Advanced topics in deep generative models

Jakob Verbeek \& Thomas Lucas
INRIA, Grenoble, France

Breaking the Surface 2019
Biograd na Moru, Croatia

Part I

Improving Variational
 Auto-encoders

Improving variational autoencoders

Improving variational autoencoders

- Reminder: VAEs optimize the ELBO, with a KL divergence to bound the data log-likelihood

$$
\begin{equation*}
F(\mathbf{x}, \theta, \phi)=\ln p(\mathbf{x})-D\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z} \mid \mathbf{x})\right) \tag{1}
\end{equation*}
$$

Improving variational autoencoders

- Reminder: VAEs optimize the ELBO, with a KL divergence to bound the data log-likelihood

$$
\begin{equation*}
F(\mathbf{x}, \theta, \phi)=\ln p(\mathbf{x})-D\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z} \mid \mathbf{x})\right) \tag{1}
\end{equation*}
$$

- Generally true posterior is not Gaussian: loose bound

Improving variational autoencoders

- Reminder: VAEs optimize the ELBO, with a KL divergence to bound the data log-likelihood

$$
\begin{equation*}
F(\mathbf{x}, \theta, \phi)=\ln p(\mathbf{x})-D\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z} \mid \mathbf{x})\right) \tag{1}
\end{equation*}
$$

- Generally true posterior is not Gaussian: loose bound
- Encourages true posterior to match variational factored Gaussian produced by recognition net

Improving variational autoencoders

- Reminder: VAEs optimize the ELBO, with a KL divergence to bound the data log-likelihood

$$
\begin{equation*}
F(\mathbf{x}, \theta, \phi)=\ln p(\mathbf{x})-D\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z} \mid \mathbf{x})\right) \tag{1}
\end{equation*}
$$

- Generally true posterior is not Gaussian: loose bound
- Encourages true posterior to match variational factored Gaussian produced by recognition net
- Making progress

Improving variational autoencoders

- Reminder: VAEs optimize the ELBO, with a KL divergence to bound the data log-likelihood

$$
\begin{equation*}
F(\mathbf{x}, \theta, \phi)=\ln p(\mathbf{x})-D\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z} \mid \mathbf{x})\right) \tag{1}
\end{equation*}
$$

- Generally true posterior is not Gaussian: loose bound
- Encourages true posterior to match variational factored Gaussian produced by recognition net
- Making progress

1. More accurate bound for given posterior

Improving variational autoencoders

- Reminder: VAEs optimize the ELBO, with a KL divergence to bound the data log-likelihood

$$
\begin{equation*}
F(\mathbf{x}, \theta, \phi)=\ln p(\mathbf{x})-D\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z} \mid \mathbf{x})\right) \tag{1}
\end{equation*}
$$

- Generally true posterior is not Gaussian: loose bound
- Encourages true posterior to match variational factored Gaussian produced by recognition net
- Making progress

1. More accurate bound for given posterior
2. Enlarge the family of variational posteriors

- Hierarchical latent variables
- Improved flexibility with flows

Importance weighted autoencoders [Burda et al., 2016]

- Construct tighter lower bound using importance sampling

Importance weighted autoencoders [Burda et al., 2016]

- Construct tighter lower bound using importance sampling
- Define importance weights $w(\mathbf{x}, \mathbf{z})=p(\mathbf{x}, \mathbf{z}) / q_{\phi}(\mathbf{z} \mid \mathbf{x})$

Importance weighted autoencoders [Burda et al., 2016]

- Construct tighter lower bound using importance sampling
- Define importance weights $w(\mathbf{x}, \mathbf{z})=p(\mathbf{x}, \mathbf{z}) / q_{\phi}(\mathbf{z} \mid \mathbf{x})$

$$
F_{k}(\mathbf{x}, \theta, \phi)=\mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\ln \frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right]
$$

Importance weighted autoencoders [Burda et al., 2016]

- Construct tighter lower bound using importance sampling
- Define importance weights $w(\mathbf{x}, \mathbf{z})=p(\mathbf{x}, \mathbf{z}) / q_{\phi}(\mathbf{z} \mid \mathbf{x})$

$$
\begin{aligned}
F_{k}(\mathbf{x}, \theta, \phi) & =\mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\ln \frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right] \\
& \leq \ln \mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right]
\end{aligned}
$$

Importance weighted autoencoders [Burda et al., 2016]

- Construct tighter lower bound using importance sampling
- Define importance weights $w(\mathbf{x}, \mathbf{z})=p(\mathbf{x}, \mathbf{z}) / q_{\phi}(\mathbf{z} \mid \mathbf{x})$

$$
\begin{aligned}
F_{k}(\mathbf{x}, \theta, \phi) & =\mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\ln \frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right] \\
& \leq \ln \mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right] \\
& =\ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}[w(\mathbf{x}, \mathbf{z})]
\end{aligned}
$$

Importance weighted autoencoders [Burda et al., 2016]

- Construct tighter lower bound using importance sampling
- Define importance weights $w(\mathbf{x}, \mathbf{z})=p(\mathbf{x}, \mathbf{z}) / q_{\phi}(\mathbf{z} \mid \mathbf{x})$

$$
\begin{aligned}
F_{k}(\mathbf{x}, \theta, \phi) & =\mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\ln \frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right] \\
& \leq \ln \mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right] \\
& =\ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}[w(\mathbf{x}, \mathbf{z})] \\
& =\ln p(\mathbf{x})
\end{aligned}
$$

Importance weighted autoencoders [Burda et al., 2016]

- Construct tighter lower bound using importance sampling
- Define importance weights $w(\mathbf{x}, \mathbf{z})=p(\mathbf{x}, \mathbf{z}) / q_{\phi}(\mathbf{z} \mid \mathbf{x})$

$$
\begin{aligned}
F_{k}(\mathbf{x}, \theta, \phi) & =\mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\ln \frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right] \\
& \leq \ln \mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right] \\
& =\ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}[w(\mathbf{x}, \mathbf{z})] \\
& =\ln p(\mathbf{x})
\end{aligned}
$$

1. VAE lower bound recovered for $k=1$

Importance weighted autoencoders [Burda et al., 2016]

- Construct tighter lower bound using importance sampling
- Define importance weights $w(\mathbf{x}, \mathbf{z})=p(\mathbf{x}, \mathbf{z}) / q_{\phi}(\mathbf{z} \mid \mathbf{x})$

$$
\begin{aligned}
F_{k}(\mathbf{x}, \theta, \phi) & =\mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\ln \frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right] \\
& \leq \ln \mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right] \\
& =\ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}[w(\mathbf{x}, \mathbf{z})] \\
& =\ln p(\mathbf{x})
\end{aligned}
$$

1. VAE lower bound recovered for $k=1$
2. More samples tighten the bound: $F_{k} \leq F_{k+1} \leq \ln p(\mathrm{x})$

Importance weighted autoencoders [Burda et al., 2016]

- Construct tighter lower bound using importance sampling
- Define importance weights $w(\mathbf{x}, \mathbf{z})=p(\mathbf{x}, \mathbf{z}) / q_{\phi}(\mathbf{z} \mid \mathbf{x})$

$$
\begin{aligned}
F_{k}(\mathbf{x}, \theta, \phi) & =\mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\ln \frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right] \\
& \leq \ln \mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right] \\
& =\ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}[w(\mathbf{x}, \mathbf{z})] \\
& =\ln p(\mathbf{x})
\end{aligned}
$$

1. VAE lower bound recovered for $k=1$
2. More samples tighten the bound: $F_{k} \leq F_{k+1} \leq \ln p(\mathbf{x})$
3. If the weights are bounded, then $F_{k} \rightarrow \ln p(x)$ as $k \rightarrow \infty$

Importance weighted autoencoders [Burda et al., 2016]

- Construct tighter lower bound using importance sampling
- Define importance weights $w(\mathbf{x}, \mathbf{z})=p(\mathbf{x}, \mathbf{z}) / q_{\phi}(\mathbf{z} \mid \mathbf{x})$

$$
\begin{aligned}
F_{k}(\mathbf{x}, \theta, \phi) & =\mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\ln \frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right] \\
& \leq \ln \mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right] \\
& =\ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}[w(\mathbf{x}, \mathbf{z})] \\
& =\ln p(\mathbf{x})
\end{aligned}
$$

1. VAE lower bound recovered for $k=1$
2. More samples tighten the bound: $F_{k} \leq F_{k+1} \leq \ln p(\mathbf{x})$
3. If the weights are bounded, then $F_{k} \rightarrow \ln p(x)$ as $k \rightarrow \infty$

- Use as objective to train models,e.g. using $k \approx 10$

Importance weighted autoencoders [Burda et al., 2016]

- Construct tighter lower bound using importance sampling
- Define importance weights $w(\mathbf{x}, \mathbf{z})=p(\mathbf{x}, \mathbf{z}) / q_{\phi}(\mathbf{z} \mid \mathbf{x})$

$$
\begin{aligned}
F_{k}(\mathbf{x}, \theta, \phi) & =\mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\ln \frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right] \\
& \leq \ln \mathbb{E}_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\frac{1}{k} \sum_{i=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{i}\right)\right] \\
& =\ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}[w(\mathbf{x}, \mathbf{z})] \\
& =\ln p(\mathbf{x})
\end{aligned}
$$

1. VAE lower bound recovered for $k=1$
2. More samples tighten the bound: $F_{k} \leq F_{k+1} \leq \ln p(\mathbf{x})$
3. If the weights are bounded, then $F_{k} \rightarrow \ln p(x)$ as $k \rightarrow \infty$

- Use as objective to train models,e.g. using $k \approx 10$
- Use as likelihood estimator, e.g. with $k \approx 10^{3}$

Training procedure importance weighted autoencoders

- Gradients of importance weighted lower bound

$$
\nabla F_{k}(\mathbf{x})=\mathbb{E}_{\mathbf{z}_{1: k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\sum_{i=1}^{k} \widetilde{w}_{i} \nabla\left(\ln p\left(\mathbf{x}, \mathbf{z}_{i}\right)-\ln q_{\phi}\left(\mathbf{z}_{i} \mid \mathbf{x}\right)\right)\right]
$$

