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Deep learning breakthrough in computer vision
I Convolutional nets at ImageNet’12 [Krizhevsky et al., 2012]

I Learning instead of hand-crafting features

I State of the art for visual recognition and matching

Images from [Kokkinos, 2016]
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Keys issues in practice:

(1) Data

I Collection of huge manually labelled datasets, e.g.

I Synthetic datasets “cloned” from real footage

Virtual KITTI dataset [Gaidon et al., 2016]
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Keys issues in practice: (2) Optimization

I Efficient techniques for non-convex optimization
I Back propagation, stochastic gradient descent, initialization

I Powerful compute platforms based on GPUs

Nvidia P100 Nvidia DGX-1
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Keys issues in practice: (3) Network design

I Activations: Rectified linear unit [Nair and Hinton, 2010],
residual units [He et al., 2016]

I Network architecture
I Pooling type, filter size, pool and convolve ordering, etc.

AlexNet architecture [Krizhevsky et al., 2012]
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Architecture design problem

I Important problem: maximize performance given hardware

I Hard problem: exponentially large architecture space
I Pooling type, filter size, pool and convolve ordering, etc.

I Example: 19 Conv × 5 Pool layers = 42,504 architectures
I Training a single architecture takes weeks on a GPU
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Architecture design in practice: One size fits all ?!

I Lack of systematic methods for architecture design
I Lack of guiding theory
I Naive exhaustive search way too expensive
I Local search with parameter “recycling” [Chen et al., 2016]

I Massive reliance on a handful of architectures
I Re-purposing Alex-net, VGG-16/19 nets, residual nets
I Can result in overkill, by lack of other designs
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Routing traffic in a city

I Combinatorially many routes in a city

I Example of how a 2D structure embeds many 1D sequences
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Routing traffic in a city ≈ routing signal in a fabric

I Combinatorially many CNNs in a 2D grid network

I 2D network embeds VGG-19 [Simonyan and Zisserman, 2015]

I One path among 42,504 in fabric with 120 nodes
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Convolutional neural fabrics

I Nodes are like conventional CNN layers

︷ ︸︸ ︷
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Classification and segmentation CNNs embedded in fabrics
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Convolutional neural fabrics

I Edges are 3× 3 convolutions

I Diagonal edges use up/down sampling

Upsample + Conv

Conv

Strided Conv
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Fabric properties

I Embed exponentially many CNNs as paths

I Implicit ensembling of all models, sharing weights on overlap

I Multiple outputs possible: e.g. classification and segmentation
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Fabric structure
I Homeogeneous local connectivity across nodes

I All channels interact between connected nodes
I As in most CNNs, but exceptions exist, e.g. AlexNet

I Minimal “infrastrucutre” to implement CNNs ?
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Fabrics with sparse channel connectivity

I Each node contains a single response map

I Channels organized along a third dimension
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Sparse fabrics: signal propagation

I Activations computed as 3× 3 convolutions of neighboring
scales and channels in previous layer

a(s, c , l + 1) =
+1∑

i=−1

+1∑
j=−1

Conv
(
a(s + i , c + j , l); θijscl

)
(1)

I Units process 3× 3× 3× 3 area, convolution in space only
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Learning instead of hand-crafting architectures

I Signals advance on layer axis: standard back-prop training

I Learning configures the fabric to implement one architecture,
or as an ensemble of embedded architectures
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Convolutional neural fabric is a “universal” architecture
I Large enough fabrics can essentially implement any CNN

[Krizhevsky et al., 2012, Simonyan and Zisserman, 2015,

Noh et al., 2015, Farabet et al., 2013, Ronneberger et al., 2015,

Long et al., 2015]
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Universality: (1) ordering of pooling and convolution

I Different paths across the fabric
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Universality: (2) down-sampling operators

I Fabrics do down-sampling by strided convolution
I Enough to “build-up” average and max pooling

I Average pooling: striding uniform filter along single channel

I Max-pooling: consider computing max(a, b)
I Compute three terms via convolution
{(a + b)/2, (a− b)/2, (b − a)/2}

