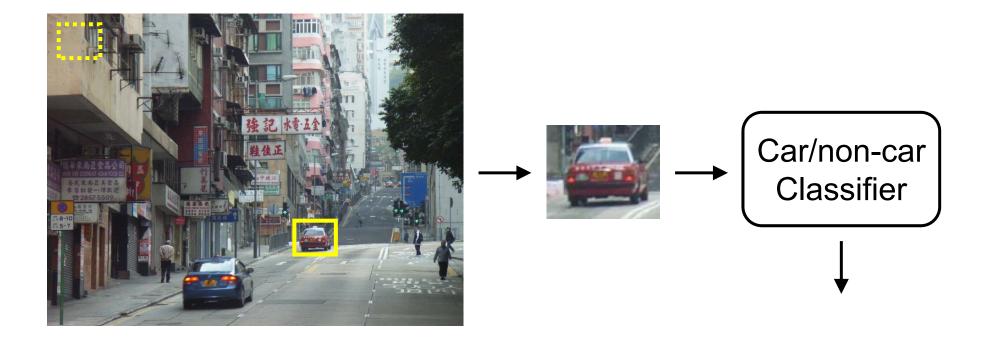
Sliding window detector

• Basic component: binary classifier



Sliding window detector

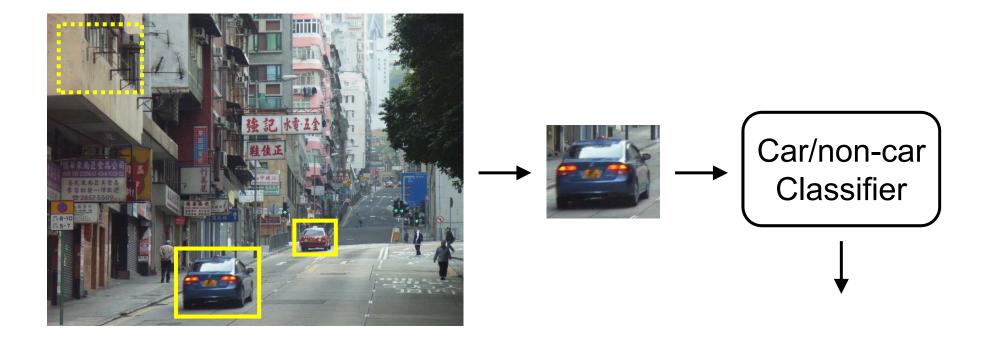
• Detect objects in clutter by search



• Sliding window: exhaustive search over position and scale

Sliding window detector

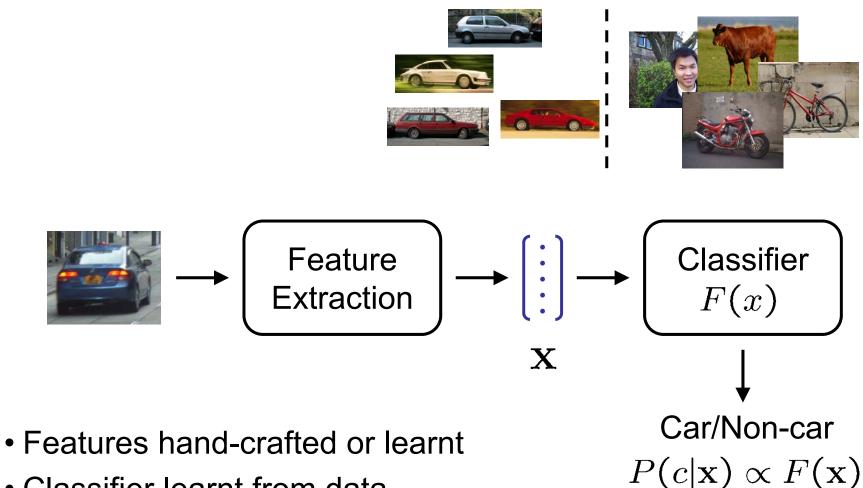
• Detect objects in clutter by search



• Sliding window: exhaustive search over position and scale

Window (Image) Classification

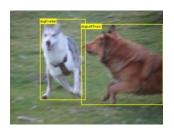
Training Data

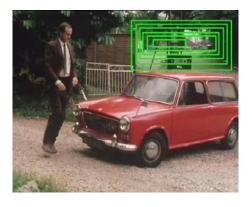


Classifier learnt from data

Problems with sliding windows ...

- aspect ratio
- granularity (finite grid)
- partial occlusion
- multiple responses





Outline

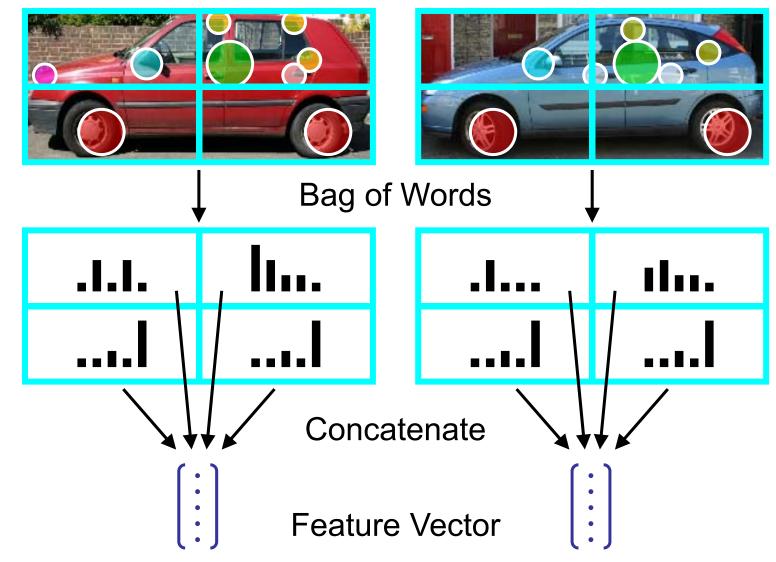
- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients (HOG)
- 4. State of the art algorithms
- 5. PASCAL VOC and MSR Coco

BOW + Spatial pyramids

Start from BoW for region of interest (ROI)

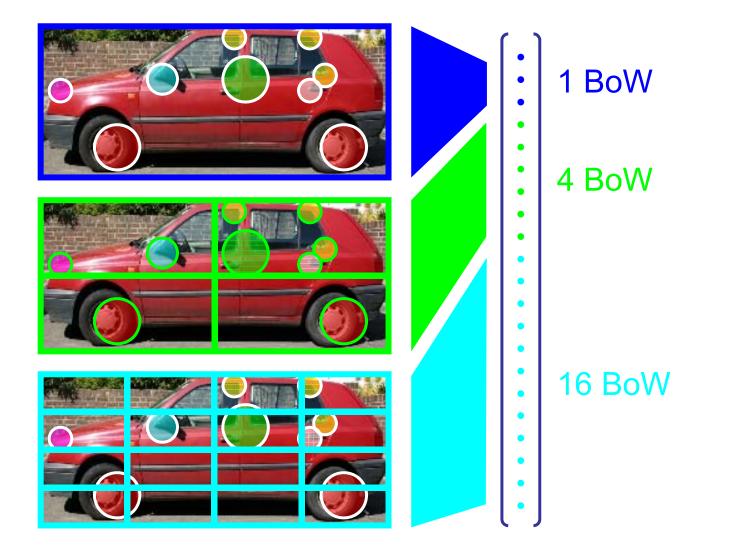
- no spatial information recorded
- sliding window detector

Adding Spatial Information to Bag of Words



Keeps fixed length feature vector for a window

Spatial Pyramid – represent correspondence



Outline

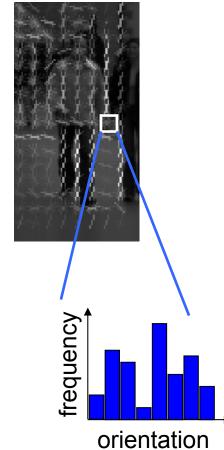
- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients + linear SVM classifier
- 4. State of the art algorithms
- 5. PASCAL VOC and MSR Coco