Training procedure importance weighted autoencoders

- Gradients of importance weighted lower bound

$$
\nabla F_{k}(\mathbf{x})=\mathbb{E}_{\mathbf{z}_{1: k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\sum_{i=1}^{k} \widetilde{w}_{i} \nabla\left(\ln p\left(\mathbf{x}, \mathbf{z}_{i}\right)-\ln q_{\phi}\left(\mathbf{z}_{i} \mid \mathbf{x}\right)\right)\right]
$$

- Similar to VAE, but samples weighted w.r.t. true posterior

$$
\begin{equation*}
\widetilde{w}_{i}=p\left(\mathbf{z}_{i} \mid \mathbf{x}\right) / q_{\phi}\left(\mathbf{z}_{i} \mid \mathbf{x}\right) \sum_{j=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{j}\right) \tag{2}
\end{equation*}
$$

Training procedure importance weighted autoencoders

- Gradients of importance weighted lower bound

$$
\nabla F_{k}(\mathbf{x})=\mathbb{E}_{\mathbf{z}_{1: k} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\sum_{i=1}^{k} \widetilde{w}_{i} \nabla\left(\ln p\left(\mathbf{x}, \mathbf{z}_{i}\right)-\ln q_{\phi}\left(\mathbf{z}_{i} \mid \mathbf{x}\right)\right)\right]
$$

- Similar to VAE, but samples weighted w.r.t. true posterior

$$
\begin{equation*}
\widetilde{w}_{i}=p\left(\mathbf{z}_{i} \mid \mathbf{x}\right) / q_{\phi}\left(\mathbf{z}_{i} \mid \mathbf{x}\right) \sum_{j=1}^{k} w\left(\mathbf{x}, \mathbf{z}_{j}\right) \tag{2}
\end{equation*}
$$

- Allows for more accurate models with complex posteriors

From [Burda et al., 2016]: True posterior $p(\mathbf{z} \mid \mathbf{x})$ VAE (left) and IW-VAE (right)

Top-down hierarchical sampling

- Multiple levels of latent variables at increasing resolutions

Top-down hierarchical sampling

- Multiple levels of latent variables at increasing resolutions
- Autoregressive distribution $p\left(z_{1} \mid z_{2}\right)$ over latent variables in 2D grid

Top-down hierarchical sampling

- Multiple levels of latent variables at increasing resolutions
- Autoregressive distribution $p\left(z_{1} \mid z_{2}\right)$ over latent variables in 2D grid
- Sample latent variables in same order when encoding or sampling

Top-down hierarchical sampling

- Multiple levels of latent variables at increasing resolutions
- Autoregressive distribution $p\left(z_{1} \mid z_{2}\right)$ over latent variables in 2D grid
- Sample latent variables in same order when encoding or sampling
- Posterior no longer Gaussian
- $q\left(\mathbf{z}_{1}, \mathbf{z}_{2} \mid \mathbf{x}\right)=q\left(\mathbf{z}_{1} \mid \mathbf{x}, \mathbf{z}_{2}\right) q\left(\mathbf{z}_{2} \mid \mathbf{x}\right)$

Top-down hierarchical sampling

- Multiple levels of latent variables at increasing resolutions
- Autoregressive distribution $p\left(z_{1} \mid z_{2}\right)$ over latent variables in 2D grid
- Sample latent variables in same order when encoding or sampling
- Posterior no longer Gaussian

- $q\left(\mathbf{z}_{1}, \mathbf{z}_{2} \mid \mathbf{x}\right)=q\left(\mathbf{z}_{1} \mid \mathbf{x}, \mathbf{z}_{2}\right) q\left(\mathbf{z}_{2} \mid \mathbf{x}\right)$
- Extended VAE log-likelihood bound

$$
\begin{aligned}
F & =\ln p(\mathbf{x})-D_{K L}\left(q\left(\mathbf{z}_{1: L} \mid \mathbf{x}\right) \| p\left(\mathbf{z}_{1: L} \mid \mathbf{x}\right)\right. \\
& =\underbrace{\mathbb{E}_{q\left(\mathbf{z}_{1} \mid \mathbf{x}\right.}\left[\ln p\left(\mathbf{x} \mid \mathbf{z}_{1}\right)\right]}_{\text {Reconstruction }}-\underbrace{\sum_{i=1}^{L} \mathbb{E}_{q\left(\mathbf{z}_{i+1}\right)}\left[D_{K L}\left(q\left(\mathbf{z}_{i} \mid \mathbf{x}\right) \| p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i+1}\right)\right]\right)}_{\text {Regularization }}
\end{aligned}
$$

Variational inference with normalizing flows

- Variational inference (in VAE) uses limited class of posteriors
- For example, Gaussian with diagonal covariance
- Optimizing loose bound on data log-likelihood

Variational inference with normalizing flows

- Variational inference (in VAE) uses limited class of posteriors
- For example, Gaussian with diagonal covariance
- Optimizing loose bound on data log-likelihood
- Improve posterior approximation with invertible flow

Variational inference with normalizing flows

- Variational inference (in VAE) uses limited class of posteriors
- For example, Gaussian with diagonal covariance
- Optimizing loose bound on data log-likelihood
- Improve posterior approximation with invertible flow

Figure from [Rezende and Mohamed, 2015]

Normalizing flows

- Let density "flow" through set of invertible transformations

$$
\begin{aligned}
\mathbf{z}_{K} & =f_{K} \circ \cdots \circ f_{2} \circ f_{1}\left(\mathbf{z}_{0}\right) \\
\ln q_{K}\left(\mathbf{z}_{K}\right) & =\ln q_{0}\left(\mathbf{z}_{0}\right)-\sum_{k=1}^{K} \ln \left|\operatorname{det} \frac{\partial f_{k}}{\partial \mathbf{z}_{k}}\right|
\end{aligned}
$$

Normalizing flows

- Let density "flow" through set of invertible transformations

$$
\begin{aligned}
\mathbf{z}_{K} & =f_{K} \circ \cdots \circ f_{2} \circ f_{1}\left(\mathbf{z}_{0}\right) \\
\ln q_{K}\left(\mathbf{z}_{K}\right) & =\ln q_{0}\left(\mathbf{z}_{0}\right)-\sum_{k=1}^{K} \ln \left|\operatorname{det} \frac{\partial f_{k}}{\partial \mathbf{z}_{k}}\right|
\end{aligned}
$$

- $O(D)$ determinant, rather than $O\left(D^{3}\right)$, for planar and radial flows

$$
\begin{aligned}
& f(\mathbf{z})=\mathbf{z}+\mathbf{u} h\left(\mathbf{w}^{\top} \mathbf{z}+b\right) \\
& f(\mathbf{z})=\mathbf{z}+\beta h(\alpha, r)\left(\mathbf{z}-\mathbf{z}_{\mathbf{0}}\right)
\end{aligned}
$$

Normalizing flows

- Let density "flow" through set of invertible transformations

$$
\begin{aligned}
\mathbf{z}_{K} & =f_{K} \circ \cdots \circ f_{2} \circ f_{1}\left(\mathbf{z}_{0}\right) \\
\ln q_{K}\left(\mathbf{z}_{K}\right) & =\ln q_{0}\left(\mathbf{z}_{0}\right)-\sum_{k=1}^{K} \ln \left|\operatorname{det} \frac{\partial f_{k}}{\partial \mathbf{z}_{k}}\right|
\end{aligned}
$$

- $O(D)$ determinant, rather than $O\left(D^{3}\right)$, for planar and radial flows

$$
\begin{aligned}
& f(\mathbf{z})=\mathbf{z}+\mathbf{u} h\left(\mathbf{w}^{\top} \mathbf{z}+b\right) \\
& f(\mathbf{z})=\mathbf{z}+\beta h(\alpha, r)\left(\mathbf{z}-\mathbf{z}_{\mathbf{0}}\right)
\end{aligned}
$$

Figure from [Rezende and Mohamed, 2015]

Autoregressive flow [Kingma et al., 2016]

- Restictive flows in [Rezende and Mohamed, 2015]
- Planar flow similar to MLP with single hidden unit
- Use autoregressive transformations in flow
- Rich and tractable class of transformations
- Fewer transformations needed

Autoregressive flow [Kingma et al., 2016]

- Class of affine transformations with respect to \mathbf{z}

$$
\mathbf{z}^{t+1}=\mu^{t}+\sigma^{t} \odot \mathbf{z}^{t}
$$

Autoregressive flow [Kingma et al., 2016]

- Class of affine transformations with respect to \mathbf{z}

$$
\mathbf{z}^{t+1}=\mu^{t}+\sigma^{t} \odot \mathbf{z}^{t}
$$

- Autoregressive computation of affine parameters

$$
\mu_{i+1}^{t}=f\left(\mathbf{z}_{1: i}^{t}\right) \quad \sigma_{i+1}^{t}=g\left(\mathbf{z}_{1: i}^{t}\right)
$$

Autoregressive flow [Kingma et al., 2016]

- Class of affine transformations with respect to \mathbf{z}

$$
\mathbf{z}^{t+1}=\mu^{t}+\sigma^{t} \odot \mathbf{z}^{t}
$$

- Autoregressive computation of affine parameters

$$
\mu_{i+1}^{t}=f\left(\mathbf{z}_{1: i}^{t}\right) \quad \sigma_{i+1}^{t}=g\left(\mathbf{z}_{1: i}^{t}\right)
$$

Autoregressive flow [Kingma et al., 2016]

- Class of affine transformations with respect to \mathbf{z}

$$
\mathbf{z}^{t+1}=\mu^{t}+\sigma^{t} \odot \mathbf{z}^{t}
$$

- Autoregressive computation of affine parameters

$$
\mu_{i+1}^{t}=f\left(\mathbf{z}_{1: i}^{t}\right) \quad \sigma_{i+1}^{t}=g\left(\mathbf{z}_{1: i}^{t}\right)
$$

