
Advanced topics in deep generative models

Jakob Verbeek & Thomas Lucas

INRIA, Grenoble, France

Breaking the Surface 2019

Biograd na Moru, Croatia

Part I

Improving Variational

Auto-encoders

1/47

Improving variational autoencoders

• Reminder: VAEs optimize the ELBO, with a KL divergence to

bound the data log-likelihood

F (x, θ, φ) = ln p(x)− D (qφ(z|x)||p(z|x)) (1)

• Generally true posterior is not Gaussian: loose bound

• Encourages true posterior to match variational factored Gaussian

produced by recognition net

• Making progress

1. More accurate bound for given posterior
2. Enlarge the family of variational posteriors

• Hierarchical latent variables

• Improved flexibility with flows

2/47

Improving variational autoencoders

• Reminder: VAEs optimize the ELBO, with a KL divergence to

bound the data log-likelihood

F (x, θ, φ) = ln p(x)− D (qφ(z|x)||p(z|x)) (1)

• Generally true posterior is not Gaussian: loose bound

• Encourages true posterior to match variational factored Gaussian

produced by recognition net

• Making progress

1. More accurate bound for given posterior
2. Enlarge the family of variational posteriors

• Hierarchical latent variables

• Improved flexibility with flows

2/47

Improving variational autoencoders

• Reminder: VAEs optimize the ELBO, with a KL divergence to

bound the data log-likelihood

F (x, θ, φ) = ln p(x)− D (qφ(z|x)||p(z|x)) (1)

• Generally true posterior is not Gaussian: loose bound

• Encourages true posterior to match variational factored Gaussian

produced by recognition net

• Making progress

1. More accurate bound for given posterior
2. Enlarge the family of variational posteriors

• Hierarchical latent variables

• Improved flexibility with flows

2/47

Improving variational autoencoders

• Reminder: VAEs optimize the ELBO, with a KL divergence to

bound the data log-likelihood

F (x, θ, φ) = ln p(x)− D (qφ(z|x)||p(z|x)) (1)

• Generally true posterior is not Gaussian: loose bound

• Encourages true posterior to match variational factored Gaussian

produced by recognition net

• Making progress

1. More accurate bound for given posterior
2. Enlarge the family of variational posteriors

• Hierarchical latent variables

• Improved flexibility with flows

2/47

Improving variational autoencoders

• Reminder: VAEs optimize the ELBO, with a KL divergence to

bound the data log-likelihood

F (x, θ, φ) = ln p(x)− D (qφ(z|x)||p(z|x)) (1)

• Generally true posterior is not Gaussian: loose bound

• Encourages true posterior to match variational factored Gaussian

produced by recognition net

• Making progress

1. More accurate bound for given posterior
2. Enlarge the family of variational posteriors

• Hierarchical latent variables

• Improved flexibility with flows

2/47

Improving variational autoencoders

• Reminder: VAEs optimize the ELBO, with a KL divergence to

bound the data log-likelihood

F (x, θ, φ) = ln p(x)− D (qφ(z|x)||p(z|x)) (1)

• Generally true posterior is not Gaussian: loose bound

• Encourages true posterior to match variational factored Gaussian

produced by recognition net

• Making progress

1. More accurate bound for given posterior

2. Enlarge the family of variational posteriors

• Hierarchical latent variables

• Improved flexibility with flows

2/47

Improving variational autoencoders

• Reminder: VAEs optimize the ELBO, with a KL divergence to

bound the data log-likelihood

F (x, θ, φ) = ln p(x)− D (qφ(z|x)||p(z|x)) (1)

• Generally true posterior is not Gaussian: loose bound

• Encourages true posterior to match variational factored Gaussian

produced by recognition net

• Making progress

1. More accurate bound for given posterior
2. Enlarge the family of variational posteriors

• Hierarchical latent variables

• Improved flexibility with flows

2/47

Importance weighted autoencoders [Burda et al., 2016]

• Construct tighter lower bound using importance sampling

• Define importance weights w(x, z) = p(x, z)/qφ(z|x)

Fk(x, θ, φ) = IEz1,...,zk∼qφ(z|x)

[
ln

1

k

k∑
i=1

w(x, zi)

]

≤ ln IEz1,...,zk∼qφ(z|x)

[
1

k

k∑
i=1

w(x, zi)

]
= ln IEz∼qφ(z|x)[w(x, z)]

= ln p(x)

1. VAE lower bound recovered for k = 1

2. More samples tighten the bound: Fk ≤ Fk+1 ≤ ln p(x)

3. If the weights are bounded, then Fk → ln p(x) as k →∞

• Use as objective to train models,e.g. using k≈10

• Use as likelihood estimator, e.g. with k≈103

3/47

Importance weighted autoencoders [Burda et al., 2016]

• Construct tighter lower bound using importance sampling

• Define importance weights w(x, z) = p(x, z)/qφ(z|x)

Fk(x, θ, φ) = IEz1,...,zk∼qφ(z|x)

[
ln

1

k

k∑
i=1

w(x, zi)

]

≤ ln IEz1,...,zk∼qφ(z|x)

[
1

k

k∑
i=1

w(x, zi)

]
= ln IEz∼qφ(z|x)[w(x, z)]

= ln p(x)

1. VAE lower bound recovered for k = 1

2. More samples tighten the bound: Fk ≤ Fk+1 ≤ ln p(x)

3. If the weights are bounded, then Fk → ln p(x) as k →∞

• Use as objective to train models,e.g. using k≈10

• Use as likelihood estimator, e.g. with k≈103

3/47

Importance weighted autoencoders [Burda et al., 2016]

• Construct tighter lower bound using importance sampling

• Define importance weights w(x, z) = p(x, z)/qφ(z|x)

Fk(x, θ, φ) = IEz1,...,zk∼qφ(z|x)

[
ln

1

k

k∑
i=1

w(x, zi)

]

≤ ln IEz1,...,zk∼qφ(z|x)

[
1

k

k∑
i=1

w(x, zi)

]
= ln IEz∼qφ(z|x)[w(x, z)]

= ln p(x)

1. VAE lower bound recovered for k = 1

2. More samples tighten the bound: Fk ≤ Fk+1 ≤ ln p(x)

3. If the weights are bounded, then Fk → ln p(x) as k →∞

• Use as objective to train models,e.g. using k≈10

• Use as likelihood estimator, e.g. with k≈103

3/47

Importance weighted autoencoders [Burda et al., 2016]

• Construct tighter lower bound using importance sampling

• Define importance weights w(x, z) = p(x, z)/qφ(z|x)

Fk(x, θ, φ) = IEz1,...,zk∼qφ(z|x)

[
ln

1

k

k∑
i=1

w(x, zi)

]

≤ ln IEz1,...,zk∼qφ(z|x)

[
1

k

k∑
i=1

w(x, zi)

]

= ln IEz∼qφ(z|x)[w(x, z)]

= ln p(x)

1. VAE lower bound recovered for k = 1

2. More samples tighten the bound: Fk ≤ Fk+1 ≤ ln p(x)

3. If the weights are bounded, then Fk → ln p(x) as k →∞

• Use as objective to train models,e.g. using k≈10

• Use as likelihood estimator, e.g. with k≈103

3/47

Importance weighted autoencoders [Burda et al., 2016]

• Construct tighter lower bound using importance sampling

• Define importance weights w(x, z) = p(x, z)/qφ(z|x)

Fk(x, θ, φ) = IEz1,...,zk∼qφ(z|x)

[
ln

1

k

k∑
i=1

w(x, zi)

]

≤ ln IEz1,...,zk∼qφ(z|x)

[
1

k

k∑
i=1

w(x, zi)

]
= ln IEz∼qφ(z|x)[w(x, z)]

= ln p(x)

1. VAE lower bound recovered for k = 1

2. More samples tighten the bound: Fk ≤ Fk+1 ≤ ln p(x)

3. If the weights are bounded, then Fk → ln p(x) as k →∞

• Use as objective to train models,e.g. using k≈10

• Use as likelihood estimator, e.g. with k≈103

3/47

Importance weighted autoencoders [Burda et al., 2016]