Feature: Histogram of Oriented Gradients (HOG)

image

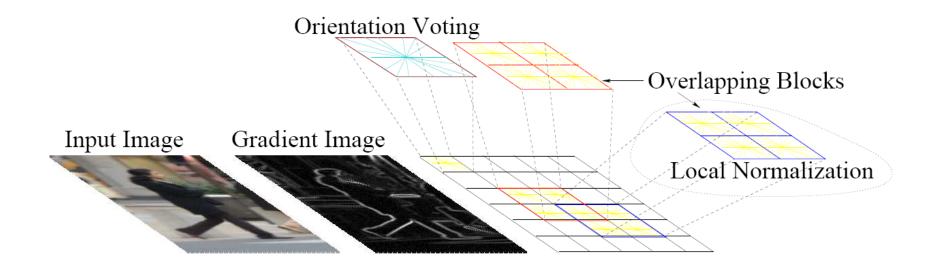
dominant direction

HOG



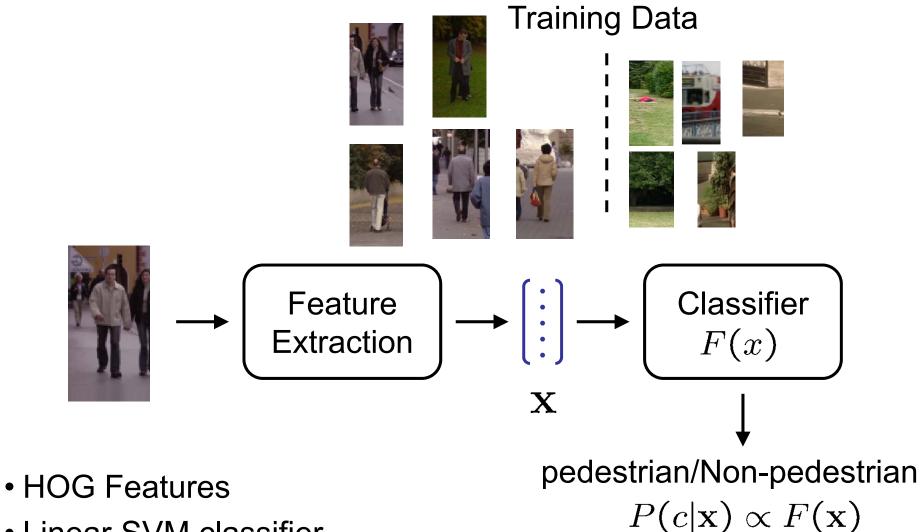
- tile 64 x 128 pixel window into 8 x 8 pixel cells
- each cell represented by histogram over 8 orientation bins (i.e. angles in range 0-180 degrees)

Histogram of Oriented Gradients (HOG) continued



- Adds a second level of overlapping spatial bins renormalizing orientation histograms over a larger spatial area
- Feature vector dimension (approx) = 16 x 8 (for tiling) x 8 (orientations) x 4 (for blocks) = 4096

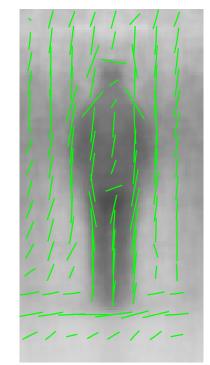
Window (Image) Classification

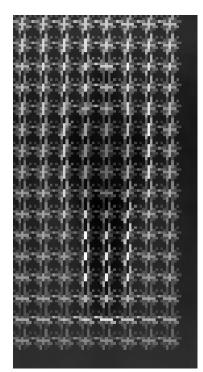


• Linear SVM classifier

HOG features

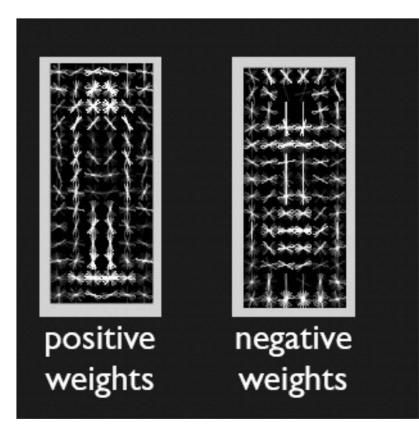
Averaged examples

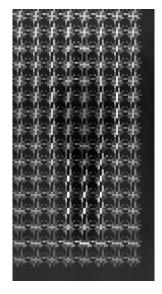




Learned model

 $\mathbf{f}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$





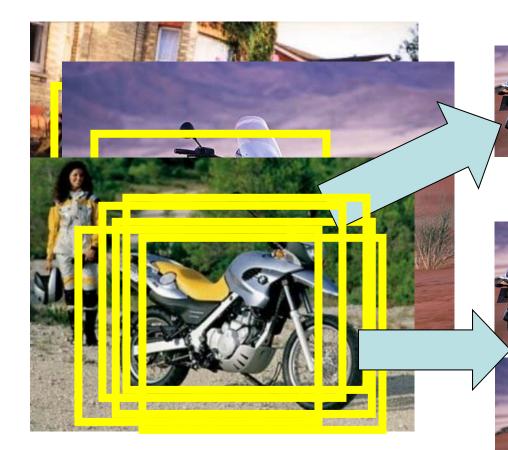
average over positive training data

Dalal and Triggs, CVPR 2005

Training a sliding window detector

- Unlike training an image classifier, there are a (virtually) infinite number of possible negative windows
- Training (learning) generally proceeds in three distinct stages:
 - 1. Bootstrapping: learn an initial window classifier from positives and random negatives, jittering of positives
 - 2. Hard negatives: use the initial window classifier for detection on the training images (inference) and identify false positives with a high score
 - 3. Retraining: use the hard negatives as additional training data

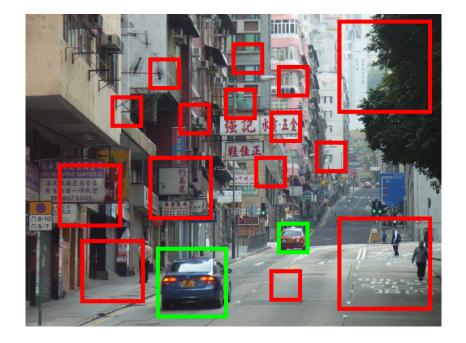
Training: "Jittering" of positive samples



 Jitter annotation to increase the set of positive trainingsamples Crop and resize

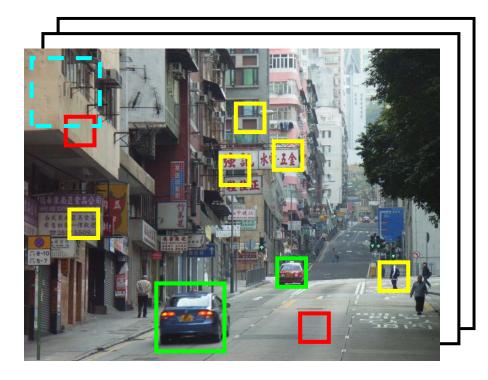
Hard negative mining – why?