- Triangular Jacobian, log-determinant $\sum_{i=1}^{D} \log \sigma_{i}^{t}$

Autoregressive flow [Kingma et al., 2016]

- Class of affine transformations with respect to \mathbf{z}

$$
\mathbf{z}^{t+1}=\mu^{t}+\sigma^{t} \odot \mathbf{z}^{t}
$$

- Autoregressive computation of affine parameters

$$
\mu_{i+1}^{t}=f\left(\mathbf{z}_{1: i}^{t}\right) \quad \sigma_{i+1}^{t}=g\left(\mathbf{z}_{1: i}^{t}\right)
$$

- Triangular Jacobian, log-determinant $\sum_{i=1}^{D} \log \sigma_{i}^{t}$
- Free to chose form of autoregressive NN dependency

Improved VAE - Recap

Ways to improve the tightness of the ELBO:

- Importance weighted autoencoder
- Hierarchical top-down sampling
- Density flow transformation

Beyond conditional independence assumption in VAE

- Standard VAE decoders assumes conditional independence

$$
\begin{align*}
p(\mathbf{x} \mid \mathbf{z}) & =\prod_{i=1}^{D} p\left(x_{i} \mid \mathbf{z}\right) \tag{3}\\
p\left(x_{i} \mid \mathbf{z}\right) & =\mathcal{N}\left(x_{i} ; f_{\theta}^{\mu}(\mathbf{z})_{i}, f_{\theta}^{\sigma}(\mathbf{z})_{i}\right) \tag{4}
\end{align*}
$$

Beyond conditional independence assumption in VAE

- Standard VAE decoders assumes conditional independence

$$
\begin{align*}
p(\mathbf{x} \mid \mathbf{z}) & =\prod_{i=1}^{D} p\left(x_{i} \mid \mathbf{z}\right) \tag{3}\\
p\left(x_{i} \mid \mathbf{z}\right) & =\mathcal{N}\left(x_{i} ; f_{\theta}^{\mu}(\mathbf{z})_{i}, f_{\theta}^{\sigma}(\mathbf{z})_{i}\right) \tag{4}
\end{align*}
$$

- Conditional log-likelihood is ℓ_{2} reconstruction term

Beyond conditional independence assumption in VAE

- Standard VAE decoders assumes conditional independence

$$
\begin{align*}
p(\mathbf{x} \mid \mathbf{z}) & =\prod_{i=1}^{D} p\left(x_{i} \mid \mathbf{z}\right) \tag{3}\\
p\left(x_{i} \mid \mathbf{z}\right) & =\mathcal{N}\left(x_{i} ; f_{\theta}^{\mu}(\mathbf{z})_{i}, f_{\theta}^{\sigma}(\mathbf{z})_{i}\right) \tag{4}
\end{align*}
$$

- Conditional log-likelihood is ℓ_{2} reconstruction term
- Bad metric of image similarity

Beyond conditional independence assumption in VAE

- Standard VAE decoders assumes conditional independence

$$
\begin{align*}
p(\mathbf{x} \mid \mathbf{z}) & =\prod_{i=1}^{D} p\left(x_{i} \mid \mathbf{z}\right) \tag{3}\\
p\left(x_{i} \mid \mathbf{z}\right) & =\mathcal{N}\left(x_{i} ; f_{\theta}^{\mu}(\mathbf{z})_{i}, f_{\theta}^{\sigma}(\mathbf{z})_{i}\right) \tag{4}
\end{align*}
$$

- Conditional log-likelihood is ℓ_{2} reconstruction term
- Bad metric of image similarity
- Leads to blurry images, and over-generalization
- Variational autoencoder
- Latent variable z generates global dependencies
- Pixels conditionally independent given code

Hybrid PixelCNN-VAE model [Gulrajani et al., 2017b, Chen et al., 2017]

- Variational autoencoder
- Latent variable z generates global dependencies
- Pixels conditionally independent given code

Vertical stack

- Autoregressive PixeICNN
- Needs many layers to induce long-range dependencies

- Doesn't learn latent representation

Hybrid PixelVAE model [Gulrajani et al., 2017b]

- Latent var. input to deterministic upsampling decoder $f(\mathbf{z})$

Hybrid PixelVAE model [Gulrajani et al., 2017b]

- Latent var. input to deterministic upsampling decoder $f(\mathbf{z})$
- Pixel-CNN layers induce local pixel dependencies

Hybrid PixelVAE model [Gulrajani et al., 2017b]

- Latent var. input to deterministic upsampling decoder $f(\mathbf{z})$
- Pixel-CNN layers induce local pixel dependencies

$$
\begin{align*}
& p(\mathbf{z})=\mathcal{N}(\mathbf{z} ; 0, I), \tag{5}\\
& p(\mathbf{x})=\int_{\mathbf{z}} p(\mathbf{z}) \prod_{i} p\left(x_{i} \mid \mathbf{x}_{<i}, f(\mathbf{z})\right) \tag{6}
\end{align*}
$$

Samples PixelVAE model LSUN dataset

- Model with three levels of stochasticity
- Latent variables at 1×1
- Latent variables at 8×8
- PixeICNN at 64×64

Samples PixelVAE model LSUN dataset

- Model with three levels of stochasticity
- Latent variables at 1×1
- Latent variables at 8×8
- PixelCNN at 64×64

Re-sampling PixeICNN only

Samples PixelVAE model LSUN dataset

- Model with three levels of stochasticity
- Latent variables at 1×1
- Latent variables at 8×8
- PixelCNN at 64×64

Re-sampling PixeICNN only

Samples PixelVAE model LSUN dataset

- Model with three levels of stochasticity
- Latent variables at 1×1
- Latent variables at 8×8
- PixelCNN at 64×64

Re-sampling PixeICNN only

Samples PixelVAE model LSUN dataset

- Model with three levels of stochasticity
- Latent variables at 1×1
- Latent variables at 8×8
- PixelCNN at 64×64
- Hierarchical representation learning

Re-sampling PixeICNN only

Re-sampling $8 \times 8+$ PixeICNN

Hybrid VAE-Flow model [Lucas et al., 2019]

- Use flow-model to induce pixel dependencies and non-Gaussianity
- Avoid slow-sampling of pixelCNN, allows for adversarial training

Hybrid VAE-Flow model [Lucas et al., 2019]

- Use flow-model to induce pixel dependencies and non-Gaussianity
- Avoid slow-sampling of pixelCNN, allows for adversarial training

Hybrid VAE-Flow model [Lucas et al., 2019]

- Use flow-model to induce pixel dependencies and non-Gaussianity
- Avoid slow-sampling of pixelCNN, allows for adversarial training

Hybrid VAE-Flow model [Lucas et al., 2019]

- Simple prior on latents, factored conditional on feature space

$$
\begin{align*}
p(\mathbf{z}) & =\mathcal{N}(\mathbf{z} ; 0, I), \tag{7}\\
p_{\mathbf{y}}(\mathbf{y} \mid \mathbf{z}) & =\mathcal{N}(\mathbf{y} ; \mu(\mathbf{z}), \operatorname{diag}(\sigma(\mathbf{z}))) \tag{8}
\end{align*}
$$

Hybrid VAE-Flow model [Lucas et al., 2019]

- Simple prior on latents, factored conditional on feature space

$$
\begin{align*}
p(\mathbf{z}) & =\mathcal{N}(\mathbf{z} ; 0, I), \tag{7}\\
p_{\mathbf{y}}(\mathbf{y} \mid \mathbf{z}) & =\mathcal{N}(\mathbf{y} ; \mu(\mathbf{z}), \operatorname{diag}(\sigma(\mathbf{z}))) \tag{8}
\end{align*}
$$

- Flow across feature space and image space: $\mathbf{x}=f^{-1}(\mathbf{y})$

Hybrid VAE-Flow model [Lucas et al., 2019]

- Simple prior on latents, factored conditional on feature space

$$
\begin{align*}
p(\mathbf{z}) & =\mathcal{N}(\mathbf{z} ; 0, I), \tag{7}\\
p_{\mathbf{y}}(\mathbf{y} \mid \mathbf{z}) & =\mathcal{N}(\mathbf{y} ; \mu(\mathbf{z}), \operatorname{diag}(\sigma(\mathbf{z}))) \tag{8}
\end{align*}
$$

- Flow across feature space and image space: $\mathbf{x}=f^{-1}(\mathbf{y})$
- Variational inference network on latent space given image

$$
\begin{equation*}
q(\mathbf{z} \mid \mathbf{x})=\mathcal{N}(\mathbf{y} ; m(\mathbf{x}), \operatorname{diag}(s(\mathbf{x}))) \tag{9}
\end{equation*}
$$

Hybrid VAE-Flow model [Lucas et al., 2019]

- Simple prior on latents, factored conditional on feature space

$$
\begin{align*}
p(\mathbf{z}) & =\mathcal{N}(\mathbf{z} ; 0, I), \tag{7}\\
p_{\mathbf{y}}(\mathbf{y} \mid \mathbf{z}) & =\mathcal{N}(\mathbf{y} ; \mu(\mathbf{z}), \operatorname{diag}(\sigma(\mathbf{z}))) \tag{8}
\end{align*}
$$

- Flow across feature space and image space: $\mathbf{x}=f^{-1}(\mathbf{y})$
- Variational inference network on latent space given image

$$
\begin{equation*}
q(\mathbf{z} \mid \mathbf{x})=\mathcal{N}(\mathbf{y} ; m(\mathbf{x}), \operatorname{diag}(s(\mathbf{x}))) \tag{9}
\end{equation*}
$$

- Evidence lower-bound with change of variables

$$
\ln p(\mathbf{x}) \geq \mathbb{E}_{q(\mathbf{z} \mid \mathbf{x})}\left[\ln p_{\mathbf{y}}(f(\mathbf{x}) \mid \mathbf{z})\right]-D_{\mathrm{KL}}(q(\mathbf{z} \mid \mathbf{x})| | p(\mathbf{y}))+\ln \left|\operatorname{det} \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right|
$$

Hybrid VAE-Flow model - Ablation

- Adversarial training critical for good sample quality
- MLE critical for good held-out likelihoods
- Flow improves both likelihoods and sample quality

f_{ψ}							
	Adv.	MLE	BPD \downarrow	IS \uparrow	FID \downarrow		
GAN	\times	\checkmark	\times	$[7.0]$	6.8	31.4	
VAE	\times	\times	\checkmark	4.4	2.0	171.0	
V-ADE †	\checkmark	\times	\checkmark	3.5	3.0	112.0	
AV-GDE $^{\prime}$	\times	\checkmark	\checkmark	4.4	5.1	58.6	
AV-ADE †	\checkmark	\checkmark	\checkmark	3.9	7.1	28.0	

Table 1: Quantitative results. ${ }^{\dagger}$: Parameter count decreased by 1.4% to compensate for f_{ψ}. [Square brackets] denote that the value is approximated, see Section 5.