• Construct tighter lower bound using importance sampling

• Define importance weights w(x, z) = p(x, z)/qφ(z|x)

Fk(x, θ, φ) = IEz1,...,zk∼qφ(z|x)

[
ln

1

k

k∑
i=1

w(x, zi)

]

≤ ln IEz1,...,zk∼qφ(z|x)

[
1

k

k∑
i=1

w(x, zi)

]
= ln IEz∼qφ(z|x)[w(x, z)]

= ln p(x)

1. VAE lower bound recovered for k = 1

2. More samples tighten the bound: Fk ≤ Fk+1 ≤ ln p(x)

3. If the weights are bounded, then Fk → ln p(x) as k →∞

• Use as objective to train models,e.g. using k≈10

• Use as likelihood estimator, e.g. with k≈103

3/47

Importance weighted autoencoders [Burda et al., 2016]

• Construct tighter lower bound using importance sampling

• Define importance weights w(x, z) = p(x, z)/qφ(z|x)

Fk(x, θ, φ) = IEz1,...,zk∼qφ(z|x)

[
ln

1

k

k∑
i=1

w(x, zi)

]

≤ ln IEz1,...,zk∼qφ(z|x)

[
1

k

k∑
i=1

w(x, zi)

]
= ln IEz∼qφ(z|x)[w(x, z)]

= ln p(x)

1. VAE lower bound recovered for k = 1

2. More samples tighten the bound: Fk ≤ Fk+1 ≤ ln p(x)

3. If the weights are bounded, then Fk → ln p(x) as k →∞

• Use as objective to train models,e.g. using k≈10

• Use as likelihood estimator, e.g. with k≈103

3/47

Importance weighted autoencoders [Burda et al., 2016]

• Construct tighter lower bound using importance sampling

• Define importance weights w(x, z) = p(x, z)/qφ(z|x)

Fk(x, θ, φ) = IEz1,...,zk∼qφ(z|x)

[
ln

1

k

k∑
i=1

w(x, zi)

]

≤ ln IEz1,...,zk∼qφ(z|x)

[
1

k

k∑
i=1

w(x, zi)

]
= ln IEz∼qφ(z|x)[w(x, z)]

= ln p(x)

1. VAE lower bound recovered for k = 1

2. More samples tighten the bound: Fk ≤ Fk+1 ≤ ln p(x)

3. If the weights are bounded, then Fk → ln p(x) as k →∞

• Use as objective to train models,e.g. using k≈10

• Use as likelihood estimator, e.g. with k≈103

3/47

Importance weighted autoencoders [Burda et al., 2016]

• Construct tighter lower bound using importance sampling

• Define importance weights w(x, z) = p(x, z)/qφ(z|x)

Fk(x, θ, φ) = IEz1,...,zk∼qφ(z|x)

[
ln

1

k

k∑
i=1

w(x, zi)

]

≤ ln IEz1,...,zk∼qφ(z|x)

[
1

k

k∑
i=1

w(x, zi)

]
= ln IEz∼qφ(z|x)[w(x, z)]

= ln p(x)

1. VAE lower bound recovered for k = 1

2. More samples tighten the bound: Fk ≤ Fk+1 ≤ ln p(x)

3. If the weights are bounded, then Fk → ln p(x) as k →∞

• Use as objective to train models,e.g. using k≈10

• Use as likelihood estimator, e.g. with k≈103

3/47

Importance weighted autoencoders [Burda et al., 2016]

• Construct tighter lower bound using importance sampling

• Define importance weights w(x, z) = p(x, z)/qφ(z|x)

Fk(x, θ, φ) = IEz1,...,zk∼qφ(z|x)

[
ln

1

k

k∑
i=1

w(x, zi)

]

≤ ln IEz1,...,zk∼qφ(z|x)

[
1

k

k∑
i=1

w(x, zi)

]
= ln IEz∼qφ(z|x)[w(x, z)]

= ln p(x)

1. VAE lower bound recovered for k = 1

2. More samples tighten the bound: Fk ≤ Fk+1 ≤ ln p(x)

3. If the weights are bounded, then Fk → ln p(x) as k →∞

• Use as objective to train models,e.g. using k≈10

• Use as likelihood estimator, e.g. with k≈103

3/47

Importance weighted autoencoders [Burda et al., 2016]

• Construct tighter lower bound using importance sampling

• Define importance weights w(x, z) = p(x, z)/qφ(z|x)

Fk(x, θ, φ) = IEz1,...,zk∼qφ(z|x)

[
ln

1

k

k∑
i=1

w(x, zi)

]

≤ ln IEz1,...,zk∼qφ(z|x)

[
1

k

k∑
i=1

w(x, zi)

]
= ln IEz∼qφ(z|x)[w(x, z)]

= ln p(x)

1. VAE lower bound recovered for k = 1

2. More samples tighten the bound: Fk ≤ Fk+1 ≤ ln p(x)

3. If the weights are bounded, then Fk → ln p(x) as k →∞

• Use as objective to train models,e.g. using k≈10

• Use as likelihood estimator, e.g. with k≈103

3/47

Training procedure importance weighted autoencoders

• Gradients of importance weighted lower bound

∇Fk(x) = IEz1:k∼qφ(z|x)

[
k∑

i=1

w̃i∇
(

ln p(x, zi)− ln qφ(zi |x)
)]

• Similar to VAE, but samples weighted w.r.t. true posterior

w̃i = p(zi |x)/qφ(zi |x)
k∑

j=1

w(x, zj) (2)

• Allows for more accurate models with complex posteriors

From [Burda et al., 2016]: True posterior p(z|x) VAE (left) and IW-VAE (right)

4/47

Training procedure importance weighted autoencoders

• Gradients of importance weighted lower bound

∇Fk(x) = IEz1:k∼qφ(z|x)

[
k∑

i=1

w̃i∇
(

ln p(x, zi)− ln qφ(zi |x)
)]

• Similar to VAE, but samples weighted w.r.t. true posterior

w̃i = p(zi |x)/qφ(zi |x)
k∑

j=1

w(x, zj) (2)

• Allows for more accurate models with complex posteriors

From [Burda et al., 2016]: True posterior p(z|x) VAE (left) and IW-VAE (right)

4/47

Training procedure importance weighted autoencoders

• Gradients of importance weighted lower bound

∇Fk(x) = IEz1:k∼qφ(z|x)

[
k∑

i=1

w̃i∇
(

ln p(x, zi)− ln qφ(zi |x)
)]

• Similar to VAE, but samples weighted w.r.t. true posterior

w̃i = p(zi |x)/qφ(zi |x)
k∑

j=1

w(x, zj) (2)

• Allows for more accurate models with complex posteriors

From [Burda et al., 2016]: True posterior p(z|x) VAE (left) and IW-VAE (right) 4/47

Top-down hierarchical sampling

• Multiple levels of latent variables at

increasing resolutions

• Autoregressive distribution p(z1|z2)

over latent variables in 2D grid

• Sample latent variables in same order

when encoding or sampling

• Posterior no longer Gaussian

• q(z1, z2|x) = q(z1|x, z2)q(z2|x)

• Extended VAE log-likelihood bound

F = ln p(x)− DKL(q(z1:L|x)||p(z1:L|x)

= IEq(z1|x)[ln p(x|z1)]︸ ︷︷ ︸
Reconstruction

−
L∑

i=1

IEq(zi+1)[DKL(q(zi |x)||p(zi |zi+1)])︸ ︷︷ ︸
Regularization

5/47

Top-down hierarchical sampling

• Multiple levels of latent variables at

increasing resolutions

• Autoregressive distribution p(z1|z2)

over latent variables in 2D grid

• Sample latent variables in same order

when encoding or sampling

• Posterior no longer Gaussian

• q(z1, z2|x) = q(z1|x, z2)q(z2|x)

• Extended VAE log-likelihood bound

F = ln p(x)− DKL(q(z1:L|x)||p(z1:L|x)