 Object detection is inherently asymmetric: much more "non-object" than "object" data



- Classifier needs to have very low false positive rate
- Non-object category is very complex need lots of data

Hard negative mining + retraining

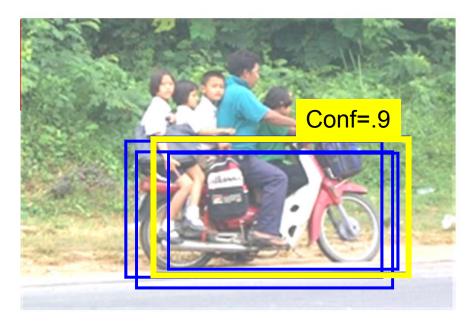


- 1. Pick negative training set at random
- 2. Train classifier
- 3. Run on training data
- 4. Add false positives to training set
- 5. Repeat from 2

- Collect a finite but diverse set of non-object windows
- Force classifier to concentrate on hard negative examples
- For some classifiers can ensure equivalence to training on entire data set

Test: Non-maximum suppression (NMS)

• Scanning-window detectors typically result in multiple responses for the same object

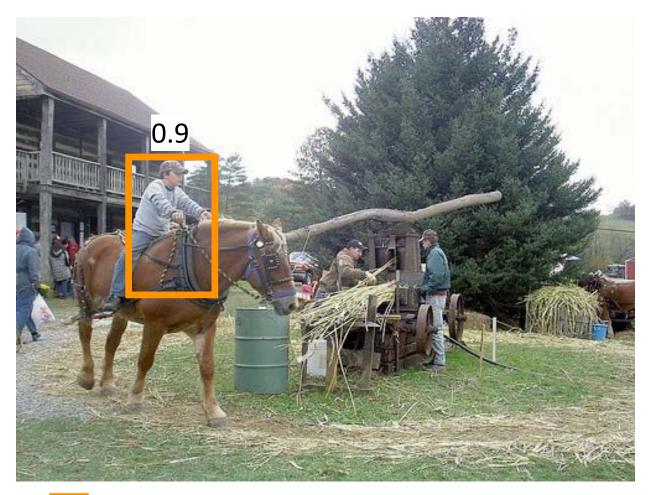


- To remove multiple responses, a simple greedy procedure called "Non-maximum suppression" is applied:
- NMS: 1. Sort all detections by detector confidence
 - 2. Choose most confident detection d_i ; remove all d_i s.t. $overlap(d_i, d_j) > T$
 - 3. Repeat Step 2. until convergence

Evaluating a detector

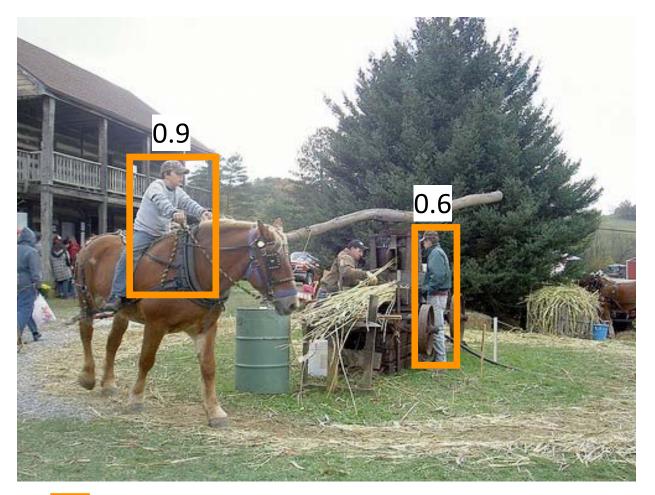
Test image (previously unseen)

First detection ...



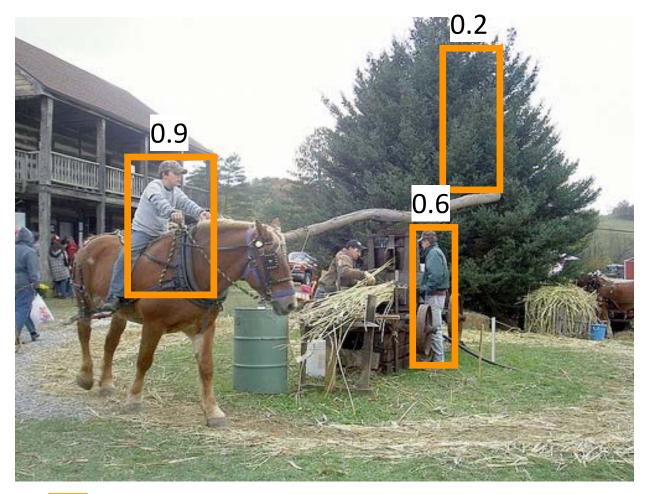
'person' detector predictions

Second detection ...



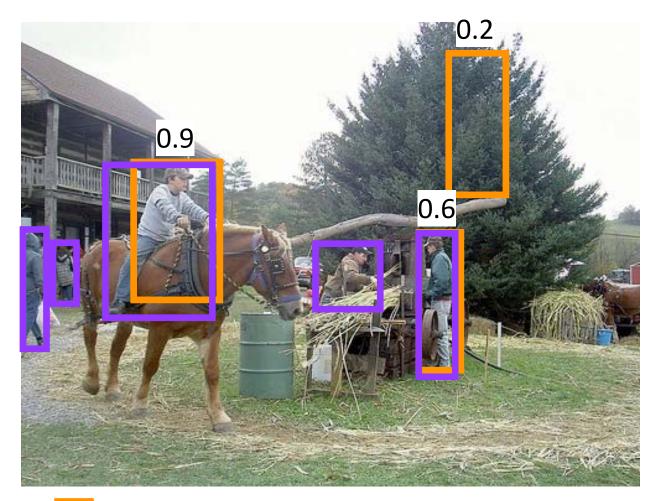
• 'person' detector predictions

Third detection ...



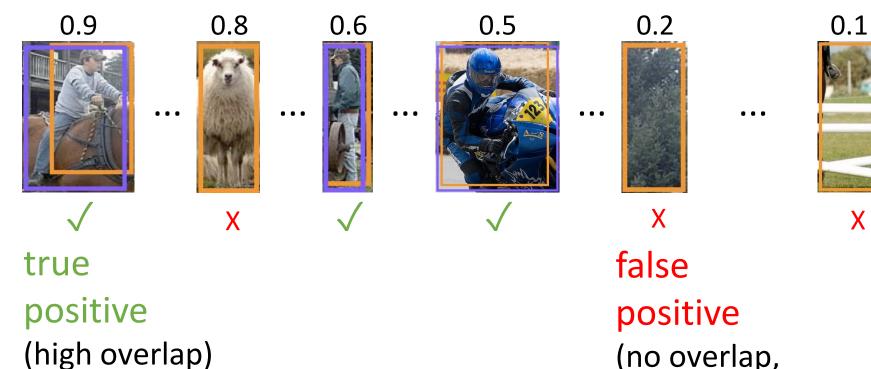
'person' detector predictions

Compare to ground truth



'person' detector predictions
 ground truth 'person' boxes

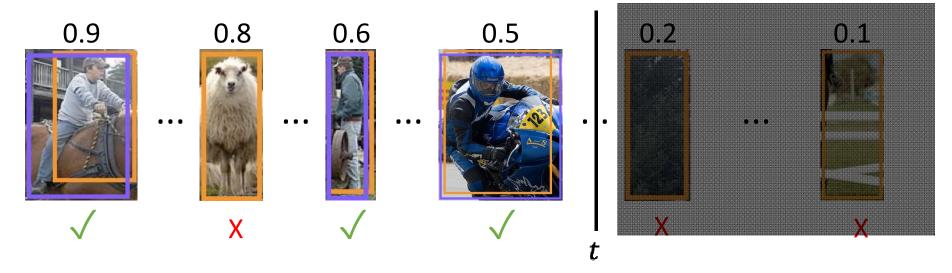
Sort by confidence



(no overlap, low overlap, or duplicate)