Figure 5: Samples from GAN and VAE baselines, our V-ADE, AV-GDE and AVADE models, all trained on CIFAR-10.

Hybrid VAE-Flow model - Comparison to Glow

- AV-ADE: better samples, worse likelihood
- Temperature annealing allows Glow to trade-off the two

LSUN 64×64 : Chruches (C) and Bedrooms (B). Figure from [Lucas et al., 2019]

Hybrid VAE-Flow model - Samples and Images

Hybrid VAE-Flow model - Samples and Images

LSUN 64×64 : Dining rooms. Samples left, training images right. Figure from [Lucas et al., 2019]

Part II

Recent advances in flow-based generative modeling

Reduced temperature sampling [Kingma and Dhariwal, 2018]

- Sample closer to the mode of the distribution

$$
\begin{equation*}
p_{\tau}(\mathbf{x}) \propto p(\mathbf{x})^{1 / \tau} \tag{10}
\end{equation*}
$$

Reduced temperature sampling [Kingma and Dhariwal, 2018]

- Sample closer to the mode of the distribution

$$
\begin{equation*}
p_{\tau}(\mathbf{x}) \propto p(\mathbf{x})^{1 / \tau} \tag{10}
\end{equation*}
$$

- Approaches mode of $p(\mathbf{x})$ as $\tau \rightarrow 0$
- Approaches uniform as $\tau \rightarrow \infty$

Reduced temperature sampling [Kingma and Dhariwal, 2018]

- Sample closer to the mode of the distribution

$$
\begin{equation*}
p_{\tau}(\mathbf{x}) \propto p(\mathbf{x})^{1 / \tau} \tag{10}
\end{equation*}
$$

- Approaches mode of $p(\mathbf{x})$ as $\tau \rightarrow 0$
- Approaches uniform as $\tau \rightarrow \infty$
- Modifies the flow in non-trivial manner

$$
\begin{equation*}
\ln p_{\tau}(\mathbf{x}) \pm \tau^{-1} \ln p_{Y}(f(\mathbf{x}))+\tau^{-1} \ln \left|\operatorname{det}\left(J_{f}(x)\right)\right| \tag{11}
\end{equation*}
$$

Reduced temperature sampling [Kingma and Dhariwal, 2018]

- Sample closer to the mode of the distribution

$$
\begin{equation*}
p_{\tau}(\mathbf{x}) \propto p(\mathbf{x})^{1 / \tau} \tag{10}
\end{equation*}
$$

- Approaches mode of $p(\mathbf{x})$ as $\tau \rightarrow 0$
- Approaches uniform as $\tau \rightarrow \infty$
- Modifies the flow in non-trivial manner

$$
\begin{equation*}
\ln p_{\tau}(\mathbf{x}) \pm \tau^{-1} \ln p_{Y}(f(\mathbf{x}))+\tau^{-1} \ln \left|\operatorname{det}\left(J_{f}(x)\right)\right| \tag{11}
\end{equation*}
$$

- Unchanged flow for $p_{Y}(\mathbf{y})=\mathcal{N}(y ; 0, I)$ and $\operatorname{det}\left(J_{f}(x)\right)=$ const.

$$
\begin{equation*}
p_{\tau}(\mathbf{x}) \propto \mathcal{N}(f(\mathbf{x}) ; 0, \tau l) \tag{12}
\end{equation*}
$$

Reduced temperature sampling [Kingma and Dhariwal, 2018]

- Sample closer to the mode of the distribution

$$
\begin{equation*}
p_{\tau}(\mathbf{x}) \propto p(\mathbf{x})^{1 / \tau} \tag{10}
\end{equation*}
$$

- Approaches mode of $p(\mathbf{x})$ as $\tau \rightarrow 0$
- Approaches uniform as $\tau \rightarrow \infty$
- Modifies the flow in non-trivial manner

$$
\begin{equation*}
\ln p_{\tau}(\mathbf{x}) \pm \tau^{-1} \ln p_{Y}(f(\mathbf{x}))+\tau^{-1} \ln \left|\operatorname{det}\left(J_{f}(x)\right)\right| \tag{11}
\end{equation*}
$$

- Unchanged flow for $p_{Y}(\mathbf{y})=\mathcal{N}(y ; 0, I)$ and $\operatorname{det}\left(J_{f}(x)\right)=$ const.

$$
\begin{equation*}
p_{\tau}(\mathbf{x}) \propto \mathcal{N}(f(\mathbf{x}) ; 0, \tau l) \tag{12}
\end{equation*}
$$

- Can sample from reduced Gaussian in latent space, and then project

Additive coupling layers

$$
\mathbf{y}_{1}=\mathbf{x}_{1}, \quad \mathbf{y}_{2}=\mathbf{x}_{2}+t\left(\mathbf{x}_{1}\right)
$$

Additive coupling layers

$$
\mathbf{y}_{1}=\mathbf{x}_{1}, \quad \mathbf{y}_{2}=\mathbf{x}_{2}+t\left(\mathbf{x}_{1}\right)
$$

- Residual layer with variable partitioning

Additive coupling layers

$$
\mathbf{y}_{1}=\mathbf{x}_{1}, \quad \mathbf{y}_{2}=\mathbf{x}_{2}+t\left(\mathbf{x}_{1}\right)
$$

- Residual layer with variable partitioning
- Can be combined with affine flow layers $\mathbf{y}=W \mathbf{x}$

Additive coupling layers

$$
\mathbf{y}_{1}=\mathbf{x}_{1}, \quad \mathbf{y}_{2}=\mathbf{x}_{2}+t\left(\mathbf{x}_{1}\right)
$$

- Residual layer with variable partitioning
- Can be combined with affine flow layers $\mathbf{y}=W \mathbf{x}$
- Determinant constant in \mathbf{x}

Additive coupling layers

$$
\mathbf{y}_{1}=\mathbf{x}_{1}, \quad \mathbf{y}_{2}=\mathbf{x}_{2}+t\left(\mathbf{x}_{1}\right)
$$

- Residual layer with variable partitioning
- Can be combined with affine flow layers $\mathbf{y}=W \mathbf{x}$
- Determinant constant in \mathbf{x}
- Change of basis w.r.t. original variables

Additive coupling layers

$$
\mathbf{y}_{1}=\mathbf{x}_{1}, \quad \mathbf{y}_{2}=\mathbf{x}_{2}+t\left(\mathbf{x}_{1}\right)
$$

- Residual layer with variable partitioning
- Can be combined with affine flow layers $\mathbf{y}=W \mathbf{x}$
- Determinant constant in x
- Change of basis w.r.t. original variables

Increasing temperature from left to right. Figure from [Kingma and Dhariwal, 2018].

Recipes for "efficient" invertible flows

$$
\begin{gather*}
\mathbf{y}=f(\mathbf{x}), \quad J_{f}(x)=\frac{\partial \mathbf{y}}{\partial \mathbf{x}^{\top}}, \tag{13}\\
p_{X}(\mathbf{x})=p_{Y}(\mathbf{y}) \times\left|\operatorname{det}\left(J_{f}(x)\right)\right| \tag{14}
\end{gather*}
$$

Recipes for "efficient" invertible flows

$$
\begin{gather*}
\mathbf{y}=f(\mathbf{x}), \quad J_{f}(x)=\frac{\partial \mathbf{y}}{\partial \mathbf{x}^{\top}}, \tag{13}\\
p_{X}(\mathbf{x})=p_{Y}(\mathbf{y}) \times\left|\operatorname{det}\left(J_{f}(x)\right)\right| \tag{14}
\end{gather*}
$$

- Training: compute $f(\mathbf{x})$ and log-determinant

Recipes for "efficient" invertible flows

$$
\begin{gather*}
\mathbf{y}=f(\mathbf{x}), \quad J_{f}(x)=\frac{\partial \mathbf{y}}{\partial \mathbf{x}^{\top}}, \tag{13}\\
p_{X}(\mathbf{x})=p_{Y}(\mathbf{y}) \times\left|\operatorname{det}\left(J_{f}(x)\right)\right| \tag{14}
\end{gather*}
$$

- Training: compute $f(\mathbf{x})$ and log-determinant
- Sampling: compute $f^{-1}(\mathbf{y})$

Recipes for "efficient" invertible flows

$$
\begin{gather*}
\mathbf{y}=f(\mathbf{x}), \quad J_{f}(x)=\frac{\partial \mathbf{y}}{\partial \mathbf{x}^{\top}}, \tag{13}\\
p_{X}(\mathbf{x})=p_{Y}(\mathbf{y}) \times\left|\operatorname{det}\left(J_{f}(x)\right)\right| \tag{14}
\end{gather*}
$$

- Training: compute $f(\mathbf{x})$ and log-determinant
- Sampling: compute $f^{-1}(\mathbf{y})$

(a) Det. Identities (Low Rank)

(c) Coupling (Structured Sparsity)

(b) Autoregressive (Lower Triangular)

(d) Unbiased Est.
(Free-form)

