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Motion field

• The motion field is the projection of the 3D scene motion 
into the image



Optical flow

• Definition: optical flow is the apparent motion of 
brightness patterns in the image

• Ideally, optical flow would be the same as the motion 
field

• Have to be careful: apparent motion can be caused by 
lighting changes without any actual motion
– Think of a uniform rotating sphere under fixed lighting 

vs. a stationary sphere under moving illumination



Estimating optical flow

• Given two subsequent frames, estimate the apparent motion 
field u(x,y) and v(x,y) between them

• Key assumptions
• Brightness constancy: projection of the same point looks the 

same in every frame
• Small motion: points do not move very far
• Spatial coherence: points move like their neighbors

I(x,y,t–1) I(x,y,t)



Brightness Constancy Equation:
),()1,,( ),,(),( tyxyx vyuxItyxI 

),(),(),,()1,,( yxvIyxuItyxItyxI yx 

Linearizing the right side using Taylor expansion:

The brightness constancy constraint

I(x,y,t–1) I(x,y,t)

0 tyx IvIuIHence,



The brightness constancy constraint

• How many equations and unknowns per pixel?
– One equation, two unknowns

• What does this constraint mean?

• The component of the flow perpendicular to the gradient 
(i.e., parallel to the edge) is unknown

0 tyx IvIuI

0)','(  vuI

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v) satisfies the equation, 
so does (u+u’, v+v’) if

0),(  tIvuI



The aperture problem

Perceived motion



The aperture problem

Actual motion



Solving the aperture problem
• How to get more equations for a pixel?
• Spatial coherence constraint: pretend the pixel’s 

neighbors have the same (u,v)
– E.g., if we use a 5x5 window, that gives us 25 equations per pixel

B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In International Joint Conference on Artificial Intelligence,1981.
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Lucas-Kanade flow
• Linear least squares problem

The summations are over all pixels in the window

Solution given by
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Lucas-Kanade flow

• Recall the Harris corner detector: M = ATA is 
the second moment matrix

• When is the system solvable?
• By looking at the eigenvalues of the second moment matrix
• The eigenvectors and eigenvalues of M relate to edge 

direction and magnitude 
• The eigenvector associated with the larger eigenvalue points 

in the direction of fastest intensity change, and the other 
eigenvector is orthogonal to it
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Uniform region

– gradients have small magnitude
– small 1, small 2
– system is ill-conditioned



Edge

– gradients have one dominant direction
– large 1, small 2
– system is ill-conditioned



High-texture or corner region

– gradients have different directions, large magnitudes
– large 1, large 2
– system is well-conditioned



Optical Flow Results



Multi-resolution registration



Coarse to fine optical flow estimation



Optical Flow Results



Horn & Schunck algorithm 

Additional smoothness constraint :
• nearby point have similar optical flow
• Addition constraint 

,))()(( 2222 dxdyvvuue yxyxs  

B.K.P. Horn and B.G. Schunck, "Determining optical flow." Artificial Intelligence,1981



Horn & Schunck algorithm 

Additional smoothness constraint : 

,))()(( 2222 dxdyvvuue yxyxs  
besides OF constraint equation term

,)( 2dxdyIvIuIe tyxc  
minimize es+ec λ regularization parameter

B.K.P. Horn and B.G. Schunck, "Determining optical flow." Artificial Intelligence,1981



Horn & Schunck algorithm

Coupled PDEs solved using iterative methods and finite differences



Horn & Schunck

• Works well for small displacements
– For example Middlebury sequence  



Large displacement estimation in optical flow

 Large displacement is still an open problem in optical flow estimation

MPI Sintel dataset



Large displacement optical flow

 Classical optical flow [Horn and Schunck 1981]

► energy:

► minimization using a coarse-to-fine scheme

 Large displacement approaches:
► LDOF [Brox and Malik 2011]

a matching term, penalizing the difference between flow and HOG matches

► MDP-Flow2   [Xu et al. 2012]
expensive fusion of matches (SIFT + PatchMatch) and estimated flow at each level

► DeepFlow [Weinzaepfel et al. 2013]
deep matching + flow refinement with variational approach

color/gradient constancy smoothness constraint



CNN to estimate optical flow: FlowNet

[A. Dosovitskiy et al. ICCV’15] 



Architecture FlowNetSimple



Architecture FlowNetCorrelation



Synthetic dataset for training: Flying chairs

A dataset of approx. 23k image pairs



Experimental results 

S: simple, C: correlation, v: variational refinement, ft:fine-tuning



Experimental results 



FlowNet2.0 [Ilg et al. CVPR’17]



FlyingThings3D [Mayer et al., CVPR’16]



Comparison training data 

Best: pretraining on a  simpler dataset, then fine tuning on a more complex set
FlowNetC better than FlowNetS



Stacking of networks

Importance of warping 



Comparison to the state of the art



Optical flow results on Sintel



Video object segmentation

• Segment the moving object in all the frames of a video

DAVIS (ground-truth)

[Tokmakov et al., CVPR 2017]



• Strong camera or background motion

Challenges

DAVISLDOF flow



Network architecture – MP-Net

Convolutional/deconvolutional network, similar to U-Net 



• FlyingThings3D dataset [Mayer et al., CVPR’16]
• 2700 synthetic, 10-frame stereo videos of random object 

flying in random trajectories (2250/450 training/test split)

• Ground-truth optical flow and camera data available
• Labels for moving object can be obtained from the data

Training data



Results on FlyingThings3D test set



• Flow estimation inaccuracies

• Background motion

Motion estimation in real videos

DAVIS LDOF MP-Net

DAVIS LDOF MP-Net



• Extract 100 object proposals per frame with SharpMask
[Pinheiro et al., ECCV’16] 

• Aggregate to obtain pixel-level objectness scores oi

• Combine with the motion predictions mi

Addition of an objectness measure

DAVIS ObjectnessLDOF MP-Net Result



FlowNet 2.0 Evaluation

Setting LDOF flow FLowNet 2.0 flow
MP-Net 52.4 62.6
MP-Net + Obj 63.3 69.0
MP-Net + Obj + CRF 69.7 72.5

Mean IoU on DAVIS trainval set