Χ

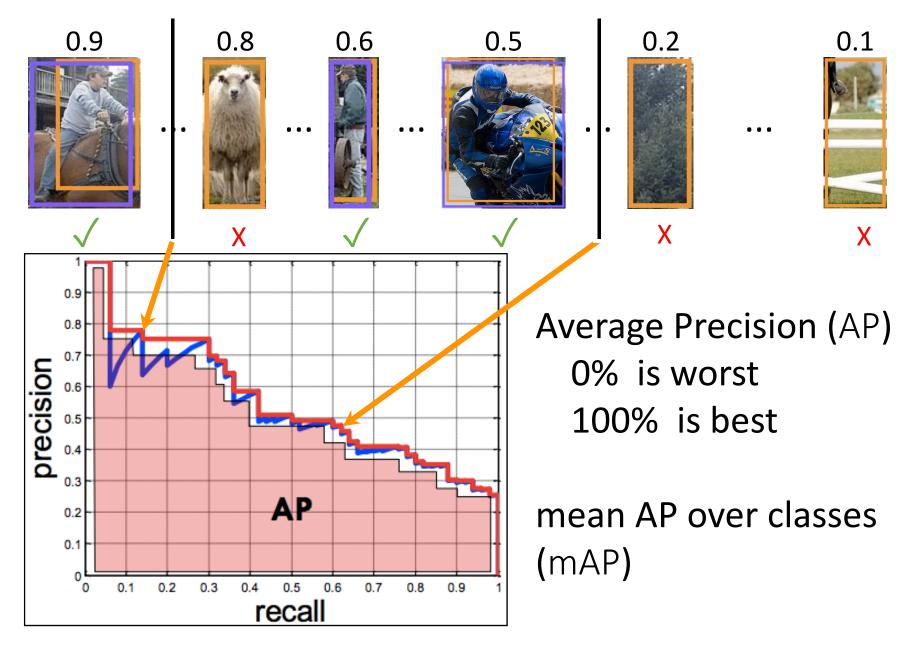
Evaluation metric



$$precision@t = \frac{\#true\ positives@t}{\#true\ positives@t + \#false\ positives@t} \qquad \frac{\checkmark}{\checkmark + \chi}$$

$$recall@t = \frac{\#true\ positives@t}{\#ground\ truth\ objects}$$

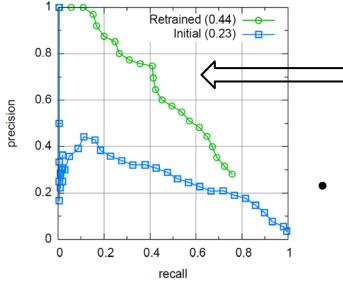
Evaluation metric



Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. HOG + linear SVM classifier
- 4. State of the art algorithms
- 5. PASCAL VOC and MSR Coco

HOG + SVM Object detector



Far from perfect. What can be improved?

- Sliding-window detectors need to classify 100K samples per image \Rightarrow speed matters
- HOG + linear SVM is fast but too simple

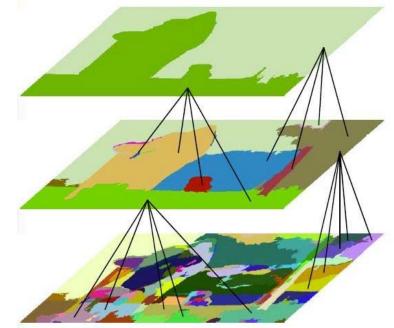
Approach:

1. Reduce the search space $100K \rightarrow \sim 1K$ windows \Rightarrow **Region proposals**

2. Use more complex features and classifiers \Rightarrow **CNN**

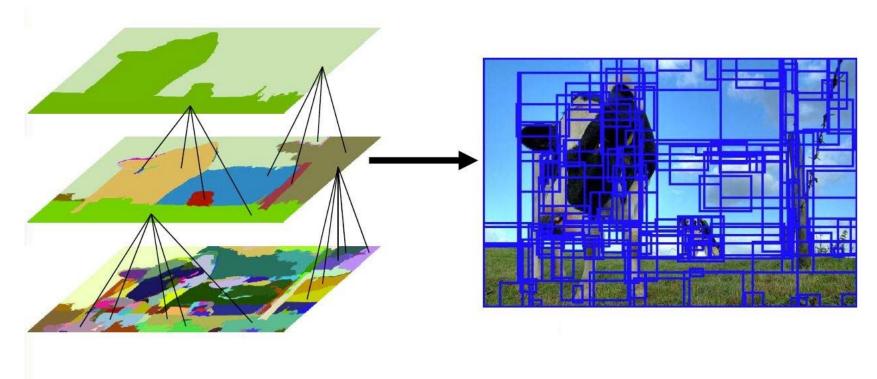
Region proposals: Selective Search

- 1. Merge two most similar regions based on *S*.
- 2. Update similarities between the new region and its neighbors.
- Go back to step 1. until the whole image is a single region.

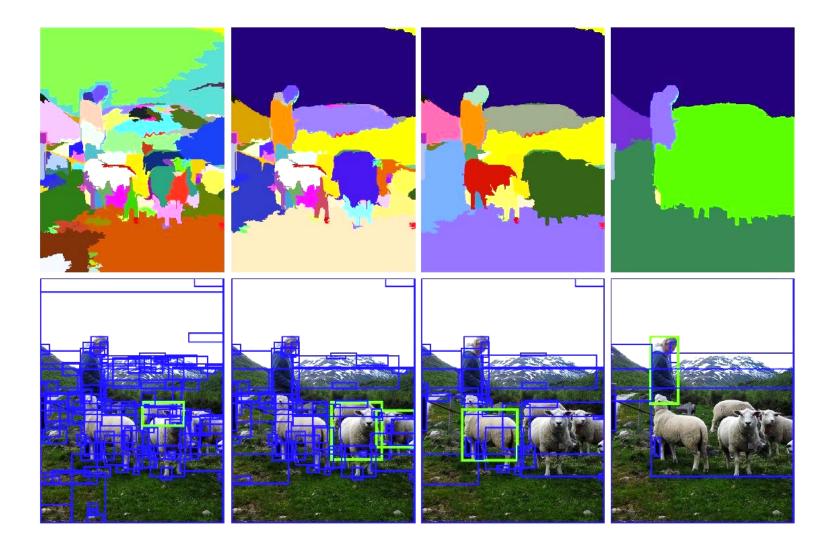


Region proposals: Selective Search

• Take bounding boxes of all generated regions and treat them as possible object locations.

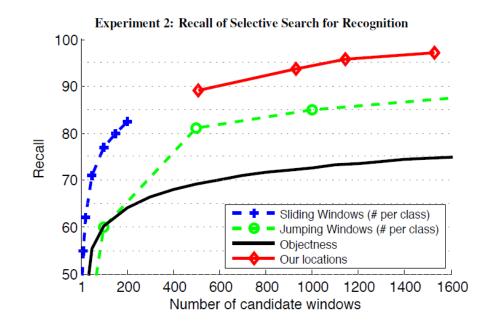


Region proposals: Selective Search



Selective Search: Comparison

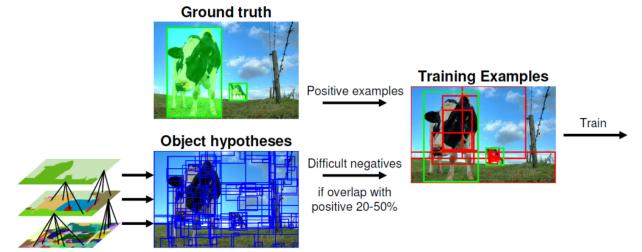
	Max. recall (%)	# windows
Sliding Windows [13]	83.0	200 per class
Jumping Windows [27]	94.0	10,000 per class
'Objectness' [1]	82.4	10,000
Our hypotheses	96.7	1,536



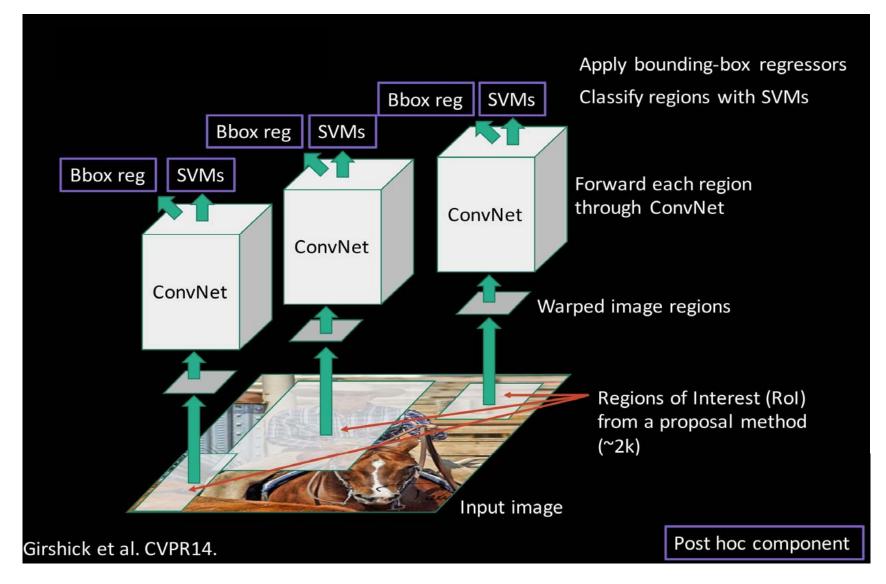
Selective search for object location [v.d.Sande et al. 11]