Recipes for "efficient" invertible flows

$$
\begin{gather*}
\mathbf{y}=f(\mathbf{x}), \quad J_{f}(x)=\frac{\partial \mathbf{y}}{\partial \mathbf{x}^{\top}} \tag{13}\\
p_{X}(\mathbf{x})=p_{Y}(\mathbf{y}) \times\left|\operatorname{det}\left(J_{f}(x)\right)\right| \tag{14}
\end{gather*}
$$

- Training: compute $f(\mathbf{x})$ and log-determinant
- Sampling: compute $f^{-1}(\mathbf{y})$

(a) Det. Identities (Low Rank)

(c) Coupling (Structured Sparsity)

(b) Autoregressive (Lower Triangular)

(d) Unbiased Est. (Free-form)
(a) Planar flow
[Rezende and Mohamed, 2015]
(b) Inverse Autoregressive Flow [Kingma et al., 2016]
(c) Real-NVP [Dinh et al., 2017]
(d) Invertible ResNet
[Behrmann et al., 2019,
R.Chen et al., 2019]

Invertible ResNets [Behrmann et al., 2019]

Invertible ResNets [Behrmann et al., 2019]

- Residual Networks [He et al., 2016a, He et al., 2016b]

$$
\begin{equation*}
y:=f(x)=x+g_{\theta}(x) \tag{15}
\end{equation*}
$$

Invertible ResNets [Behrmann et al., 2019]

- Residual Networks [He et al., 2016a, He et al., 2016b]

$$
\begin{equation*}
y:=f(x)=x+g_{\theta}(x) \tag{15}
\end{equation*}
$$

- Improves gradient propagation in very deep networks

Invertible ResNets [Behrmann et al., 2019]

- Residual Networks [He et al., 2016a, He et al., 2016b]

$$
\begin{equation*}
y:=f(x)=x+g_{\theta}(x) \tag{15}
\end{equation*}
$$

- Improves gradient propagation in very deep networks
- State of the art across many tasks, including vision CNNs

Invertible ResNets [Behrmann et al., 2019]

- Residual Networks [He et al., 2016a, He et al., 2016b]

$$
\begin{equation*}
y:=f(x)=x+g_{\theta}(x) \tag{15}
\end{equation*}
$$

- Improves gradient propagation in very deep networks
- State of the art across many tasks, including vision CNNs

Standard ResNet
 Output

Invertible ResNet
Output

Input

Invertible ResNets

- Residual Networks [He et al., 2016a, He et al., 2016b]

$$
\begin{equation*}
y:=f(x)=x+g_{\theta}(x) \tag{16}
\end{equation*}
$$

Invertible ResNets

- Residual Networks [He et al., 2016a, He et al., 2016b]

$$
\begin{equation*}
y:=f(x)=x+g_{\theta}(x) \tag{16}
\end{equation*}
$$

- ResNets are invertible if $\operatorname{Lip}\left(g_{\theta}\right)<1$, i.e.

$$
\begin{equation*}
\left\|g_{\theta}\left(x_{1}\right)-g_{\theta}\left(x_{2}\right)\right\|_{2}^{2} \leq\left\|x_{1}-x_{2}\right\|_{2}^{2} \tag{17}
\end{equation*}
$$

Invertible ResNets

- Residual Networks [He et al., 2016a, He et al., 2016b]

$$
\begin{equation*}
y:=f(x)=x+g_{\theta}(x) \tag{16}
\end{equation*}
$$

- ResNets are invertible if $\operatorname{Lip}\left(g_{\theta}\right)<1$, i.e.

$$
\begin{equation*}
\left\|g_{\theta}\left(x_{1}\right)-g_{\theta}\left(x_{2}\right)\right\|_{2}^{2} \leq\left\|x_{1}-x_{2}\right\|_{2}^{2} \tag{17}
\end{equation*}
$$

- Inverse can be computed as fixed-point

$$
\begin{align*}
x^{0} & :=y, \tag{18}\\
x^{i+1} & :=y-g_{\theta}\left(x^{i}\right) \tag{19}
\end{align*}
$$

Invertible ResNets

- Residual Networks [He et al., 2016a, He et al., 2016b]

$$
\begin{equation*}
y:=f(x)=x+g_{\theta}(x) \tag{16}
\end{equation*}
$$

- ResNets are invertible if $\operatorname{Lip}\left(g_{\theta}\right)<1$, i.e.

$$
\begin{equation*}
\left\|g_{\theta}\left(x_{1}\right)-g_{\theta}\left(x_{2}\right)\right\|_{2}^{2} \leq\left\|x_{1}-x_{2}\right\|_{2}^{2} \tag{17}
\end{equation*}
$$

- Inverse can be computed as fixed-point

$$
\begin{align*}
x^{0} & :=y, \tag{18}\\
x^{i+1} & :=y-g_{\theta}\left(x^{i}\right) \tag{19}
\end{align*}
$$

- Unbiased determinant estimator [R.Chen et al., 2019]

Invertible ResNets

- Residual Networks [He et al., 2016a, He et al., 2016b]

$$
\begin{equation*}
y:=f(x)=x+g_{\theta}(x) \tag{16}
\end{equation*}
$$

- ResNets are invertible if $\operatorname{Lip}\left(g_{\theta}\right)<1$, i.e.

$$
\begin{equation*}
\left\|g_{\theta}\left(x_{1}\right)-g_{\theta}\left(x_{2}\right)\right\|_{2}^{2} \leq\left\|x_{1}-x_{2}\right\|_{2}^{2} \tag{17}
\end{equation*}
$$

- Inverse can be computed as fixed-point

$$
\begin{align*}
x^{0} & :=y, \tag{18}\\
x^{i+1} & :=y-g_{\theta}\left(x^{i}\right) \tag{19}
\end{align*}
$$

- Unbiased determinant estimator [R.Chen et al., 2019]
- Possible to use ResNet for flow-based generative model

Generative modeling with invertible ResNets

$$
\begin{equation*}
f(\mathrm{x})=\mathrm{x}+g_{\theta}(\mathrm{x}) \tag{20}
\end{equation*}
$$

Generative modeling with invertible ResNets

$$
\begin{equation*}
f(\mathbf{x})=\mathbf{x}+g_{\theta}(\mathbf{x}) \tag{20}
\end{equation*}
$$

- All variables updates in every flow step, unlike variable partitioning-scheme in Real-NVP

Generative modeling with invertible ResNets

$$
\begin{equation*}
f(\mathbf{x})=\mathbf{x}+g_{\theta}(\mathbf{x}) \tag{20}
\end{equation*}
$$

- All variables updates in every flow step, unlike variable partitioning-scheme in Real-NVP
- Faster "mixing" between variables

Generative modeling with invertible ResNets

$$
\begin{equation*}
f(\mathrm{x})=\mathrm{x}+g_{\theta}(\mathrm{x}) \tag{20}
\end{equation*}
$$

- All variables updates in every flow step, unlike variable partitioning-scheme in Real-NVP
- Faster "mixing" between variables

Figure from [Behrmann et al., 2019]

Invertible ResNets [Behrmann et al., 2019]

- Hybrid discriminative-generative training

$$
\begin{equation*}
L=\lambda \ln p(x)+\ln p(y \mid x) \tag{21}
\end{equation*}
$$

Invertible ResNets [Behrmann et al., 2019]

- Hybrid discriminative-generative training

$$
\begin{equation*}
L=\lambda \ln p(x)+\ln p(y \mid x) \tag{21}
\end{equation*}
$$

- Network fully invertible, until last linear classifier that projects on the label space

Invertible ResNets [Behrmann et al., 2019]

- Hybrid discriminative-generative training

$$
\begin{equation*}
L=\lambda \ln p(x)+\ln p(y \mid x) \tag{21}
\end{equation*}
$$

- Network fully invertible, until last linear classifier that projects on the label space

Block Type	$\begin{aligned} & \lambda=0 \\ & \hline \operatorname{Acc\uparrow } \end{aligned}$	$\lambda=1 / D$		$\lambda=1$	
		BPD \downarrow	Acc \uparrow	BPD \downarrow	$\mathrm{Acc} \uparrow$
Coupling	89.77\%	4.30	87.58\%	3.54	67.62\%
+ 1×1 Conv	90.82\%	4.09	87.96\%	3.47	67.38\%
Residual	91.78\%	3.62	90.47\%	3.39	70.32\%

Results on CIFAR-10 from [R.Chen et al., 2019]

Part III

Stabilizing GAN training

A discussion on the GAN training loss

A discussion on the GAN training loss

- Recall divergence measures between distributions

A discussion on the GAN training loss

- Recall divergence measures between distributions
- Kullback-Leibler divergence: maximum likelihood training
- Infinite if q (model) has a zero in the support of p (data)

$$
\begin{equation*}
D_{K L}(p \| q)=\int_{x} p(x)[\ln q(x)-\ln p(x)] \tag{22}
\end{equation*}
$$

A discussion on the GAN training loss

- Recall divergence measures between distributions
- Kullback-Leibler divergence: maximum likelihood training
- Infinite if q (model) has a zero in the support of p (data)

$$
\begin{equation*}
D_{K L}(p \| q)=\int_{x} p(x)[\ln q(x)-\ln p(x)] \tag{22}
\end{equation*}
$$

- Jensen-Shannon divergence: idealized loss approximated by the discriminator
- Symmetric KL to mixture of p and q

$$
\begin{equation*}
D_{J S}(p \| q)=\frac{1}{2} D_{K L}\left(p \| \frac{p+q}{2}\right)+\frac{1}{2} D_{K L}\left(q \| \frac{p+q}{2}\right) \tag{23}
\end{equation*}
$$

A discussion on the GAN training loss

- Training loss for the Discriminator:

$$
V(\phi, \theta)=\mathbb{E}_{x \sim p_{\text {data }}(x)}\left[\ln D_{\phi}(x)\right]+\mathbb{E}_{z \sim p(z)}\left[\ln \left(1-D_{\phi}\left(f_{\theta}(z)\right)\right)\right](24)
$$

