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ConvNets are everywhere for 2D images

Classification Detection

Retrieval Segmentation
[Krizhevsky et al., 2012, Farabet et al., 2013, Ren et al., 2015, Gordo et al., 2016]
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Convolutional Neural Networks (CNNs)

[LeCun et al., 1989]
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How to generalize ConvNets to graph-structured data?

I RGB over regular grid of pixels

I XYZ(+RGB) over irregular graph of vertices
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Applications

3D shape data molecular graphs

knowledge graphs social network analysis
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Problem: Shape correspondence
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Representations for 3D shape data

Bronstein et al. 2016
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Extrinsic vs. Intrinsic representations

Figure from [Boscaini et al., 2016]
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Extrinsic representation: Voxel grids

I Occupancy grids on input and/or output

I Quantize space rather than shape, lots of empty space
I 3D convolutions over grid, limited scalability

I Sparse convolutions over input [Graham et al., 2018]
I Octtrees on input and/or output [Tatarchenko et al., 2017]
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Extrinsic representation: Point clouds

I Avoid quantization, ignore (most) structure
I PointNet [Qi et al., 2017]

I Local per-point processing (1×1 convolution)
I Global max-pooling for global shape properties

I Kd-Networks [Klokov and Lempitsky, 2017]
I Propagate features across Kd-Tree over point cloud
I Share parameters over branches with same split direction

9 / 31



Extrinsic representation: Point clouds

I Avoid quantization, ignore (most) structure
I PointNet [Qi et al., 2017]

I Local per-point processing (1×1 convolution)
I Global max-pooling for global shape properties

I Kd-Networks [Klokov and Lempitsky, 2017]
I Propagate features across Kd-Tree over point cloud
I Share parameters over branches with same split direction

9 / 31



Intrinsic representation: Geodesics over 3D mesh data
I Local geodesic polar coordinates

[Masci et al., 2015, Boscaini et al., 2016]

u(x , y) = (ρ(x , y), θ(x , y))

I Extract patch from mesh by “flattening” and interpolation
I Apply filter to local patch, max-pool over patch orientation
I Trained filters, hand-crafted patch function
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MoNet: Trainable patch function [Monti et al., 2017]

I Trainable Gaussian assignment to bin k of the patch

u(x , y) = (ρ(x , y), θ(x , y)) (1)

wk(u) = exp((u− µk)TΣ−1
k (u− µk)) (2)

I Trained filters, trained patch function,
hand-crafted features for patch function

Polar coordinates ρ, θ
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FeaStNet: Feature-Steered Graph Convolutions

I Generic graph-convolutional network architecture

I No hand-crafted features to design graph-convolution

I Validation: 3D shape correspondence and part labeling

Template Texture transfer on test shapes
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A brief recap of ConvNets
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Reformulation of standard CNNs

yi = b +
M∑

m=1

Wmxj(m,i)
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Graph convolutional approach in FeaStNet
I Varying number of neighbors, no intrinsic ordering
I No one-to-one mapping between neighbors and weights

I Weighted assignment of neighbors to weights

yi = b +
1

|Ni |

M∑
m=1

Wm

∑
j∈Ni

qijmxj

I Using ring-1 neighbors in practice, but can be different
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Feature-Steered assignment function
I Use features of previous layer to map neighbors to filters
I Can use arbitrary subnet, simplest case: 1-layer + softmax

qijm ∝ exp
(
u>mxi + v>m xj + cm

)
(3)

M∑
m=1

qijm = 1 (4)

I Total sum of weights independent of neighborhood size

1

|Ni |

M∑
m=1

∑
j∈Ni

qijm = 1

I Setting um = −vm in makes assignment translation invariant
in feature space

qijm ∝ exp
(
u>m(xj − xi ) + cm

)
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Analysis: nr. parameters and computational cost

I Number of parameters:

I For each weight matrix Wm, add vectors for assignment
function um, vm. Collect in new matrix [Wmumvm].

I Similar to two more output channels: from E to E + 2.

I Computational cost:

I As in CNN: Compute one big matrix-matrix product between
activations in previous layer (vertices × input dims) and weight
matrices (input dims × output dims × nr. of filters). Cost:
O(NMED).