• Select *class-independent* candidate image windows with segmentation

- Local features + bag-of-words
- SVM classifier with histogram intersection kernel + hard negative mining

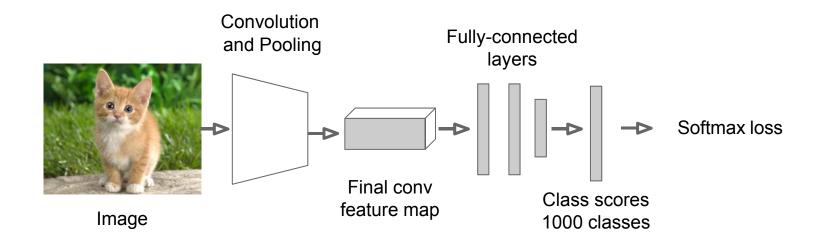


Selective search regions with CNN features: R-CNN



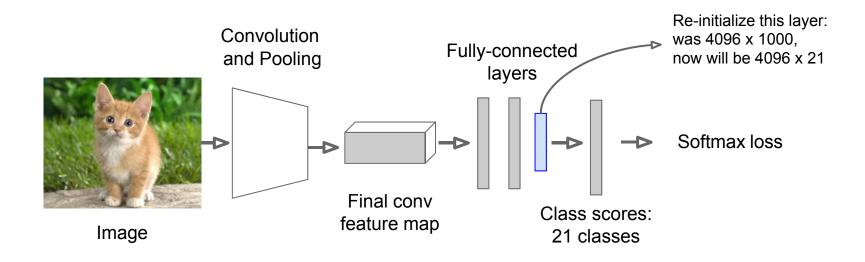
Slide credit: Ross Girschick [Girschick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014]

Step 1: Train (or download) a classification model for ImageNet (AlexNet)



Step 2: Fine-tune model for detection

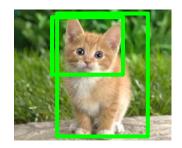
- Instead of 1000 ImageNet classes, want 20 object classes + background
- Throw away final fully-connected layer, reinitialize this layer from scratch
- Keep training model using positive / negative regions from detection images



Step 3: Extract features
-Extract region proposals for all images
-For each region: warp to CNN input size, run forward through CNN, save pool5 features to disk
-Have a big hard drive: features are ~200GB for PASCAL dataset!

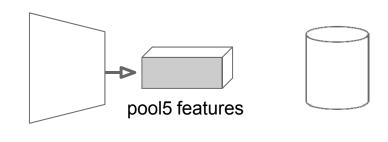
Convolution and Pooling

Image



Region Proposals Cr

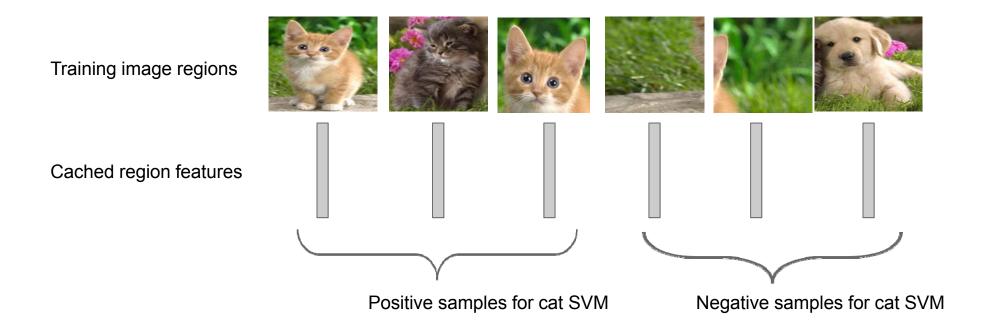
Crop + Warp



Forward pass

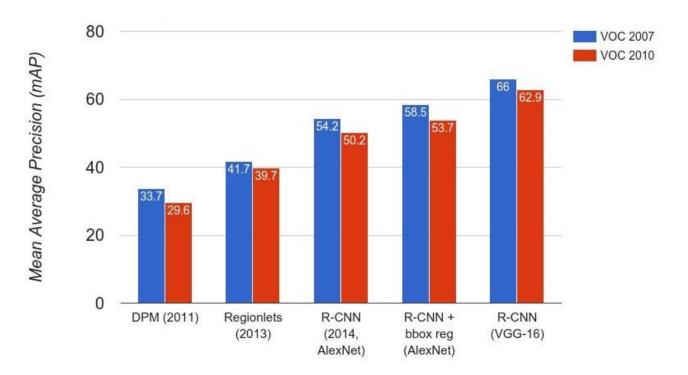
Save to disk

Step 4: Train one binary SVM per class to classify region features

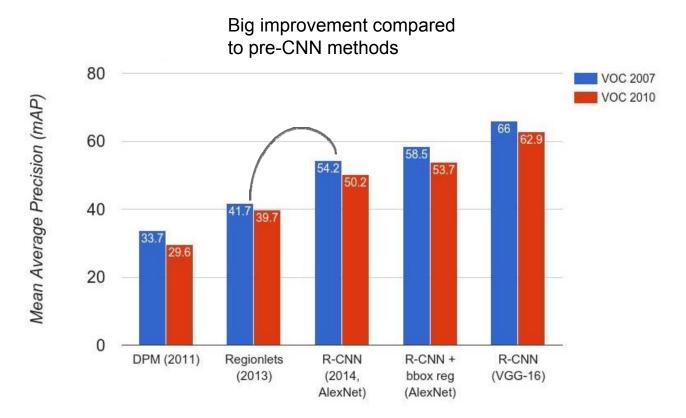


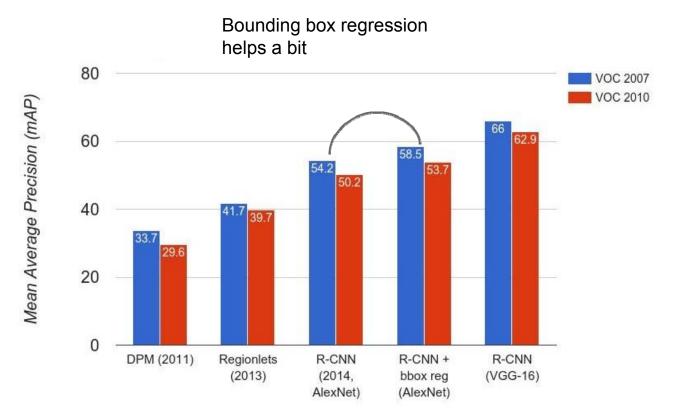
Step 5 (bbox regression): For each class, train a linear regression model to map from cached features to offsets to GT boxes to make up for "slightly wrong" proposals