A discussion on the GAN training loss

- Training loss for the Discriminator:

$$
V(\phi, \theta)=\mathbb{E}_{x \sim p_{\text {data }}(x)}\left[\ln D_{\phi}(x)\right]+\mathbb{E}_{z \sim p(z)}\left[\ln \left(1-D_{\phi}\left(f_{\theta}(z)\right)\right)\right]
$$

A discussion on the GAN training loss

- Training loss for the Discriminator:

$$
V(\phi, \theta)=\mathbb{E}_{x \sim p_{\text {data }}(x)}\left[\ln D_{\phi}(x)\right]+\mathbb{E}_{z \sim p(z)}\left[\ln \left(1-D_{\phi}\left(f_{\theta}(z)\right)\right)\right]
$$

- Approximates the ideal loss:

$$
\begin{equation*}
D_{J S}(p \| q)=\frac{1}{2} D_{K L}\left(p \| \frac{p+q}{2}\right)+\frac{1}{2} D_{K L}\left(q \| \frac{p+q}{2}\right) \tag{24}
\end{equation*}
$$

A discussion on the GAN training loss

- Training loss for the Discriminator:

$$
V(\phi, \theta)=\mathbb{E}_{x \sim p_{\text {data }}(x)}\left[\ln D_{\phi}(x)\right]+\mathbb{E}_{z \sim p(z)}\left[\ln \left(1-D_{\phi}\left(f_{\theta}(z)\right)\right)\right]
$$

- Approximates the ideal loss:

$$
\begin{equation*}
D_{J S}(p \| q)=\frac{1}{2} D_{K L}\left(p \| \frac{p+q}{2}\right)+\frac{1}{2} D_{K L}\left(q \| \frac{p+q}{2}\right) \tag{24}
\end{equation*}
$$

A discussion on the GAN training loss

- Training loss for the Discriminator:

$$
V(\phi, \theta)=\mathbb{E}_{x \sim p_{\text {data }}(x)}\left[\ln D_{\phi}(x)\right]+\mathbb{E}_{z \sim p(z)}\left[\ln \left(1-D_{\phi}\left(f_{\theta}(z)\right)\right)\right]
$$

- Approximates the ideal loss:

$$
\begin{equation*}
D_{J S}(p \| q)=\frac{1}{2} D_{K L}\left(p \| \frac{p+q}{2}\right)+\frac{1}{2} D_{K L}\left(q \| \frac{p+q}{2}\right) \tag{24}
\end{equation*}
$$

- The blue term is independent from the model p_{θ}, and disapears when differentiating

A discussion on the GAN training loss

- Training loss for the Discriminator:

$$
V(\phi, \theta)=\mathbb{E}_{x \sim p_{\text {data }}(x)}\left[\ln D_{\phi}(x)\right]+\mathbb{E}_{z \sim p(z)}\left[\ln \left(1-D_{\phi}\left(f_{\theta}(z)\right)\right)\right]
$$

- Approximates the ideal loss:

$$
\begin{equation*}
D_{J S}(p \| q)=\frac{1}{2} D_{K L}\left(p \| \frac{p+q}{2}\right)+\frac{1}{2} D_{K L}\left(q \| \frac{p+q}{2}\right) \tag{24}
\end{equation*}
$$

- The blue term is independent from the model p_{θ}, and disapears when differentiating
- The generator is trained on the red term

Quality driven training

- Training loss for the generator: $D_{K L}\left(q \| \frac{p+q}{2}\right)$

Quality driven training

- Training loss for the generator: $D_{K L}\left(q \| \frac{p+q}{2}\right)$
- It is an integral on q, opposite to maximum-likelihood estimation

Quality driven training

- Training loss for the generator: $D_{K L}\left(q \| \frac{p+q}{2}\right)$
- It is an integral on q, opposite to maximum-likelihood estimation

Quality driven training

- Training loss for the generator: $D_{K L}\left(q \| \frac{p+q}{2}\right)$
- It is an integral on q, opposite to maximum-likelihood estimation

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1. Strong discriminator leads to vanishing gradients of $\mathbb{E}_{p_{z}}[\ln (1-D(G(z)))]$ w.r.t. generator

- Happens early in training with poor generator

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1. Strong discriminator leads to vanishing gradients of $\mathbb{E}_{p_{z}}[\ln (1-D(G(z)))]$ w.r.t. generator

- Happens early in training with poor generator
- Tuning of capacity and training regime of discriminator

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1. Strong discriminator leads to vanishing gradients of $\mathbb{E}_{p_{z}}[\ln (1-D(G(z)))]$ w.r.t. generator

- Happens early in training with poor generator
- Tuning of capacity and training regime of discriminator

2. Minimizing $-\mathbb{E}_{p_{z}}[\ln (D(G(z)))]$ instead to boost gradient

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1. Strong discriminator leads to vanishing gradients of $\mathbb{E}_{p_{z}}[\ln (1-D(G(z)))]$ w.r.t. generator

- Happens early in training with poor generator
- Tuning of capacity and training regime of discriminator

2. Minimizing $-\mathbb{E}_{p_{z}}[\ln (D(G(z)))]$ instead to boost gradient

- Optimizes $K L\left(p_{G} \| p_{\text {data }}\right)-2 J S\left(p_{G} \| p_{\text {data }}\right)$

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1. Strong discriminator leads to vanishing gradients of $\mathbb{E}_{p_{z}}[\ln (1-D(G(z)))]$ w.r.t. generator

- Happens early in training with poor generator
- Tuning of capacity and training regime of discriminator

2. Minimizing $-\mathbb{E}_{p_{z}}[\ln (D(G(z)))]$ instead to boost gradient

- Optimizes $K L\left(p_{G} \| p_{\text {data }}\right)-2 J S\left(p_{G} \| p_{\text {data }}\right)$
- Wrong sign in the JS divergence

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1. Strong discriminator leads to vanishing gradients of $\mathbb{E}_{p_{z}}[\ln (1-D(G(z)))]$ w.r.t. generator

- Happens early in training with poor generator
- Tuning of capacity and training regime of discriminator

2. Minimizing $-\mathbb{E}_{p_{z}}[\ln (D(G(z)))]$ instead to boost gradient

- Optimizes $K L\left(p_{G} \| p_{\text {data }}\right)-2 J S\left(p_{G} \| p_{\text {data }}\right)$
- Wrong sign in the JS divergence
- Same stable points in the minimax optimization

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1. Strong discriminator leads to vanishing gradients of $\mathbb{E}_{p_{z}}[\ln (1-D(G(z)))]$ w.r.t. generator

- Happens early in training with poor generator
- Tuning of capacity and training regime of discriminator

2. Minimizing $-\mathbb{E}_{p_{z}}[\ln (D(G(z)))]$ instead to boost gradient

- Optimizes $K L\left(p_{G} \| p_{\text {data }}\right)-2 J S\left(p_{G} \| p_{\text {data }}\right)$
- Wrong sign in the JS divergence
- Same stable points in the minimax optimization
- Helps, but problem remains: as D_{ϕ} becomes strong, gradients vanish

Question:

Can we think of a better 'ideal loss' ?

Wasserstein or "earth-mover" distance

- Consider joint distribution $\gamma(x, y)$ with marginals $p(x)=\gamma(x)$ and $q(y)=\gamma(y)$

Wasserstein or "earth-mover" distance

- Consider joint distribution $\gamma(x, y)$ with marginals $p(x)=\gamma(x)$ and $q(y)=\gamma(y)$
- Conditional $\gamma(y \mid x)$ "moves mass" to transform $p(\cdot)$ into $q(\cdot)$

Wasserstein or "earth-mover" distance

- Consider joint distribution $\gamma(x, y)$ with marginals $p(x)=\gamma(x)$ and $q(y)=\gamma(y)$
- Conditional $\gamma(y \mid x)$ "moves mass" to transform $p(\cdot)$ into $q(\cdot)$
- Cost associated with a given transformation

$$
T(\gamma)=\int_{x, y} \gamma(x, y)\|x-y\|=\int_{x} p(x) \int_{y} \gamma(y \mid x)\|x-y\|
$$

Wasserstein or "earth-mover" distance

- Consider joint distribution $\gamma(x, y)$ with marginals $p(x)=\gamma(x)$ and $q(y)=\gamma(y)$
- Conditional $\gamma(y \mid x)$ "moves mass" to transform $p(\cdot)$ into $q(\cdot)$
- Cost associated with a given transformation

$$
T(\gamma)=\int_{x, y} \gamma(x, y)\|x-y\|=\int_{x} p(x) \int_{y} \gamma(y \mid x)\|x-y\|
$$

- Wasserstein distance is the cost of optimal transformation

$$
\begin{equation*}
D_{W S}(p \| q)=\inf _{\gamma \in \Gamma(p, q)} T(\gamma) \tag{25}
\end{equation*}
$$

Distributions with low dimensional support

- Simple example: support on lines in \mathbb{R}^{2}
- p_{0} uniform on $x_{2} \in[0,1]$ for $x_{1}=0$
- p_{θ} uniform on $x_{2} \in[0,1]$ for $x_{1}=\theta$

Distributions with low dimensional support

- Simple example: support on lines in \mathbb{R}^{2}
- p_{0} uniform on $x_{2} \in[0,1]$ for $x_{1}=0$
- p_{θ} uniform on $x_{2} \in[0,1]$ for $x_{1}=\theta$
- All measures zero for $\theta=0$, but for $\theta \neq 0$

Distributions with low dimensional support

- Simple example: support on lines in \mathbb{R}^{2}
- p_{0} uniform on $x_{2} \in[0,1]$ for $x_{1}=0$
- p_{θ} uniform on $x_{2} \in[0,1]$ for $x_{1}=\theta$
- All measures zero for $\theta=0$, but for $\theta \neq 0$
- $D_{K L}\left(p_{0} \| p_{\theta}\right)=\infty$