I Aggregate projections of each neighbor on each filter, instead
of a single one: O(NMEK )

I Computational cost increased from O(NMED) to
O(NME (D + K ))
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Recovering standard CNNs

I Graph over the pixels in the image

I Edges: connect every pixel to ones needed by filter,
e.g. eight-connected neighborhood for 3×3 filters

I Number of weight matrices M given by filter size,
e.g. M = 9 for 3×3 filters

I Binary assignments of neighbors to weight matrices,
i.e. qijm ∈ {0, 1}, based on position of i w.r.t. j

I Can be implemented by translation invariant linear-softmax
assignment function
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Experimental evaluation — Shape correspondence

I FAUST human shape dataset
I 100 meshes with 6,890 vertices each
I 10 shapes in 10 different poses: 80 train, 20 test

I Vertex descriptors
I SHOT: Signature of Histograms of Orientations [Tombari et al., 2010]

I XYZ: raw vertex coordinates
I Correspondence as dense labeling problem

I Like semantic segmentation, but with 6,890 classes
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Shape correspondence: Architectures

I Single-scale architecture
I Lin16 + Conv32 + Conv64 + Conv128 + Lin256 + Lin6890

I Multi-scale architecture
I Graph sub-sampling [Dhillon et al., 2007]
I Max pooling, zero-pad up-sampling
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Results single-scale architecture

I Metric: Percentage of correct (exact) correspondences

Trans.-inv. yes no

XYZ 86% 28%

SHOT 63% 58%

I Translation invariance helps, in particular for XYZ coordinates

I Learning from XYZ better than hand-crafted SHOT

I Impact nr. of weight matrices, using XYZ
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M (Number of weight matrices)
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Geodesic errors: SHOT vs. XYZ

I Geodesic distance between predicted and true correspondence

I Single-scale architecture in both cases

XYZ SHOT XYZ SHOT
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Comparison to state of the art

I Metric: Percentage of correct (exact) correspondences

Method Input Accuracy

Logistic Regr., w/o refinement SHOT 39.9%

GCNN [Masci et al., 2015], w/o refinement SHOT 42.3%

PointNet [Qi et al., 2017], w/o refinement SHOT 49.7%

ACNN [Boscaini et al., 2016], w/ refinement SHOT 62.4%

GCNN [Masci et al., 2015], w/ refinement SHOT 65.4%

MoNet [Monti et al., 2017], w/o refinement SHOT 73.8%

MoNet [Monti et al., 2017], w/ refinement SHOT 88.2%

FeaStNet, w/o refinement XYZ 88.1%

FeaStNet, w/ refinement XYZ 92.2%

FeaStNet, multi scale, w/o refinement XYZ 98.6%

FeaStNet, multi scale, w/ refinement XYZ 98.7%

FeaStNet, multi scale, w/o refinement SHOT 90.9%

I New state of the art result, with both XYZ and SHOT

I Relative reduction of 89% in error rate w.r.t. Monti et al.
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Geodesic errors

I Metric: Percentage of correspondences within tolerance

I Dashed curves: without refinement
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I Without refinement: very few, relatively big errors

I With refinement: very few, very small errors
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Shape correspondence: Geodesic errors

Single-scale Multi-scale + refinement
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Shape correspondence: Noise robustness

I Gaussian noise on vertex coordinates,
proportional to average distance to neighbors

I Robust model when training with noisy shapes
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Feature activations

I Left: 4 features on same shape

I Right: same feature on 4 shapes
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ShapeNet Part labeling benchmark
I 16,881 hand-designed shapes from 16 object categories
I Labeled with 50 parts across all categories
I Metric: Mean intersection-over-union (mIoU)

I Nearest neighbor graph on point cloud, using k=16
I Single-scale architecture, with global max-pooling
I Descriptors: XYZ coordinates
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Part labeling: Quantitative results

I Performance similar to methods designed for point-cloud data

overall aero car chair guitar knife lamp laptop motor pistol table

plane bike

Number of shapes 16,881 2690 898 3758 787 392 1547 451 202 283 5271

PointNet [Qi et al., 2017] 83.7 83.4 74.9 89.6 91.5 85.9 80.8 95.3 65.2 81.2 80.6

KdNet [Klokov and Lempitsky, 2017] 82.3 80.1 70.3 88.6 90.2 87.2 81.0 94.9 57.4 78.1 80.3

FeaStNet 81.5 79.3 71.7 87.5 90.0 80.1 78.7 94.7 62.4 78.3 79.6
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Part labeling examples

I Test shapes with accurate labeling,
and one with worst labeling in category.
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Conclusion

I Graph-convolutional architecture based on local filtering

I Learned features drive the graph convolutions

I State-of-the-art 3D shape correspondence from raw XYZ

I Comparable to previous work on point cloud labeling

I Perspectives
I Application to raw/real scanned 3D meshes
I Integrate global correspondence refinement
I Generalize across meshes/templates: local correspondences
I Modeling meshes in motion: (shape + pose) x time
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