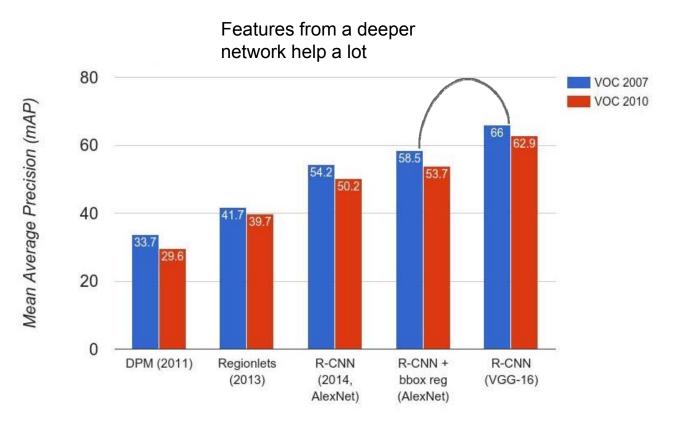
left

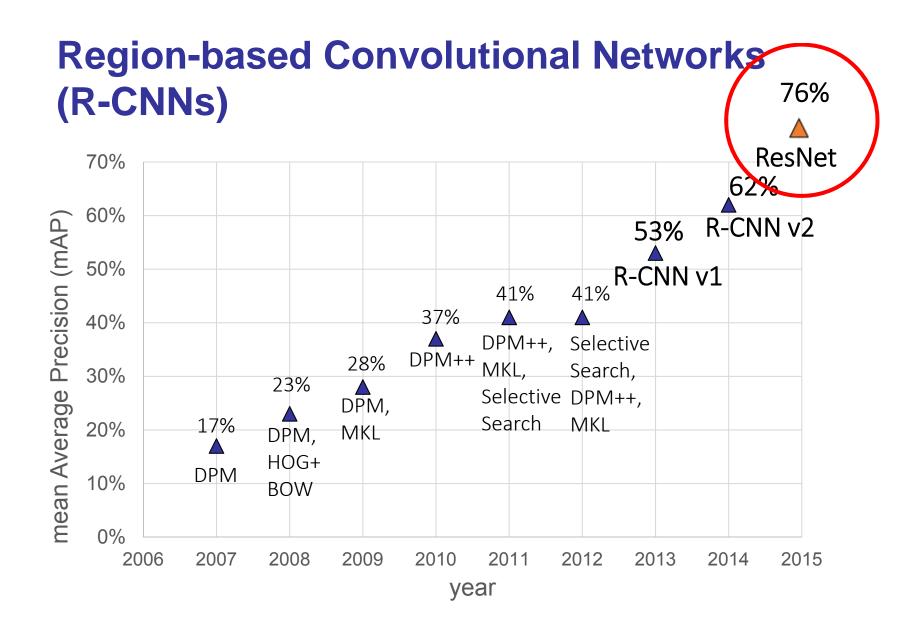


Regionlets for generic object detection, Wang et al., ICCV 2013 Object detection with discriminatively trained part based models, Felzenszwalb et al., PAMI 2011





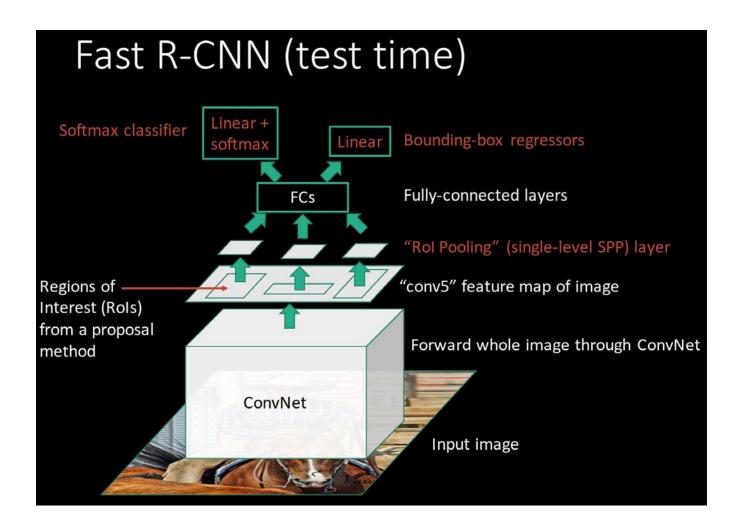




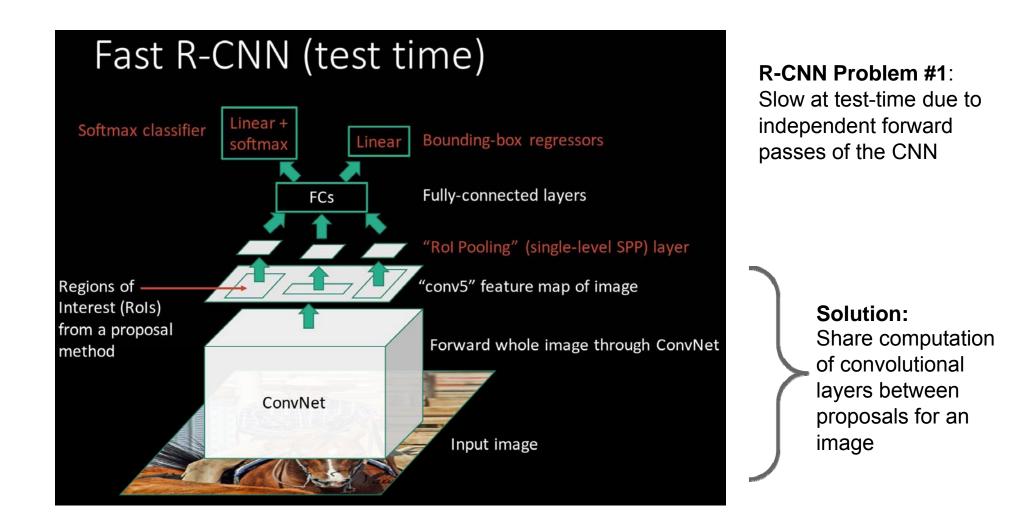
[R-CNN. Girshick et al. CVPR 2014]

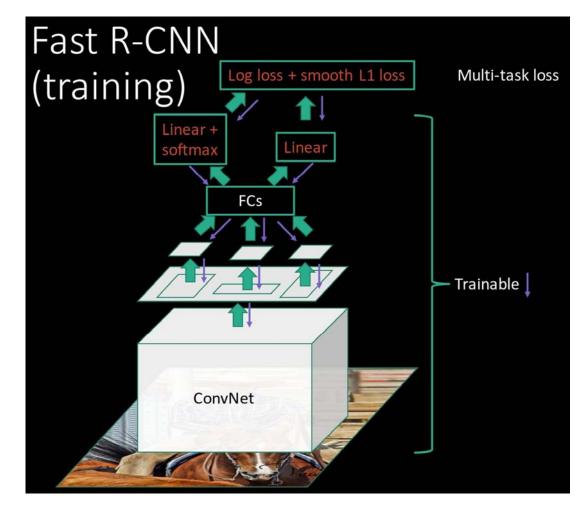
R-CNN Problems

- 1. Slow at test-time: need to run full forward pass of CNN for each region proposal
- 2. SVMs and regressors are post-hoc: CNN features not updated in response to SVMs and regressors
- 3. Complex multistage training pipeline



[Girschick, "Fast R-CNN", ICCV 2015]



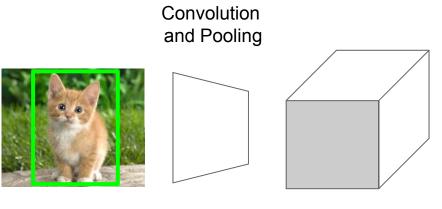


R-CNN Problem #2: Post-hoc training: CNN not updated in response to final classifiers and regressors

R-CNN Problem #3: Complex training pipeline

Solution: Just train the whole system end-to-end all at once!