Distributions with low dimensional support

- Simple example: support on lines in \mathbb{R}^{2}
- p_{0} uniform on $x_{2} \in[0,1]$ for $x_{1}=0$
- p_{θ} uniform on $x_{2} \in[0,1]$ for $x_{1}=\theta$
- All measures zero for $\theta=0$, but for $\theta \neq 0$
- $D_{K L}\left(p_{0} \| p_{\theta}\right)=\infty$
- $D_{J S}\left(p_{0} \| p_{\theta}\right)=\ln 2$

Distributions with low dimensional support

- Simple example: support on lines in \mathbb{R}^{2}
- p_{0} uniform on $x_{2} \in[0,1]$ for $x_{1}=0$
- p_{θ} uniform on $x_{2} \in[0,1]$ for $x_{1}=\theta$
- All measures zero for $\theta=0$, but for $\theta \neq 0$
- $D_{K L}\left(p_{0} \| p_{\theta}\right)=\infty$
- $D_{J S}\left(p_{0} \| p_{\theta}\right)=\ln 2$

- $D_{w s}\left(p_{0}| | p_{\theta}\right)=|\theta|$

Distributions with low dimensional support

- Simple example: support on lines in \mathbb{R}^{2}
- p_{0} uniform on $x_{2} \in[0,1]$ for $x_{1}=0$
- p_{θ} uniform on $x_{2} \in[0,1]$ for $x_{1}=\theta$
- All measures zero for $\theta=0$, but for $\theta \neq 0$
- $D_{K L}\left(p_{0} \| p_{\theta}\right)=\infty$
- $D_{J S}\left(p_{0} \| p_{\theta}\right)=\ln 2$

- $D_{W S}\left(p_{0}| | p_{\theta}\right)=|\theta|$
- Wasserstein based on proximity of support

Distributions with low dimensional support

- Simple example: support on lines in \mathbb{R}^{2}
- p_{0} uniform on $x_{2} \in[0,1]$ for $x_{1}=0$
- p_{θ} uniform on $x_{2} \in[0,1]$ for $x_{1}=\theta$
- All measures zero for $\theta=0$, but for $\theta \neq 0$
- $D_{K L}\left(p_{0} \| p_{\theta}\right)=\infty$
- $D_{J S}\left(p_{0} \| p_{\theta}\right)=\ln 2$

- $D_{w s}\left(p_{0}| | p_{\theta}\right)=|\theta|$
- Wasserstein based on proximity of support
- JS and KL based on overlap of support

Distributions with low dimensional support

- Simple example: support on lines in \mathbb{R}^{2}
- p_{0} uniform on $x_{2} \in[0,1]$ for $x_{1}=0$
- p_{θ} uniform on $x_{2} \in[0,1]$ for $x_{1}=\theta$
- All measures zero for $\theta=0$, but for $\theta \neq 0$
- $D_{K L}\left(p_{0} \| p_{\theta}\right)=\infty$
- $D_{J S}\left(p_{0} \| p_{\theta}\right)=\ln 2$

- $D_{w s}\left(p_{0} \| p_{\theta}\right)=|\theta|$
- Wasserstein based on proximity of support
- JS and KL based on overlap of support
- In general measure zero overlap with low dim. supports

Distributions with low dimensional support

- Simple example: support on lines in \mathbb{R}^{2}
- p_{0} uniform on $x_{2} \in[0,1]$ for $x_{1}=0$
- p_{θ} uniform on $x_{2} \in[0,1]$ for $x_{1}=\theta$
- All measures zero for $\theta=0$, but for $\theta \neq 0$
- $D_{K L}\left(p_{0} \| p_{\theta}\right)=\infty$
- $D_{J S}\left(p_{0} \| p_{\theta}\right)=\ln 2$

- $D_{w s}\left(p_{0} \| p_{\theta}\right)=|\theta|$
- Wasserstein based on proximity of support
- JS and KL based on overlap of support
- In general measure zero overlap with low dim. supports
- GAN has support with dimension of latent variable z

Wasserstein GAN

- Dual formulation of Wasserstein distance

$$
\begin{aligned}
D_{W S}\left(p_{d} a t a \| q\right) & =\inf _{\gamma \in \Gamma(p, q)} T(\gamma) \\
& =\frac{1}{k} \max _{\|D\|_{L \leq} \leq k} \mathbb{E}_{p_{\text {data }}}[D(\mathbf{x})]-\mathbb{E}_{p_{z}}[D(G(\mathbf{z}))]
\end{aligned}
$$

Wasserstein GAN

- Dual formulation of Wasserstein distance

$$
\begin{aligned}
D_{W S}\left(p_{d} a t a \| q\right) & =\inf _{\gamma \in \Gamma(p, q)} T(\gamma) \\
& =\frac{1}{k} \max _{\|D\|_{L} \leq k} \mathbb{E}_{p_{\text {data }}}[D(\mathbf{x})]-\mathbb{E}_{p_{z}}[D(G(\mathbf{z}))]
\end{aligned}
$$

1. ||. $\|_{L}$ is the lipschitz norm

Wasserstein GAN

- Dual formulation of Wasserstein distance

$$
\begin{aligned}
D_{W S}\left(p_{d} a t a \| q\right) & =\inf _{\gamma \in \Gamma(p, q)} T(\gamma) \\
& =\frac{1}{k} \max _{\|D\| \leq \leq} \mathbb{E}_{p_{\text {data }}}[D(\mathbf{x})]-\mathbb{E}_{p_{z}}[D(G(\mathbf{z}))]
\end{aligned}
$$

1. ||.||L is the lipschitz norm
2. In practice: restrict D to some deep net architecture

Wasserstein GAN

- Dual formulation of Wasserstein distance

$$
\begin{align*}
D_{W S}\left(p_{d} a t a \| q\right) & =\inf _{\gamma \in \Gamma(p, q)} T(\gamma) \tag{26}\\
& =\frac{1}{k} \max _{\|D\|_{L} \leq k} \mathbb{E}_{p_{\text {data }}}[D(\mathbf{x})]-\mathbb{E}_{p_{z}}[D(G(\mathbf{z}))] \tag{27}
\end{align*}
$$

1. ||. \|/ L is the lipschitz norm
2. In practice: restrict D to some deep net architecture
3. Enforce Lipschitz constraint by clipping discriminator weights or penalty on gradient magnitude [Gulrajani et al., 2017a]

Wasserstein GAN

- Dual formulation of Wasserstein distance

$$
\begin{align*}
D_{W S}\left(p_{d} a t a \| q\right) & =\inf _{\gamma \in \Gamma(p, q)} T(\gamma) \tag{26}\\
& =\frac{1}{k} \max _{\|D\|_{L} \leq k} \mathbb{E}_{p_{\text {data }}}[D(\mathbf{x})]-\mathbb{E}_{p_{z}}[D(G(\mathbf{z}))] \tag{27}
\end{align*}
$$

1. ||. \|/ is the lipschitz norm
2. In practice: restrict D to some deep net architecture
3. Enforce Lipschitz constraint by clipping discriminator weights or penalty on gradient magnitude [Gulrajani et al., 2017a]

- Removes log-sigmoid transformation w.r.t. normal GAN

Wasserstein GAN

- Dual formulation of Wasserstein distance

$$
\begin{align*}
D_{W S}\left(p_{d} a t a \| q\right) & =\inf _{\gamma \in \Gamma(p, q)} T(\gamma) \tag{26}\\
& =\frac{1}{k} \max _{\|D\| L \leq k} \mathbb{E}_{p_{\text {data }}}[D(\mathbf{x})]-\mathbb{E}_{p_{z}}[D(G(\mathbf{z}))] \tag{27}
\end{align*}
$$

1. ||. \|/ L is the lipschitz norm
2. In practice: restrict D to some deep net architecture
3. Enforce Lipschitz constraint by clipping discriminator weights or penalty on gradient magnitude [Gulrajani et al., 2017a]

- Removes log-sigmoid transformation w.r.t. normal GAN

Experimental comparison GAN and WGAN

- WGAN loss may decrease in a more stable manner
- WGAN loss correlates better with sample quality

Experimental comparison GAN and WGAN

- WGAN loss may decrease in a more stable manner
- WGAN loss correlates better with sample quality

Is this analysis relevant in practice?

In practice

Is this analysis relevant in practice?

- This analysis regards the ideal losses $\left(D_{K L}\right.$ VS. $\left.D_{W S}\right)$

In practice

Is this analysis relevant in practice?

- This analysis regards the ideal losses ($D_{K L}$ VS. $D_{W S}$)
- In practice, both are approximated by similar discriminators
- $L_{\text {WGAN }}=\frac{1}{k} \max _{\|D\|_{L} \leq k} \mathbb{E}_{p_{\text {data }}}[D(\mathbf{x})]-\mathbb{E}_{p_{z}}[D(G(\mathbf{z}))]$
- $L_{G A N}=\frac{1}{k} \max _{D} \mathbb{E}_{p_{\text {data }}}[\log (D(\mathbf{x}))]-\mathbb{E}_{p_{2}}[\log (1-D(G(\mathbf{z})))]$

In practice

Is this analysis relevant in practice?

- This analysis regards the ideal losses ($D_{K L}$ VS. $D_{W S}$)
- In practice, both are approximated by similar discriminators
- $L_{W G A N}=\frac{1}{k} \max _{\|D\|_{L} \leq k} \mathbb{E}_{p_{\text {data }}}[D(\mathbf{x})]-\mathbb{E}_{p_{z}}[D(G(\mathbf{z}))]$
- $L_{G A N}=\frac{1}{k} \max _{D} \mathbb{E}_{p_{\text {data }}}[\log (D(\mathbf{x}))]-\mathbb{E}_{p_{2}}[\log (1-D(G(\mathbf{z})))]$
- In practice, non-overlapping support does not break the discriminator

In practice

Is this analysis relevant in practice?