I Apply ReLU activation: x ← max(0, x)
I At most two non-zero terms remain
I Summing all three terms by convolution gives max(a, b)

a b(a + b)/2

|a − b|/2
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Universality: (3) up-sampling operators

I Fabrics do up-sampling by zero-padding + convolution

I Various interpolations by convolution with specific filters

Bi-linear:
1

4

1 2 1

2 4 2

1 2 1

 Nearest neighbor:

1 1 0

1 1 0

0 0 0


I Fabric embeds these per-channel interpolations

I More general, e.g. cross-channel, interpolation as well
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Universality: (4) Filter sizes

I Fabrics use only 3× 3 convolutions

I Consider computing a 5× 5 convolution over a single channel
I Compute 9 “temporary” channels using 1-hot filters(

1 0 0
0 0 0
0 0 0

)
,
(

0 1 0
0 0 0
0 0 0

)
, . . .

I Stores vectorized version of 3× 3 patch in 9 channels
I Convolution with 3 filter can now access 5× 5 patch
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Universality: (5) Channel connectivity

I Fabrics with sparse channel connectivity suffice to
implement networks with dense channel connectivity

I Demonstration by explicit construction

I Create multiple copies of input channels
I Aggregate input with corresponding filters
I Fiddle with biases to remove negative intermediate results
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Extension: Channel doubling across scales

I Channels are “cheaper” at coarser resolutions
I Grow the number of channels when down-sampling
I Commonly used in densely connected networks
I Computation constant per layer for dense connect

I How about channel doubling in sparse fabrics ?

I As before: total of 9 incoming channels per node
I 4 from coarser, 2 from finer, 3 from same resolution
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Experimental evaluation:

Face Segmentation
Part Labels Year # Params. Accuracy

Tsogkas et al. [Tsogkas et al., 2015] 2015 >414M 96.97%

Kae et al. [Kae et al., 2013] 2013 0.7M 94.95%

Convolutional Neural Fabric (sparse) 0.1M 95.58%

Convolutional Neural Fabric (dense) 8.0M 95.63%

I Competitive with the best hand-crafted architectures

I Without structured prediction model: CRF, RBM, etc.

I Upto 4,000× fewer params. than re-purposed VGG net

I Trained from scratch with 500× fewer images

image prediction image prediction
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Experimental evaluation: digit classification

MNIST # Params. # Error

[Chang and Chen, 2015] 447K 0.24%

[Wan et al., 2013] (Dropconnect) 379K 0.32%

[Goodfellow et al., 2013] (MaxOut) 420K 0.45%

Convolutional Neural Fabric (sparse) 249K 0.48%

Convolutional Neural Fabric (dense) 5.3M 0.33%

I Competitive with the best hand-crafted architectures
I Sparse versus densely connected fabric

I 20× fewer parameters
I Error increased by 0.15%
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Experimental evaluation: MNIST digit classification

I All 33 errors among 10,000 test samples

I Format: Prediction (True)

3 (1) 7 (1) 6 (1) 7 (2) 7 (2) 5 (3) 6 (4) 9 (4) 6 (4) 9 (4) 3 (5)

3 (5) 3 (5) 6 (5) 8 (6) 5 (6) 1 (6) 0 (6) 4 (7) 1 (7) 2 (7) 1 (7)

2 (7) 1(7) 2 (7) 2 (8) 3 (8) 2 (8) 4 (9) 4 (9) 4 (9) 4 (9) 4 (9)
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Activated connections in trained fabric

I Effective multi-path network is recovered by training CIFAR10

I Can be used to prune fabric to fit hardware requirements
I Cutting 67% of connections increases error from 7.4% to 8.1%
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Convolutional Neural Fabrics: Conclusion
I Fabrics are universal architecture for conv nets

I Fabric learns across architectures instead of selecting one

I From hand-crafted to learned

features architectures

I Ongoing and future work
I Scaling from hundreds to thousands of channels
I Long-range connections across channels and layers
I Scale invariance by convolution along scale axis
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Fabric analysis

I Comparing fabric variants: maps, parameters, activations
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