= IEq(z1|x)[ln p(x|z1)]︸ ︷︷ ︸
Reconstruction

−
L∑

i=1

IEq(zi+1)[DKL(q(zi |x)||p(zi |zi+1)])︸ ︷︷ ︸
Regularization

5/47

Top-down hierarchical sampling

• Multiple levels of latent variables at

increasing resolutions

• Autoregressive distribution p(z1|z2)

over latent variables in 2D grid

• Sample latent variables in same order

when encoding or sampling

• Posterior no longer Gaussian

• q(z1, z2|x) = q(z1|x, z2)q(z2|x)

• Extended VAE log-likelihood bound

F = ln p(x)− DKL(q(z1:L|x)||p(z1:L|x)

= IEq(z1|x)[ln p(x|z1)]︸ ︷︷ ︸
Reconstruction

−
L∑

i=1

IEq(zi+1)[DKL(q(zi |x)||p(zi |zi+1)])︸ ︷︷ ︸
Regularization

5/47

Top-down hierarchical sampling

• Multiple levels of latent variables at

increasing resolutions

• Autoregressive distribution p(z1|z2)

over latent variables in 2D grid

• Sample latent variables in same order

when encoding or sampling

• Posterior no longer Gaussian

• q(z1, z2|x) = q(z1|x, z2)q(z2|x)

• Extended VAE log-likelihood bound

F = ln p(x)− DKL(q(z1:L|x)||p(z1:L|x)

= IEq(z1|x)[ln p(x|z1)]︸ ︷︷ ︸
Reconstruction

−
L∑

i=1

IEq(zi+1)[DKL(q(zi |x)||p(zi |zi+1)])︸ ︷︷ ︸
Regularization

5/47

Top-down hierarchical sampling

• Multiple levels of latent variables at

increasing resolutions

• Autoregressive distribution p(z1|z2)

over latent variables in 2D grid

• Sample latent variables in same order

when encoding or sampling

• Posterior no longer Gaussian

• q(z1, z2|x) = q(z1|x, z2)q(z2|x)

• Extended VAE log-likelihood bound

F = ln p(x)− DKL(q(z1:L|x)||p(z1:L|x)

= IEq(z1|x)[ln p(x|z1)]︸ ︷︷ ︸
Reconstruction

−
L∑

i=1

IEq(zi+1)[DKL(q(zi |x)||p(zi |zi+1)])︸ ︷︷ ︸
Regularization

5/47

Variational inference with normalizing flows

• Variational inference (in VAE) uses limited class of posteriors

• For example, Gaussian with diagonal covariance

• Optimizing loose bound on data log-likelihood

• Improve posterior approximation with invertible flow

Figure from [Rezende and Mohamed, 2015]

6/47

Variational inference with normalizing flows

• Variational inference (in VAE) uses limited class of posteriors

• For example, Gaussian with diagonal covariance

• Optimizing loose bound on data log-likelihood

• Improve posterior approximation with invertible flow

Figure from [Rezende and Mohamed, 2015]

6/47

Variational inference with normalizing flows

• Variational inference (in VAE) uses limited class of posteriors

• For example, Gaussian with diagonal covariance

• Optimizing loose bound on data log-likelihood

• Improve posterior approximation with invertible flow

Figure from [Rezende and Mohamed, 2015]

6/47

Normalizing flows

• Let density “flow” through set of invertible transformations

zK = fK ◦ · · · ◦ f2 ◦ f1(z0),

ln qK (zK) = ln q0(z0)−
K∑

k=1

ln

∣∣∣∣det
∂fk
∂zk

∣∣∣∣

• O(D) determinant, rather than O(D3), for planar and radial flows

f (z) = z + uh(w>z + b)

f (z) = z + βh(α, r) (z− z0)

Figure from [Rezende and Mohamed, 2015]

7/47

Normalizing flows

• Let density “flow” through set of invertible transformations

zK = fK ◦ · · · ◦ f2 ◦ f1(z0),

ln qK (zK) = ln q0(z0)−
K∑

k=1

ln

∣∣∣∣det
∂fk
∂zk

∣∣∣∣
• O(D) determinant, rather than O(D3), for planar and radial flows

f (z) = z + uh(w>z + b)

f (z) = z + βh(α, r) (z− z0)

Figure from [Rezende and Mohamed, 2015]

7/47

Normalizing flows

• Let density “flow” through set of invertible transformations

zK = fK ◦ · · · ◦ f2 ◦ f1(z0),

ln qK (zK) = ln q0(z0)−
K∑

k=1

ln

∣∣∣∣det
∂fk
∂zk

∣∣∣∣
• O(D) determinant, rather than O(D3), for planar and radial flows

f (z) = z + uh(w>z + b)

f (z) = z + βh(α, r) (z− z0)

Figure from [Rezende and Mohamed, 2015] 7/47

Autoregressive flow [Kingma et al., 2016]

• Restictive flows in [Rezende and Mohamed, 2015]

• Planar flow similar to MLP with single hidden unit

• Use autoregressive transformations in flow

• Rich and tractable class of transformations

• Fewer transformations needed

8/47

Autoregressive flow [Kingma et al., 2016]

• Class of affine transformations with respect to z

zt+1 = µt + σt � zt

• Autoregressive computation of affine parameters

µt
i+1 = f (zt1:i) σt

i+1 = g(zt1:i)

• Triangular Jacobian, log-determinant
∑D

i=1 log σt
i

• Free to chose form of autoregressive NN dependency

9/47

Autoregressive flow [Kingma et al., 2016]

• Class of affine transformations with respect to z

zt+1 = µt + σt � zt

• Autoregressive computation of affine parameters

µt
i+1 = f (zt1:i) σt

i+1 = g(zt1:i)

• Triangular Jacobian, log-determinant
∑D

i=1 log σt
i

• Free to chose form of autoregressive NN dependency

9/47

Autoregressive flow [Kingma et al., 2016]

• Class of affine transformations with respect to z

zt+1 = µt + σt � zt

• Autoregressive computation of affine parameters

µt
i+1 = f (zt1:i) σt

i+1 = g(zt1:i)

• Triangular Jacobian, log-determinant
∑D

i=1 log σt
i

• Free to chose form of autoregressive NN dependency

9/47

Autoregressive flow [Kingma et al., 2016]

• Class of affine transformations with respect to z

zt+1 = µt + σt � zt

• Autoregressive computation of affine parameters

µt
i+1 = f (zt1:i) σt

i+1 = g(zt1:i)

• Triangular Jacobian, log-determinant
∑D

i=1 log σt
i

• Free to chose form of autoregressive NN dependency

9/47

Autoregressive flow [Kingma et al., 2016]

• Class of affine transformations with respect to z

zt+1 = µt + σt � zt

• Autoregressive computation of affine parameters

µt
i+1 = f (zt1:i) σt

i+1 = g(zt1:i)

• Triangular Jacobian, log-determinant
∑D

i=1 log σt
i

• Free to chose form of autoregressive NN dependency

9/47

Improved VAE — Recap

Ways to improve the tightness of the ELBO:

• Importance weighted autoencoder

• Hierarchical top-down sampling

• Density flow transformation

10/47

Beyond conditional independence assumption in VAE

• Standard VAE decoders assumes conditional independence

p(x|z) =
D∏
i=1

p(xi |z), (3)

p(xi |z) = N (xi ; f
µ
θ (z)i , f

σ
θ (z)i) (4)

• Conditional log-likelihood is `2 reconstruction term

• Bad metric of image similarity

• Leads to blurry images, and over-generalization

11/47

Beyond conditional independence assumption in VAE

• Standard VAE decoders assumes conditional independence

p(x|z) =
D∏
i=1

p(xi |z), (3)

p(xi |z) = N (xi ; f
µ
θ (z)i , f

σ
θ (z)i) (4)

• Conditional log-likelihood is `2 reconstruction term

• Bad metric of image similarity

• Leads to blurry images, and over-generalization

11/47

Beyond conditional independence assumption in VAE

• Standard VAE decoders assumes conditional independence

p(x|z) =
D∏
i=1

p(xi |z), (3)

p(xi |z) = N (xi ; f
µ
θ (z)i , f

σ
θ (z)i) (4)