- This analysis regards the ideal losses ($D_{K L}$ VS. $D_{W S}$)
- In practice, both are approximated by similar discriminators
- $L_{\text {WGAN }}=\frac{1}{k} \max _{\|D\|_{L} \leq k} \mathbb{E}_{p_{\text {data }}}[D(\mathbf{x})]-\mathbb{E}_{p_{z}}[D(G(\mathbf{z}))]$
- $L_{G A N}=\frac{1}{k} \max _{D} \mathbb{E}_{p_{\text {data }}}[\log (D(\mathbf{x}))]-\mathbb{E}_{p_{z}}[\log (1-D(G(\mathbf{z})))]$
- In practice, non-overlapping support does not break the discriminator
- Constraining the Lipshitz constant is a good regularizer

In practice

Is this analysis relevant in practice?

- This analysis regards the ideal losses ($D_{K L}$ VS. $D_{W S}$)
- In practice, both are approximated by similar discriminators
- $L_{\text {WGAN }}=\frac{1}{k} \max _{\|D\|_{L} \leq k} \mathbb{E}_{p_{\text {data }}}[D(\mathbf{x})]-\mathbb{E}_{p_{z}}[D(G(\mathbf{z}))]$
- $L_{G A N}=\frac{1}{k} \max _{D} \mathbb{E}_{p_{\text {data }}}[\log (D(\mathbf{x}))]-\mathbb{E}_{p_{z}}[\log (1-D(G(\mathbf{z})))]$
- In practice, non-overlapping support does not break the discriminator
- Constraining the Lipshitz constant is a good regularizer
- Removing the log avoids vanishing gradients

Lipschitz continuity as a regularizer

- Reminder: k-Lispschitz means $|f(x)-f(y)| \leq|x-y|$
- Reminder: For linear functions, the largest singular value

Lipschitz continuity as a regularizer

- Reminder: k-Lispschitz means $|f(x)-f(y)| \leq|x-y|$
- Reminder: For linear functions, the largest singular value
- Lispschitz continuity now widely used, but avoid clipping

Lipschitz continuity as a regularizer

- Reminder: k-Lispschitz means $|f(x)-f(y)| \leq|x-y|$
- Reminder: For linear functions, the largest singular value
- Lispschitz continuity now widely used, but avoid clipping
- Spectral Normalization [Miyato et al., 2018]
- Approximate the spectral norm using the power iteration method
- Divide each weight matrix by it's spectral norm
- Spectral norm of full network is bounded by the product of norms

Lipschitz continuity as a regularizer

- Reminder: k-Lispschitz means $|f(x)-f(y)| \leq|x-y|$
- Reminder: For linear functions, the largest singular value
- Lispschitz continuity now widely used, but avoid clipping
- Spectral Normalization [Miyato et al., 2018]
- Approximate the spectral norm using the power iteration method
- Divide each weight matrix by it's spectral norm
- Spectral norm of full network is bounded by the product of norms
- Gradient penalty [Gulrajani et al., 2017a]
- Add a penalty to the loss:

$$
\left.G_{\text {pen }}=\lambda \mathbb{E}_{x}\left[\left\|\nabla_{x} D(x)\right\|_{2}-1\right)^{2}\right]
$$

Wrap up

- A lot of other losses have been develloped
- The lipschitz regularization is a widely adopted regularization
- The log is usually avoided to improve gradients when Discriminator is good.

Latent variable inference in GANs [Donahue et al., 2017]

- Vanilla GAN lacks a mechanism to infer \mathbf{z} from \mathbf{x}

Latent variable inference in GANs [Donahue et al., 2017]

- Vanilla GAN lacks a mechanism to infer \mathbf{z} from \mathbf{x}
- Generator: maps latent variable \mathbf{z} to data point \mathbf{x}

Latent variable inference in GANs [Donahue et al., 2017]

- Vanilla GAN lacks a mechanism to infer \mathbf{z} from \mathbf{x}
- Generator: maps latent variable \mathbf{z} to data point \mathbf{x}
- Encoder: infers latent representation zfrom data point \mathbf{x}

Latent variable inference in GANs [Donahue et al., 2017]

- Vanilla GAN lacks a mechanism to infer \mathbf{z} from \mathbf{x}
- Generator: maps latent variable \mathbf{z} to data point \mathbf{x}
- Encoder: infers latent representation \mathbf{z} from data point \mathbf{x}

Induced joint distributions over (x, z)

Induced joint distributions over (x, z)

- Generator: $p_{G}(\mathbf{x}, \mathbf{z})=p_{\mathbf{z}}(\mathbf{z}) \delta(\mathbf{x}-G(\mathbf{z}))$

Induced joint distributions over (x, z)

- Generator: $p_{G}(\mathbf{x}, \mathbf{z})=p_{\mathbf{z}}(\mathbf{z}) \delta(\mathbf{x}-G(\mathbf{z}))$
- Encoder: $p_{E}(\mathbf{x}, \mathbf{z})=p_{\text {data }}(\mathbf{x}) \delta(\mathbf{z}-E(\mathbf{x}))$

Induced joint distributions over (x, z)

- Generator: $p_{G}(\mathbf{x}, \mathbf{z})=p_{\mathbf{z}}(\mathbf{z}) \delta(\mathbf{x}-G(\mathbf{z}))$
- Encoder: $p_{E}(\mathbf{x}, \mathbf{z})=p_{\text {data }}(\mathbf{x}) \delta(\mathbf{z}-E(\mathbf{x}))$
- Discriminator: pair (\mathbf{x}, \mathbf{z}) completed by generator or encoder?

Bidirectional GANs [Donahue et al., 2017]

$V(D, E, G)=\mathbb{E}_{P_{\text {data }}}[\ln D(\mathbf{x}, E(\mathbf{x}))]+\mathbb{E}_{p(\mathbf{z})}[\ln (1-D(G(\mathbf{z}), \mathbf{z}))]$ $\min _{G, E} \max _{D} V(D, E, G)$

Bidirectional GANs [Donahue et al., 2017]

- For optimal discriminator objective equals JS divergence

$$
\max _{D} V(D, E, G)=2 D_{J S}\left(p_{E}(\mathbf{x}, \mathbf{z}) \| p_{G}(\mathbf{x}, \mathbf{z})\right)-\ln 4
$$

Bidirectional GANs [Donahue et al., 2017]

- For optimal discriminator objective equals JS divergence

$$
\max _{D} V(D, E, G)=2 D_{J S}\left(p_{E}(\mathbf{x}, \mathbf{z}) \| p_{G}(\mathbf{x}, \mathbf{z})\right)-\ln 4
$$

- At optimum G and E are each others inverse

Unpaired image-to-image translation [Zhu et al., 2017]

- Learn 2-way mapping between different image domains

Unpaired image-to-image translation [Zhu et al., 2017]

- Learn 2-way mapping between different image domains
- Without using supervised aligned training samples

Unpaired image-to-image translation [Zhu et al., 2017]

- Learn 2-way mapping between different image domains
- Without using supervised aligned training samples

1. Discriminator ensures realistic samples in each domain

Unpaired image-to-image translation [Zhu et al., 2017]

- Learn 2-way mapping between different image domains
- Without using supervised aligned training samples

1. Discriminator ensures realistic samples in each domain
2. Cycle-consistency loss ensures alignment

Some successful examples

Some successful examples

- Without using any supervised/aligned examples!

Input

Output

Some successful examples

- Without using any supervised/aligned examples!

winter Yosemite \rightarrow summer Yosemite

Some successful examples

- Without using any supervised/aligned examples!

Input

Input

Output

Input

Output

horse \rightarrow zebra

winter Yosemite \rightarrow summer Yosemite

orange \rightarrow apple

And a failure case

Wrap-up on GANs

Summary of what we discussed

- Improved losses using lipschitz constraints, inspired by earth-mover distance
- Adversarially trained inference networks.
- Style transfer

Thank you!

Jakob Verbeek

INRIA, Grenoble, France
jakob.verbeek@inria.fr

References

Arjovsky, M., Chintala, S., and Bottou, L. (2017).
Wasserstein generative adversarial networks.
In ICML.

Behrmann, J., Grathwohl, W., Chen, R., Duvenaud, D., and Jacobsen, J.-H. (2019). Invertible residual networks.
In ICML.
\square Burda, Y., Salakhutdinov, R., and Grosse, R. (2016).
Importance weighted autoencoders.
In ICLR.
\square Chen, X., Kingma, D., Salimans, T., Duan, Y., Dhariwal, P., Schulman, J., Sutskever, I., and Abbeel, P. (2017).
Variational lossy autoencoder.
In ICLR.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017).
Density estimation using real NVP.
In ICLR.

Donahue, J., Krähenbühl, P., and Darrell, T. (2017).
Adversarial feature learning.
In ICLR.

References if

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017a). Improved training of Wasserstein GANs.
In NeurlPS.
Gulrajani, I., Kumar, K., Ahmed, F., Taiga, A. A., Visin, F., Vazquez, D., and Courville, A. (2017b).
PixelVAE: A latent variable model for natural images.
In ICLR.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a).
Deep residual learning for image recognition.
In CVPR.

He, K., Zhang, X., Ren, S., and Sun, J. (2016b).
Identity mappings in deep residual networks.
In ECCV.

Kingma, D. and Dhariwal, P. (2018).
Glow: Generative flow with invertible 1×1 convolutions.
In NeurlPS.

Kingma, D., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling, M. (2016). Improved variational inference with inverse autoregressive flow.
In NeurIPS.

References iif

Lucas, T., Shmelkov, K., Alahari, K., Schmid, C., and Verbeek, J. (2019).
Adaptive density estimation for generative models.
In NeurIPS.
Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018).
Spectral normalization for generative adversarial networks.
In ICLR.
R.Chen, Behrmann, J., Duvenaud, D., and Jacobsen, J.-H. (2019).

Residual flows for invertible generative modeling.
In NeurIPS.

Rezende, D. and Mohamed, S. (2015).
Variational inference with normalizing flows.
In ICML.
\square Zhu, J.-Y., Park, T., Isola, P., and Efros, A. (2017).
Unpaired image-to-image translation using cycle-consistent adversarial networks.
In ICCV.