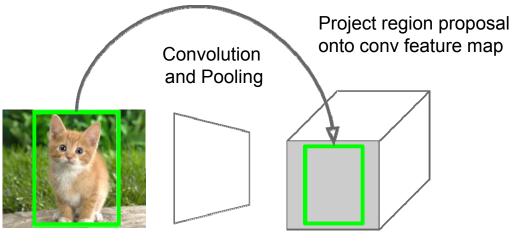
Slide credit: Ross Girschick



Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: C x H x W with region proposal Fully-connected layers

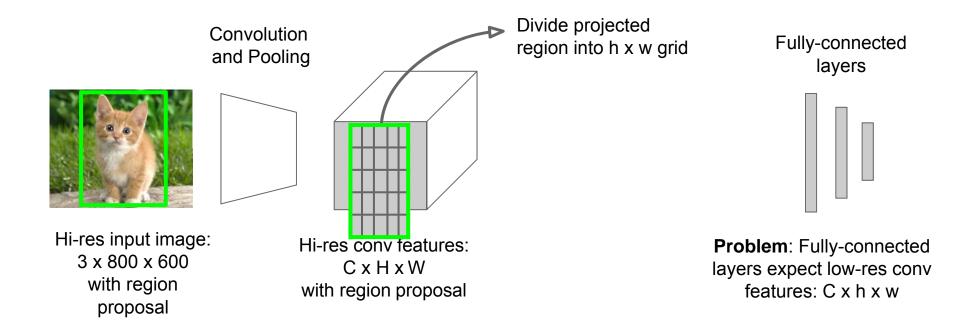
Problem: Fully-connected layers expect low-res conv features: C x h x w

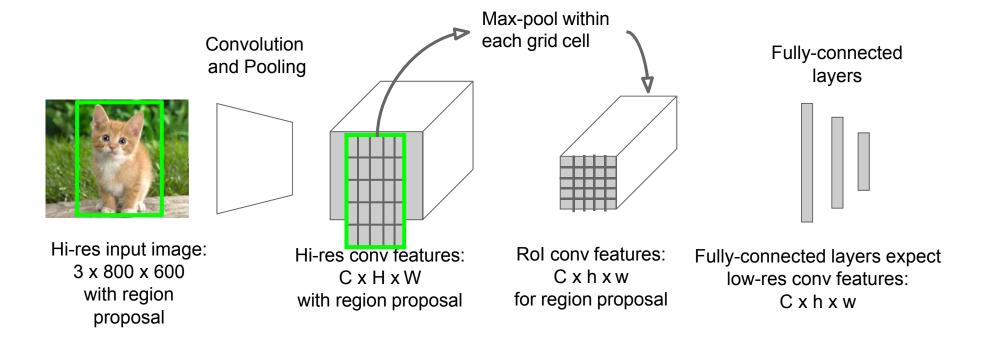


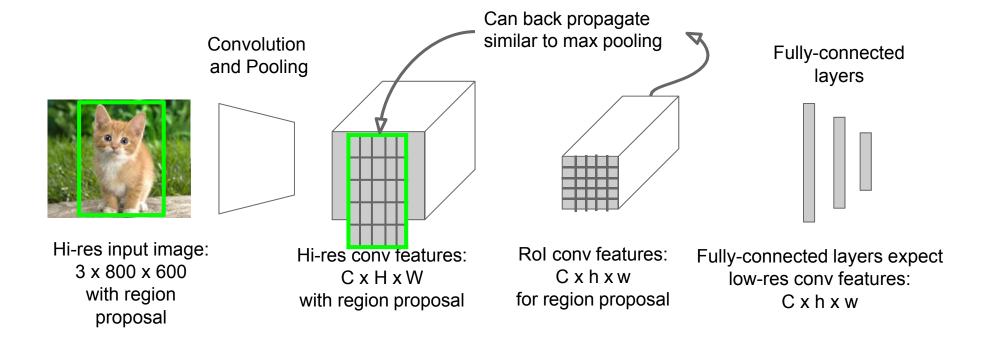
Hi-res input image: 3 x 800 x 600 with region proposal

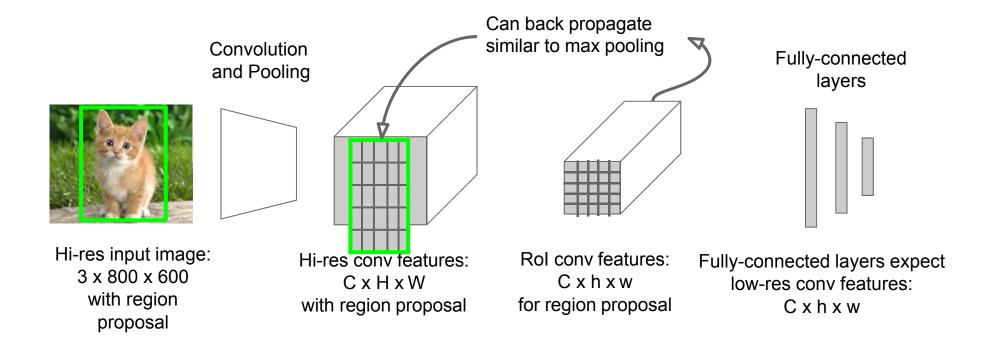
Hi-res conv features: C x H x W with region proposal Fully-connected layers

Problem: Fully-connected layers expect low-res conv features: C x h x w









Multi-task loss: $L(p, u, t^u, v) = L_{cls}(p, u) + \lambda[u \ge 1]L_{loc}(t^u, v)$

Classification:

$$L_{cls}(p, u) = -\log p_u$$

$$L_{loc}(t^u, v) = \sum_{i \in \{x, y, w, h\}} smooth_{L_1}(t^u_i - v_i)$$

$$smooth_{L_1}(x) = \begin{cases} 0.5x^2 & \text{if } |x| < 1\\ |x| - 0.5 & \text{otherwise} \end{cases}$$

Fast R-CNN Results

		R-CNN	Fast R-CNN
Faster!	Training Time:	84 hours	9.5 hours
	(Speedup)	1x	8.8x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Results

		R-CNN	Fast R-CNN
Faster!	Training Time:	84 hours	9.5 hours
	(Speedup)	1x	8.8x
FASTER!	Test time per image	47 seconds	0.32 seconds
	(Speedup)	1x	146x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Results

		R-CNN	Fast R-CNN
Fasterl	Training Time:	84 hours	9.5 hours
	(Speedup)	1x	8.8x
FASTER! (Speedup)	Test time per image	47 seconds	0.32 seconds
	(Speedup)	1x	146x
Better!	mAP (VOC 2007)	66.0	66.9

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Problem:

Test-time speeds don't include region proposals

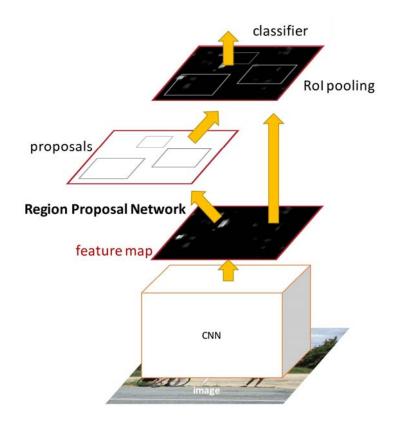
	R-CNN	Fast R-CNN
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
Test time per image with Selective Search	50 seconds	2 seconds
(Speedup)	1x	25x

Fast R-CNN Problem Solution:

Test-time speeds don't include region proposals Just make the CNN do region proposals too!

	R-CNN	Fast R-CNN
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
Test time per image with Selective Search	50 seconds	2 seconds
(Speedup)	1x	25x

Faster R-CNN:



Insert a **Region Proposal Network (RPN)** after the last convolutional layer

RPN trained to produce region proposals directly; no need for external region proposals!

After RPN, use Rol Pooling and an upstream classifier and bbox regressor just like Fast R-CNN

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

Slide credit: Ross Girschick

Student presentation

Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. HOG + linear SVM classifier
- 4. State of the art algorithms
- 5. PASCAL VOC and MSR Coco

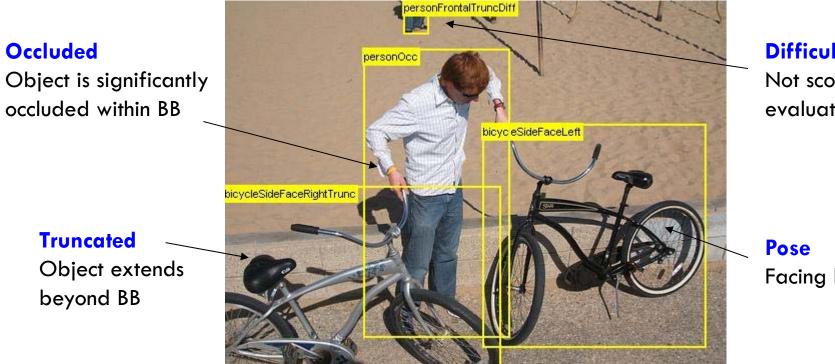
PASCAL VOC dataset - Content

- 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, train, TV
- Real images downloaded from flickr, not filtered for "quality"

• Complex scenes, scale, pose, lighting, occlusion, ...