• Conditional log-likelihood is `2 reconstruction term

• Bad metric of image similarity

• Leads to blurry images, and over-generalization

11/47

Beyond conditional independence assumption in VAE

• Standard VAE decoders assumes conditional independence

p(x|z) =
D∏
i=1

p(xi |z), (3)

p(xi |z) = N (xi ; f
µ
θ (z)i , f

σ
θ (z)i) (4)

• Conditional log-likelihood is `2 reconstruction term

• Bad metric of image similarity

• Leads to blurry images, and over-generalization

11/47

Hybrid PixelCNN-VAE model [Gulrajani et al., 2017b, Chen et al., 2017]

• Variational autoencoder

• Latent variable z generates global dependencies

• Pixels conditionally independent given code

• Autoregressive PixelCNN

• Needs many layers to induce long-range

dependencies

• Doesn’t learn latent representation

12/47

Hybrid PixelCNN-VAE model [Gulrajani et al., 2017b, Chen et al., 2017]

• Variational autoencoder

• Latent variable z generates global dependencies

• Pixels conditionally independent given code

• Autoregressive PixelCNN

• Needs many layers to induce long-range

dependencies

• Doesn’t learn latent representation

12/47

Hybrid PixelCNN-VAE model [Gulrajani et al., 2017b, Chen et al., 2017]

• Variational autoencoder

• Latent variable z generates global dependencies

• Pixels conditionally independent given code

• Autoregressive PixelCNN

• Needs many layers to induce long-range

dependencies

• Doesn’t learn latent representation

12/47

Hybrid PixelVAE model [Gulrajani et al., 2017b]

• Latent var. input to deterministic upsampling decoder f (z)

• Pixel-CNN layers induce local pixel dependencies

p(z) = N (z; 0, I) , (5)

p(x) =

∫
z

p(z)
∏
i

p(xi |x<i , f (z)) (6)

13/47

Hybrid PixelVAE model [Gulrajani et al., 2017b]

• Latent var. input to deterministic upsampling decoder f (z)

• Pixel-CNN layers induce local pixel dependencies

p(z) = N (z; 0, I) , (5)

p(x) =

∫
z

p(z)
∏
i

p(xi |x<i , f (z)) (6)

13/47

Hybrid PixelVAE model [Gulrajani et al., 2017b]

• Latent var. input to deterministic upsampling decoder f (z)

• Pixel-CNN layers induce local pixel dependencies

p(z) = N (z; 0, I) , (5)

p(x) =

∫
z

p(z)
∏
i

p(xi |x<i , f (z)) (6)

13/47

Samples PixelVAE model LSUN dataset

• Model with three levels of stochasticity

• Latent variables at 1×1

• Latent variables at 8×8

• PixelCNN at 64×64

• Hierarchical representation learning

Re-sampling PixelCNN only Re-sampling 8×8 + PixelCNN

14/47

Samples PixelVAE model LSUN dataset

• Model with three levels of stochasticity

• Latent variables at 1×1

• Latent variables at 8×8

• PixelCNN at 64×64

• Hierarchical representation learning

Re-sampling PixelCNN only

Re-sampling 8×8 + PixelCNN

14/47

Samples PixelVAE model LSUN dataset

• Model with three levels of stochasticity

• Latent variables at 1×1

• Latent variables at 8×8

• PixelCNN at 64×64

• Hierarchical representation learning

Re-sampling PixelCNN only

Re-sampling 8×8 + PixelCNN

14/47

Samples PixelVAE model LSUN dataset

• Model with three levels of stochasticity

• Latent variables at 1×1

• Latent variables at 8×8

• PixelCNN at 64×64

• Hierarchical representation learning

Re-sampling PixelCNN only

Re-sampling 8×8 + PixelCNN

14/47

Samples PixelVAE model LSUN dataset

• Model with three levels of stochasticity

• Latent variables at 1×1

• Latent variables at 8×8

• PixelCNN at 64×64

• Hierarchical representation learning

Re-sampling PixelCNN only Re-sampling 8×8 + PixelCNN

14/47

Hybrid VAE-Flow model [Lucas et al., 2019]

• Use flow-model to induce pixel dependencies and non-Gaussianity

• Avoid slow-sampling of pixelCNN, allows for adversarial training

15/47

Hybrid VAE-Flow model [Lucas et al., 2019]

• Use flow-model to induce pixel dependencies and non-Gaussianity

• Avoid slow-sampling of pixelCNN, allows for adversarial training

15/47

Hybrid VAE-Flow model [Lucas et al., 2019]

• Use flow-model to induce pixel dependencies and non-Gaussianity

• Avoid slow-sampling of pixelCNN, allows for adversarial training

15/47

Hybrid VAE-Flow model [Lucas et al., 2019]

• Simple prior on latents, factored conditional on feature space

p(z) = N (z; 0, I) , (7)

py(y|z) = N (y;µ(z),diag (σ(z))) (8)

• Flow across feature space and image space: x = f −1(y)

• Variational inference network on latent space given image

q(z|x) = N (y;m(x),diag (s(x))) (9)

• Evidence lower-bound with change of variables

ln p(x) ≥ IEq(z|x)[ln py(f (x)|z)]− DKL(q(z|x)||p(y)) + ln

∣∣∣∣det
∂f (x)

∂x

∣∣∣∣

16/47

Hybrid VAE-Flow model [Lucas et al., 2019]

• Simple prior on latents, factored conditional on feature space

p(z) = N (z; 0, I) , (7)

py(y|z) = N (y;µ(z),diag (σ(z))) (8)

• Flow across feature space and image space: x = f −1(y)

• Variational inference network on latent space given image

q(z|x) = N (y;m(x),diag (s(x))) (9)

• Evidence lower-bound with change of variables

ln p(x) ≥ IEq(z|x)[ln py(f (x)|z)]− DKL(q(z|x)||p(y)) + ln

∣∣∣∣det
∂f (x)

∂x

∣∣∣∣

16/47

Hybrid VAE-Flow model [Lucas et al., 2019]

• Simple prior on latents, factored conditional on feature space

p(z) = N (z; 0, I) , (7)

py(y|z) = N (y;µ(z),diag (σ(z))) (8)

• Flow across feature space and image space: x = f −1(y)

• Variational inference network on latent space given image

q(z|x) = N (y;m(x),diag (s(x))) (9)

• Evidence lower-bound with change of variables

ln p(x) ≥ IEq(z|x)[ln py(f (x)|z)]− DKL(q(z|x)||p(y)) + ln

∣∣∣∣det
∂f (x)

∂x

∣∣∣∣

16/47

Hybrid VAE-Flow model [Lucas et al., 2019]

• Simple prior on latents, factored conditional on feature space

p(z) = N (z; 0, I) , (7)

py(y|z) = N (y;µ(z),diag (σ(z))) (8)

• Flow across feature space and image space: x = f −1(y)

• Variational inference network on latent space given image

q(z|x) = N (y;m(x),diag (s(x))) (9)

• Evidence lower-bound with change of variables

ln p(x) ≥ IEq(z|x)[ln py(f (x)|z)]− DKL(q(z|x)||p(y)) + ln

∣∣∣∣det
∂f (x)

∂x

∣∣∣∣

16/47

Hybrid VAE-Flow model - Ablation

• Adversarial training critical for good sample quality

• MLE critical for good held-out likelihoods

• Flow improves both likelihoods and sample quality

17/47

Hybrid VAE-Flow model - Comparison to Glow

• AV-ADE: better samples, worse likelihood

• Temperature annealing allows Glow to trade-off the two

LSUN 64×64: Chruches (C) and Bedrooms (B). Figure from [Lucas et al., 2019]
18/47

Hybrid VAE-Flow model - Samples and Images

LSUN 64×64: Dining rooms. Samples left, training images right.

Figure from [Lucas et al., 2019]

19/47

Hybrid VAE-Flow model - Samples and Images

LSUN 64×64: Dining rooms. Samples left, training images right.