Annotation

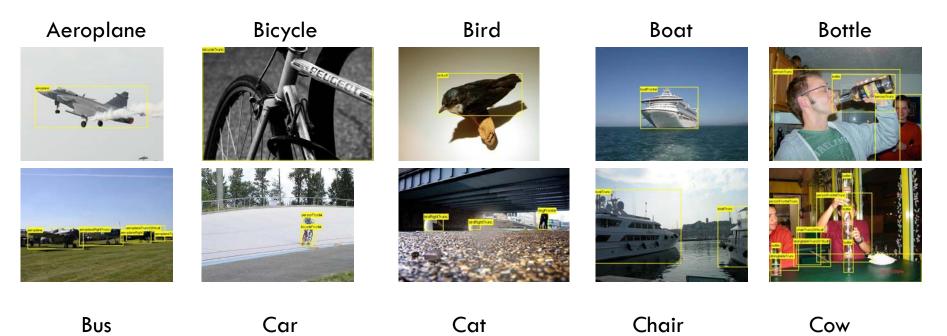
Complete annotation of all objects



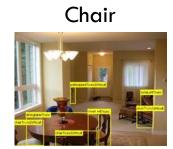
Difficult Not scored in evaluation

Facing left

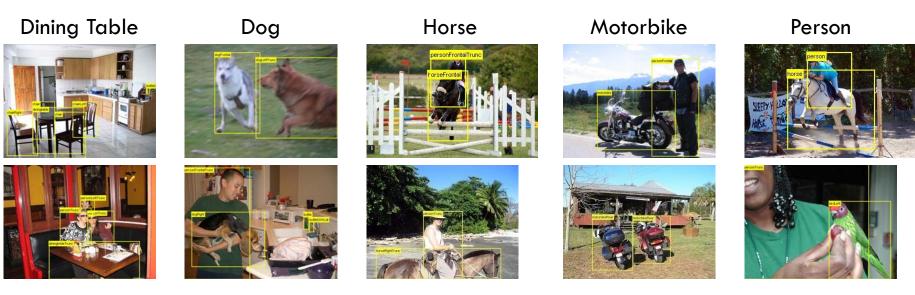
Examples



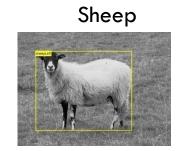
Bus

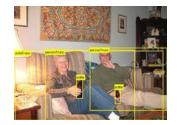


Examples



Potted Plant

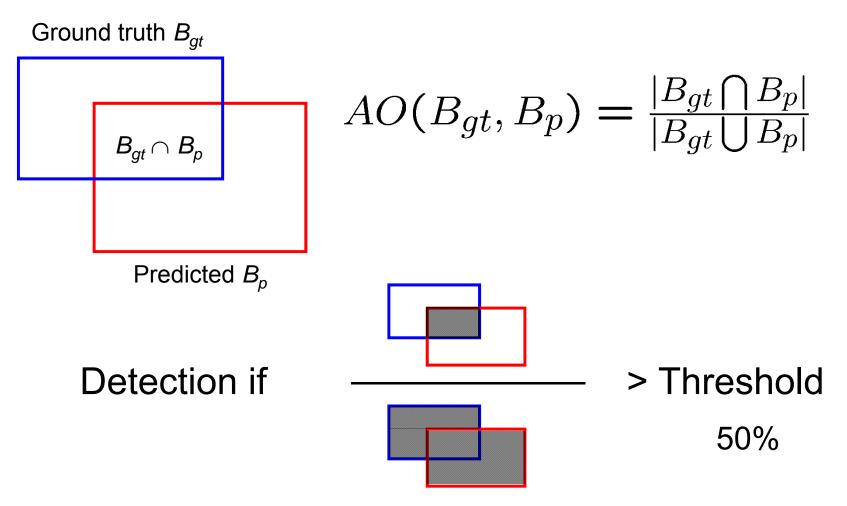




TV/Monitor

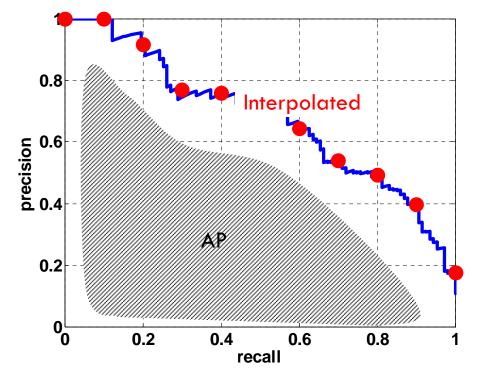
Detection: Evaluation of Bounding Boxes

• Area of Overlap (AO) Measure



Classification/Detection Evaluation

 Average Precision [TREC] averages precision over the entire range of recall



- A good score requires both high recall and high precision
- Application-independent
- Penalizes methods giving high precision but low recall

From Pascal to COCO: Common objects in context dataset

Welcome to the MS COCO Detection Challenge! Winners to be announced at ICCV 2015

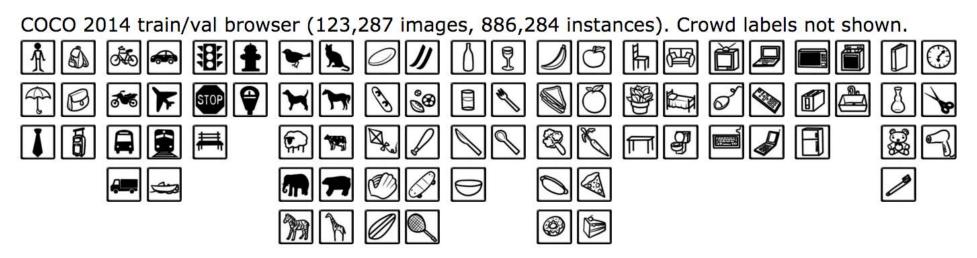
1. Overview

We are pleased to announce the MS COCO 2015 Detection Challenge. This competition is designed to push the state of the art in object detection forward. Teams are encouraged to compete in either (or both) of two object detection challenges: using bounding box output or object segmentation output.

The MS COCO train, validation, and test sets, containing more than 200,000 images and 80 object categories, are available on the download page. All object instance are annotated with a detailed segmentation mask. Annotations on the training and validation sets (with over 500,000 object instances segmented) are publicly available. [Lin et al., 2015] http://mscoco.org/

Dataset statistics

• 80 object classes



- 80k training images
- 40k validation images
- 80k testing images

there is a man walking in the street holding a umbrella

a couple of men walking past a red double decker bus.

a man that is holding a umbrella on the sidewalk.

this is a busy, rainy day in london, its street with people walking, buses and motorbikes. a couple of people that are walking next to a red bus

there is a man walking in the street holding a umbrella a couple of men walking past a red double decker bus. a man that is holding a umbrella on the sidewalk.

this is a busy, rainy day in london, its street with people walking, buses and motorbikes.

a couple of people that are walking next to a red bus

Towards object instance segmentation

Object Detection State-of-the-art: ResNet 101 + Faster R-CNN + some extras

training data	07+12	07++12
test data	VOC 07 test	VOC 12 test
VGG-16	73.2	70.4
ResNet-101	76.4	73.8

AP (%) for Pascal VOC test sets (20 object classes)

metric	mAP@.5	mAP@[.5, .95]
VGG-16	41.5	21.2
ResNet-101	48.4	27.2

AP (%) for COCO validation set (80 object classes)

[He et. al, "Deep Residual Learning for Image Recognition", CVPR 2016] CVPR 2016 Best Paper Award

Summary of object detection

- Basic idea: train a sliding window classifier from training data
- Histogram of oriented gradients (HOG) features + linear SVM
 - Jittering, hard negative mining improve accuracy
- Region proposals using selective search
- R-CNN: combine region proposals and CNN features
- Fast(er) R-CNN: end-to-end training
 - Region proposals and object classification can be trained jointly
 - Deeper networks (ResNet101) improve accuracy