Figure from [Lucas et al., 2019]
19/47

Part II

Recent advances in flow-based

generative modeling

20/47

Reduced temperature sampling [Kingma and Dhariwal, 2018]

• Sample closer to the mode of the distribution

pτ (x) ∝ p(x)1/τ (10)

• Approaches mode of p(x) as τ → 0

• Approaches uniform as τ →∞

• Modifies the flow in non-trivial manner

ln pτ (x) ± τ−1 ln pY (f (x)) + τ−1 ln |det (Jf (x))| (11)

• Unchanged flow for pY (y) = N (y ; 0, I) and det (Jf (x)) = const.

pτ (x) ∝ N (f (x); 0, τ I) (12)

• Can sample from reduced Gaussian in latent space, and then project

21/47

Reduced temperature sampling [Kingma and Dhariwal, 2018]

• Sample closer to the mode of the distribution

pτ (x) ∝ p(x)1/τ (10)

• Approaches mode of p(x) as τ → 0

• Approaches uniform as τ →∞

• Modifies the flow in non-trivial manner

ln pτ (x) ± τ−1 ln pY (f (x)) + τ−1 ln |det (Jf (x))| (11)

• Unchanged flow for pY (y) = N (y ; 0, I) and det (Jf (x)) = const.

pτ (x) ∝ N (f (x); 0, τ I) (12)

• Can sample from reduced Gaussian in latent space, and then project

21/47

Reduced temperature sampling [Kingma and Dhariwal, 2018]

• Sample closer to the mode of the distribution

pτ (x) ∝ p(x)1/τ (10)

• Approaches mode of p(x) as τ → 0

• Approaches uniform as τ →∞

• Modifies the flow in non-trivial manner

ln pτ (x) ± τ−1 ln pY (f (x)) + τ−1 ln |det (Jf (x))| (11)

• Unchanged flow for pY (y) = N (y ; 0, I) and det (Jf (x)) = const.

pτ (x) ∝ N (f (x); 0, τ I) (12)

• Can sample from reduced Gaussian in latent space, and then project

21/47

Reduced temperature sampling [Kingma and Dhariwal, 2018]

• Sample closer to the mode of the distribution

pτ (x) ∝ p(x)1/τ (10)

• Approaches mode of p(x) as τ → 0

• Approaches uniform as τ →∞

• Modifies the flow in non-trivial manner

ln pτ (x) ± τ−1 ln pY (f (x)) + τ−1 ln |det (Jf (x))| (11)

• Unchanged flow for pY (y) = N (y ; 0, I) and det (Jf (x)) = const.

pτ (x) ∝ N (f (x); 0, τ I) (12)

• Can sample from reduced Gaussian in latent space, and then project

21/47

Reduced temperature sampling [Kingma and Dhariwal, 2018]

• Sample closer to the mode of the distribution

pτ (x) ∝ p(x)1/τ (10)

• Approaches mode of p(x) as τ → 0

• Approaches uniform as τ →∞

• Modifies the flow in non-trivial manner

ln pτ (x) ± τ−1 ln pY (f (x)) + τ−1 ln |det (Jf (x))| (11)

• Unchanged flow for pY (y) = N (y ; 0, I) and det (Jf (x)) = const.

pτ (x) ∝ N (f (x); 0, τ I) (12)

• Can sample from reduced Gaussian in latent space, and then project

21/47

Additive coupling layers

y1 = x1, y2 = x2 + t (x1)

• Residual layer with variable partitioning

• Can be combined with affine flow layers y = W x

• Determinant constant in x

• Change of basis w.r.t. original variables

Increasing temperature from left to right. Figure from [Kingma and Dhariwal, 2018].

22/47

Additive coupling layers

y1 = x1, y2 = x2 + t (x1)

• Residual layer with variable partitioning

• Can be combined with affine flow layers y = W x

• Determinant constant in x

• Change of basis w.r.t. original variables

Increasing temperature from left to right. Figure from [Kingma and Dhariwal, 2018].

22/47

Additive coupling layers

y1 = x1, y2 = x2 + t (x1)

• Residual layer with variable partitioning

• Can be combined with affine flow layers y = W x

• Determinant constant in x

• Change of basis w.r.t. original variables

Increasing temperature from left to right. Figure from [Kingma and Dhariwal, 2018].

22/47

Additive coupling layers

y1 = x1, y2 = x2 + t (x1)

• Residual layer with variable partitioning

• Can be combined with affine flow layers y = W x
• Determinant constant in x

• Change of basis w.r.t. original variables

Increasing temperature from left to right. Figure from [Kingma and Dhariwal, 2018].

22/47

Additive coupling layers

y1 = x1, y2 = x2 + t (x1)

• Residual layer with variable partitioning

• Can be combined with affine flow layers y = W x
• Determinant constant in x

• Change of basis w.r.t. original variables

Increasing temperature from left to right. Figure from [Kingma and Dhariwal, 2018].

22/47

Additive coupling layers

y1 = x1, y2 = x2 + t (x1)

• Residual layer with variable partitioning

• Can be combined with affine flow layers y = W x
• Determinant constant in x

• Change of basis w.r.t. original variables

Increasing temperature from left to right. Figure from [Kingma and Dhariwal, 2018].
22/47

Recipes for “efficient” invertible flows

y = f (x), Jf (x) =
∂y

∂x>
, (13)

pX (x) = pY (y)× |det (Jf (x))| (14)

• Training: compute f (x) and log-determinant

• Sampling: compute f −1(y)

Figure from [R.Chen et al., 2019]

(a) Planar flow

[Rezende and Mohamed, 2015]

(b) Inverse Autoregressive Flow

[Kingma et al., 2016]

(c) Real-NVP [Dinh et al., 2017]

(d) Invertible ResNet

[Behrmann et al., 2019,

R.Chen et al., 2019]

23/47

Recipes for “efficient” invertible flows

y = f (x), Jf (x) =
∂y

∂x>
, (13)

pX (x) = pY (y)× |det (Jf (x))| (14)

• Training: compute f (x) and log-determinant

• Sampling: compute f −1(y)

Figure from [R.Chen et al., 2019]

(a) Planar flow

[Rezende and Mohamed, 2015]

(b) Inverse Autoregressive Flow

[Kingma et al., 2016]

(c) Real-NVP [Dinh et al., 2017]

(d) Invertible ResNet

[Behrmann et al., 2019,

R.Chen et al., 2019]

23/47

Recipes for “efficient” invertible flows

y = f (x), Jf (x) =
∂y

∂x>
, (13)

pX (x) = pY (y)× |det (Jf (x))| (14)

• Training: compute f (x) and log-determinant

• Sampling: compute f −1(y)

Figure from [R.Chen et al., 2019]

(a) Planar flow

[Rezende and Mohamed, 2015]

(b) Inverse Autoregressive Flow

[Kingma et al., 2016]

(c) Real-NVP [Dinh et al., 2017]

(d) Invertible ResNet

[Behrmann et al., 2019,

R.Chen et al., 2019]

23/47

Recipes for “efficient” invertible flows

y = f (x), Jf (x) =
∂y

∂x>
, (13)

pX (x) = pY (y)× |det (Jf (x))| (14)

• Training: compute f (x) and log-determinant

• Sampling: compute f −1(y)

Figure from [R.Chen et al., 2019]

(a) Planar flow

[Rezende and Mohamed, 2015]

(b) Inverse Autoregressive Flow

[Kingma et al., 2016]

(c) Real-NVP [Dinh et al., 2017]

(d) Invertible ResNet

[Behrmann et al., 2019,

R.Chen et al., 2019]

23/47

Recipes for “efficient” invertible flows

y = f (x), Jf (x) =
∂y

∂x>
, (13)

pX (x) = pY (y)× |det (Jf (x))| (14)

• Training: compute f (x) and log-determinant

• Sampling: compute f −1(y)

Figure from [R.Chen et al., 2019]

(a) Planar flow

[Rezende and Mohamed, 2015]

(b) Inverse Autoregressive Flow

[Kingma et al., 2016]

(c) Real-NVP [Dinh et al., 2017]

(d) Invertible ResNet

[Behrmann et al., 2019,

R.Chen et al., 2019]
23/47

Invertible ResNets [Behrmann et al., 2019]

• Residual Networks [He et al., 2016a, He et al., 2016b]

y := f (x) = x + gθ(x) (15)

• Improves gradient propagation in very deep networks

• State of the art across many tasks, including vision CNNs

24/47

Invertible ResNets [Behrmann et al., 2019]

• Residual Networks [He et al., 2016a, He et al., 2016b]

y := f (x) = x + gθ(x) (15)

• Improves gradient propagation in very deep networks

• State of the art across many tasks, including vision CNNs

24/47

Invertible ResNets [Behrmann et al., 2019]

• Residual Networks [He et al., 2016a, He et al., 2016b]

y := f (x) = x + gθ(x) (15)

• Improves gradient propagation in very deep networks

• State of the art across many tasks, including vision CNNs

24/47

Invertible ResNets [Behrmann et al., 2019]

• Residual Networks [He et al., 2016a, He et al., 2016b]

y := f (x) = x + gθ(x) (15)

• Improves gradient propagation in very deep networks

• State of the art across many tasks, including vision CNNs

24/47

Invertible ResNets [Behrmann et al., 2019]

• Residual Networks [He et al., 2016a, He et al., 2016b]

y := f (x) = x + gθ(x) (15)

• Improves gradient propagation in very deep networks

• State of the art across many tasks, including vision CNNs

24/47

Invertible ResNets

• Residual Networks [He et al., 2016a, He et al., 2016b]

y := f (x) = x + gθ(x) (16)

• ResNets are invertible if Lip(gθ) < 1, i.e.

||gθ(x1)− gθ(x2)||22 ≤ ||x1 − x2||22 (17)

• Inverse can be computed as fixed-point

x0 := y , (18)

x i+1 := y − gθ(x i) (19)

• Unbiased determinant estimator [R.Chen et al., 2019]

• Possible to use ResNet for flow-based generative model

25/47

Invertible ResNets

• Residual Networks [He et al., 2016a, He et al., 2016b]

y := f (x) = x + gθ(x) (16)

• ResNets are invertible if Lip(gθ) < 1, i.e.

||gθ(x1)− gθ(x2)||22 ≤ ||x1 − x2||22 (17)

• Inverse can be computed as fixed-point

x0 := y , (18)

x i+1 := y − gθ(x i) (19)

• Unbiased determinant estimator [R.Chen et al., 2019]

• Possible to use ResNet for flow-based generative model

25/47

Invertible ResNets

• Residual Networks [He et al., 2016a, He et al., 2016b]

y := f (x) = x + gθ(x) (16)

• ResNets are invertible if Lip(gθ) < 1, i.e.

||gθ(x1)− gθ(x2)||22 ≤ ||x1 − x2||22 (17)

• Inverse can be computed as fixed-point

x0 := y , (18)

x i+1 := y − gθ(x i) (19)

• Unbiased determinant estimator [R.Chen et al., 2019]

• Possible to use ResNet for flow-based generative model

25/47

Invertible ResNets

• Residual Networks [He et al., 2016a, He et al., 2016b]

y := f (x) = x + gθ(x) (16)

• ResNets are invertible if Lip(gθ) < 1, i.e.

||gθ(x1)− gθ(x2)||22 ≤ ||x1 − x2||22 (17)

• Inverse can be computed as fixed-point

x0 := y , (18)

x i+1 := y − gθ(x i) (19)

• Unbiased determinant estimator [R.Chen et al., 2019]

• Possible to use ResNet for flow-based generative model

25/47

Invertible ResNets

• Residual Networks [He et al., 2016a, He et al., 2016b]

y := f (x) = x + gθ(x) (16)

• ResNets are invertible if Lip(gθ) < 1, i.e.

||gθ(x1)− gθ(x2)||22 ≤ ||x1 − x2||22 (17)

• Inverse can be computed as fixed-point

x0 := y , (18)

x i+1 := y − gθ(x i) (19)

• Unbiased determinant estimator [R.Chen et al., 2019]

• Possible to use ResNet for flow-based generative model

25/47

Generative modeling with invertible ResNets

f (x) = x + gθ(x) (20)

• All variables updates in every flow step,

unlike variable partitioning-scheme in Real-NVP

• Faster “mixing” between variables

Figure from [Behrmann et al., 2019]

26/47

Generative modeling with invertible ResNets

f (x) = x + gθ(x) (20)

• All variables updates in every flow step,

unlike variable partitioning-scheme in Real-NVP

• Faster “mixing” between variables

Figure from [Behrmann et al., 2019]

26/47

Generative modeling with invertible ResNets

f (x) = x + gθ(x) (20)

• All variables updates in every flow step,

unlike variable partitioning-scheme in Real-NVP

• Faster “mixing” between variables

Figure from [Behrmann et al., 2019]

26/47

Generative modeling with invertible ResNets

f (x) = x + gθ(x) (20)

• All variables updates in every flow step,

unlike variable partitioning-scheme in Real-NVP

• Faster “mixing” between variables

Figure from [Behrmann et al., 2019] 26/47

Invertible ResNets [Behrmann et al., 2019]

• Hybrid discriminative-generative training

L = λ ln p(x) + ln p(y |x) (21)

• Network fully invertible,

until last linear classifier that projects on the label space

Results on CIFAR-10 from [R.Chen et al., 2019]

27/47

Invertible ResNets [Behrmann et al., 2019]

• Hybrid discriminative-generative training

L = λ ln p(x) + ln p(y |x) (21)

• Network fully invertible,

until last linear classifier that projects on the label space

Results on CIFAR-10 from [R.Chen et al., 2019]

27/47

Invertible ResNets [Behrmann et al., 2019]

• Hybrid discriminative-generative training

L = λ ln p(x) + ln p(y |x) (21)

• Network fully invertible,

until last linear classifier that projects on the label space

Results on CIFAR-10 from [R.Chen et al., 2019]

27/47

Part III

Stabilizing GAN training

28/47

A discussion on the GAN training loss

• Recall divergence measures between distributions

• Kullback-Leibler divergence: maximum likelihood training

• Infinite if q (model) has a zero in the support of p (data)

DKL(p||q) =

∫
x

p(x)
[

ln q(x)− ln p(x)
]

(22)

• Jensen-Shannon divergence: idealized loss approximated by the

discriminator

• Symmetric KL to mixture of p and q

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)
(23)

29/47

A discussion on the GAN training loss

• Recall divergence measures between distributions

• Kullback-Leibler divergence: maximum likelihood training

• Infinite if q (model) has a zero in the support of p (data)

DKL(p||q) =

∫
x

p(x)
[

ln q(x)− ln p(x)
]

(22)

• Jensen-Shannon divergence: idealized loss approximated by the

discriminator

• Symmetric KL to mixture of p and q

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)
(23)

29/47

A discussion on the GAN training loss

• Recall divergence measures between distributions

• Kullback-Leibler divergence: maximum likelihood training

• Infinite if q (model) has a zero in the support of p (data)

DKL(p||q) =

∫
x

p(x)
[

ln q(x)− ln p(x)
]

(22)

• Jensen-Shannon divergence: idealized loss approximated by the

discriminator

• Symmetric KL to mixture of p and q

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)
(23)

29/47

A discussion on the GAN training loss

• Recall divergence measures between distributions

• Kullback-Leibler divergence: maximum likelihood training

• Infinite if q (model) has a zero in the support of p (data)

DKL(p||q) =

∫
x

p(x)
[

ln q(x)− ln p(x)
]

(22)

• Jensen-Shannon divergence: idealized loss approximated by the

discriminator

• Symmetric KL to mixture of p and q

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)
(23)

29/47

A discussion on the GAN training loss

• Training loss for the Discriminator:

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEz∼p(z)[ln(1− Dφ(fθ(z)))] (24)

• Training loss for the Discriminator:

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEz∼p(z)[ln(1− Dφ(fθ(z)))]

• Approximates the ideal loss:

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)
(25)

• The blue term is independent from the model pθ, and disapears

when differentiating

• The generator is trained on the red term

30/47

A discussion on the GAN training loss

• Training loss for the Discriminator:

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEz∼p(z)[ln(1− Dφ(fθ(z)))]

• Approximates the ideal loss:

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)
(24)

• The blue term is independent from the model pθ, and disapears

when differentiating

• The generator is trained on the red term

30/47

A discussion on the GAN training loss

• Training loss for the Discriminator:

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEz∼p(z)[ln(1− Dφ(fθ(z)))]

• Approximates the ideal loss:

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)
(24)

• Approximates the ideal loss:

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)
(25)

• The blue term is independent from the model pθ, and disapears

when differentiating

• The generator is trained on the red term

30/47

A discussion on the GAN training loss

• Training loss for the Discriminator:

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEz∼p(z)[ln(1− Dφ(fθ(z)))]

• Approximates the ideal loss:

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)
(24)

• The blue term is independent from the model pθ, and disapears

when differentiating

• The generator is trained on the red term

30/47

A discussion on the GAN training loss

• Training loss for the Discriminator:

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEz∼p(z)[ln(1− Dφ(fθ(z)))]

• Approximates the ideal loss:

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)
(24)

• The blue term is independent from the model pθ, and disapears

when differentiating

• The generator is trained on the red term

30/47

A discussion on the GAN training loss

• Training loss for the Discriminator:

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEz∼p(z)[ln(1− Dφ(fθ(z)))]

• Approximates the ideal loss:

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)
(24)

• The blue term is independent from the model pθ, and disapears

when differentiating

• The generator is trained on the red term

30/47

Quality driven training

• Training loss for the generator: DKL

(
q
∣∣∣∣∣∣ p+q

2

)

• It is an integral on q, opposite to maximum-likelihood estimation

Quality-driven training

(b)

Data

Model

Mode-dropping

Coverage-driven training

(a)

Data

Model

Over-generalization

1
2DKL

(
q
∣∣∣∣∣∣ p+q

2

)
1
2DKL

(
p
∣∣∣∣∣∣ p+q

2

)

31/47

Quality driven training

• Training loss for the generator: DKL

(
q
∣∣∣∣∣∣ p+q

2

)
• It is an integral on q, opposite to maximum-likelihood estimation

Quality-driven training

(b)

Data

Model

Mode-dropping

Coverage-driven training

(a)

Data

Model

Over-generalization

1
2DKL

(
q
∣∣∣∣∣∣ p+q

2

)
1
2DKL

(
p
∣∣∣∣∣∣ p+q

2

)

31/47

Quality driven training

• Training loss for the generator: DKL

(
q
∣∣∣∣∣∣ p+q

2

)
• It is an integral on q, opposite to maximum-likelihood estimation

Quality-driven training

(b)

Data

Model

Mode-dropping

Coverage-driven training

(a)

Data

Model

Over-generalization

1
2DKL

(
q
∣∣∣∣∣∣ p+q

2

)
1
2DKL

(
p
∣∣∣∣∣∣ p+q

2

)

31/47

Quality driven training

• Training loss for the generator: DKL

(
q
∣∣∣∣∣∣ p+q

2

)
• It is an integral on q, opposite to maximum-likelihood estimation

Quality-driven training

(b)

Data

Model

Mode-dropping

Coverage-driven training

(a)

Data

Model

Over-generalization

1
2DKL

(
q
∣∣∣∣∣∣ p+q

2

)
1
2DKL

(
p
∣∣∣∣∣∣ p+q

2

)
31/47

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1. Strong discriminator leads to vanishing gradients of

IEpz [ln(1− D(G (z)))] w.r.t. generator

• Happens early in training with poor generator

• Tuning of capacity and training regime of discriminator

2. Minimizing −IEpz [ln(D(G (z)))] instead to boost gradient

• Optimizes KL(pG ||pdata)− 2JS(pG ||pdata)

• Wrong sign in the JS divergence

• Same stable points in the minimax optimization

• Helps, but problem remains: as Dφ becomes strong, gradients vanish

32/47

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1. Strong discriminator leads to vanishing gradients of

IEpz [ln(1− D(G (z)))] w.r.t. generator

• Happens early in training with poor generator

• Tuning of capacity and training regime of discriminator

2. Minimizing −IEpz [ln(D(G (z)))] instead to boost gradient

• Optimizes KL(pG ||pdata)− 2JS(pG ||pdata)

• Wrong sign in the JS divergence

• Same stable points in the minimax optimization

• Helps, but problem remains: as Dφ becomes strong, gradients vanish

32/47

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1. Strong discriminator leads to vanishing gradients of

IEpz [ln(1− D(G (z)))] w.r.t. generator

• Happens early in training with poor generator

• Tuning of capacity and training regime of discriminator

2. Minimizing −IEpz [ln(D(G (z)))] instead to boost gradient

• Optimizes KL(pG ||pdata)− 2JS(pG ||pdata)

• Wrong sign in the JS divergence

• Same stable points in the minimax optimization

• Helps, but problem remains: as Dφ becomes strong, gradients vanish

32/47

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1. Strong discriminator leads to vanishing gradients of

IEpz [ln(1− D(G (z)))] w.r.t. generator

• Happens early in training with poor generator

• Tuning of capacity and training regime of discriminator

2. Minimizing −IEpz [ln(D(G (z)))] instead to boost gradient

• Optimizes KL(pG ||pdata)− 2JS(pG ||pdata)

• Wrong sign in the JS divergence

• Same stable points in the minimax optimization

• Helps, but problem remains: as Dφ becomes strong, gradients vanish

32/47

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1. Strong discriminator leads to vanishing gradients of

IEpz [ln(1− D(G (z)))] w.r.t. generator

• Happens early in training with poor generator

• Tuning of capacity and training regime of discriminator

2. Minimizing −IEpz [ln(D(G (z)))] instead to boost gradient

• Optimizes KL(pG ||pdata)− 2JS(pG ||pdata)

• Wrong sign in the JS divergence

• Same stable points in the minimax optimization

• Helps, but problem remains: as Dφ becomes strong, gradients vanish

32/47

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1. Strong discriminator leads to vanishing gradients of

IEpz [ln(1− D(G (z)))] w.r.t. generator

• Happens early in training with poor generator

• Tuning of capacity and training regime of discriminator

2. Minimizing −IEpz [ln(D(G (z)))] instead to boost gradient

• Optimizes KL(pG ||pdata)− 2JS(pG ||pdata)

• Wrong sign in the JS divergence

• Same stable points in the minimax optimization

• Helps, but problem remains: as Dφ becomes strong, gradients vanish

32/47

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1. Strong discriminator leads to vanishing gradients of

IEpz [ln(1− D(G (z)))] w.r.t. generator

• Happens early in training with poor generator

• Tuning of capacity and training regime of discriminator

2. Minimizing −IEpz [ln(D(G (z)))] instead to boost gradient

• Optimizes KL(pG ||pdata)− 2JS(pG ||pdata)

• Wrong sign in the JS divergence

• Same stable points in the minimax optimization

• Helps, but problem remains: as Dφ becomes strong, gradients vanish

32/47

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1. Strong discriminator leads to vanishing gradients of

IEpz [ln(1− D(G (z)))] w.r.t. generator

• Happens early in training with poor generator

• Tuning of capacity and training regime of discriminator

2. Minimizing −IEpz [ln(D(G (z)))] instead to boost gradient

• Optimizes KL(pG ||pdata)− 2JS(pG ||pdata)

• Wrong sign in the JS divergence

• Same stable points in the minimax optimization

• Helps, but problem remains: as Dφ becomes strong, gradients vanish

32/47

Question:

Can we think of a better ’ideal loss’?

33/47

Wasserstein or “earth-mover” distance

• Consider joint distribution γ(x , y)

with marginals p(x) = γ(x) and q(y) = γ(y)

• Conditional γ(y |x) “moves mass” to transform p(·) into q(·)

• Cost associated with a given transformation

T (γ) =

∫
x,y

γ(x , y) ||x − y || =

∫
x

p(x)

∫
y

γ(y |x) ||x − y ||

• Wasserstein distance is the cost of optimal transformation

DWS(p||q) = inf
γ∈Γ(p,q)

T (γ) (25)

34/47

Wasserstein or “earth-mover” distance

• Consider joint distribution γ(x , y)

with marginals p(x) = γ(x) and q(y) = γ(y)

• Conditional γ(y |x) “moves mass” to transform p(·) into q(·)

• Cost associated with a given transformation

T (γ) =

∫
x,y

γ(x , y) ||x − y || =

∫
x

p(x)

∫
y

γ(y |x) ||x − y ||

• Wasserstein distance is the cost of optimal transformation

DWS(p||q) = inf
γ∈Γ(p,q)

T (γ) (25)

34/47

Wasserstein or “earth-mover” distance

• Consider joint distribution γ(x , y)

with marginals p(x) = γ(x) and q(y) = γ(y)

• Conditional γ(y |x) “moves mass” to transform p(·) into q(·)

• Cost associated with a given transformation

T (γ) =

∫
x,y

γ(x , y) ||x − y || =

∫
x

p(x)

∫
y

γ(y |x) ||x − y ||

• Wasserstein distance is the cost of optimal transformation

DWS(p||q) = inf
γ∈Γ(p,q)

T (γ) (25)

34/47

Wasserstein or “earth-mover” distance

• Consider joint distribution γ(x , y)

with marginals p(x) = γ(x) and q(y) = γ(y)

• Conditional γ(y |x) “moves mass” to transform p(·) into q(·)

• Cost associated with a given transformation

T (γ) =

∫
x,y

γ(x , y) ||x − y || =

∫
x

p(x)

∫
y

γ(y |x) ||x − y ||

• Wasserstein distance is the cost of optimal transformation

DWS(p||q) = inf
γ∈Γ(p,q)

T (γ) (25)

34/47

Distributions with low dimensional support

• Simple example: support on lines in IR2

• p0 uniform on x2 ∈ [0, 1] for x1 = 0

• pθ uniform on x2 ∈ [0, 1] for x1 = θ

• All measures zero for θ = 0, but for θ 6= 0

• DKL(p0||pθ) =∞
• DJS(p0||pθ) = ln 2

• DWS(p0||pθ) = |θ|

• Wasserstein based on proximity of support

• JS and KL based on overlap of support

• In general measure zero overlap with low dim. supports

• GAN has support with dimension of latent variable z

35/47

Distributions with low dimensional support

• Simple example: support on lines in IR2

• p0 uniform on x2 ∈ [0, 1] for x1 = 0

• pθ uniform on x2 ∈ [0, 1] for x1 = θ

• All measures zero for θ = 0, but for θ 6= 0

• DKL(p0||pθ) =∞
• DJS(p0||pθ) = ln 2

• DWS(p0||pθ) = |θ|

• Wasserstein based on proximity of support

• JS and KL based on overlap of support

• In general measure zero overlap with low dim. supports

• GAN has support with dimension of latent variable z

35/47

Distributions with low dimensional support

• Simple example: support on lines in IR2

• p0 uniform on x2 ∈ [0, 1] for x1 = 0

• pθ uniform on x2 ∈ [0, 1] for x1 = θ

• All measures zero for θ = 0, but for θ 6= 0

• DKL(p0||pθ) =∞

• DJS(p0||pθ) = ln 2

• DWS(p0||pθ) = |θ|

• Wasserstein based on proximity of support

• JS and KL based on overlap of support

• In general measure zero overlap with low dim. supports

• GAN has support with dimension of latent variable z

35/47

Distributions with low dimensional support

• Simple example: support on lines in IR2

• p0 uniform on x2 ∈ [0, 1] for x1 = 0

• pθ uniform on x2 ∈ [0, 1] for x1 = θ

• All measures zero for θ = 0, but for θ 6= 0

• DKL(p0||pθ) =∞
• DJS(p0||pθ) = ln 2

• DWS(p0||pθ) = |θ|

• Wasserstein based on proximity of support

• JS and KL based on overlap of support

• In general measure zero overlap with low dim. supports

• GAN has support with dimension of latent variable z

35/47

Distributions with low dimensional support

• Simple example: support on lines in IR2

• p0 uniform on x2 ∈ [0, 1] for x1 = 0

• pθ uniform on x2 ∈ [0, 1] for x1 = θ

• All measures zero for θ = 0, but for θ 6= 0

• DKL(p0||pθ) =∞
• DJS(p0||pθ) = ln 2

• DWS(p0||pθ) = |θ|

• Wasserstein based on proximity of support

• JS and KL based on overlap of support

• In general measure zero overlap with low dim. supports

• GAN has support with dimension of latent variable z

35/47

Distributions with low dimensional support

• Simple example: support on lines in IR2

• p0 uniform on x2 ∈ [0, 1] for x1 = 0

• pθ uniform on x2 ∈ [0, 1] for x1 = θ

• All measures zero for θ = 0, but for θ 6= 0

• DKL(p0||pθ) =∞
• DJS(p0||pθ) = ln 2

• DWS(p0||pθ) = |θ|

• Wasserstein based on proximity of support

• JS and KL based on overlap of support

• In general measure zero overlap with low dim. supports

• GAN has support with dimension of latent variable z

35/47

Distributions with low dimensional support

• Simple example: support on lines in IR2

• p0 uniform on x2 ∈ [0, 1] for x1 = 0

• pθ uniform on x2 ∈ [0, 1] for x1 = θ

• All measures zero for θ = 0, but for θ 6= 0

• DKL(p0||pθ) =∞
• DJS(p0||pθ) = ln 2

• DWS(p0||pθ) = |θ|

• Wasserstein based on proximity of support

• JS and KL based on overlap of support

• In general measure zero overlap with low dim. supports

• GAN has support with dimension of latent variable z

35/47

Distributions with low dimensional support

• Simple example: support on lines in IR2

• p0 uniform on x2 ∈ [0, 1] for x1 = 0

• pθ uniform on x2 ∈ [0, 1] for x1 = θ

• All measures zero for θ = 0, but for θ 6= 0

• DKL(p0||pθ) =∞
• DJS(p0||pθ) = ln 2

• DWS(p0||pθ) = |θ|

• Wasserstein based on proximity of support

• JS and KL based on overlap of support

• In general measure zero overlap with low dim. supports

• GAN has support with dimension of latent variable z

35/47

Distributions with low dimensional support

• Simple example: support on lines in IR2

• p0 uniform on x2 ∈ [0, 1] for x1 = 0

• pθ uniform on x2 ∈ [0, 1] for x1 = θ

• All measures zero for θ = 0, but for θ 6= 0

• DKL(p0||pθ) =∞
• DJS(p0||pθ) = ln 2

• DWS(p0||pθ) = |θ|

• Wasserstein based on proximity of support

• JS and KL based on overlap of support

• In general measure zero overlap with low dim. supports

• GAN has support with dimension of latent variable z

35/47

Wasserstein GAN

• Dual formulation of Wasserstein distance

DWS(pdata||q) = inf
γ∈Γ(p,q)

T (γ) (26)

=
1

k
max
||D||L≤k

IEpdata
[D(x)]− IEpz [D(G (z))] (27)

1. ||.||L is the lipschitz norm

2. In practice: restrict D to some deep net architecture

3. Enforce Lipschitz constraint by clipping discriminator weights or

penalty on gradient magnitude [Gulrajani et al., 2017a]

• Removes log-sigmoid transformation w.r.t. normal GAN

36/47

Wasserstein GAN

• Dual formulation of Wasserstein distance

DWS(pdata||q) = inf
γ∈Γ(p,q)

T (γ) (26)

=
1

k
max
||D||L≤k

IEpdata
[D(x)]− IEpz [D(G (z))] (27)

1. ||.||L is the lipschitz norm

2. In practice: restrict D to some deep net architecture

3. Enforce Lipschitz constraint by clipping discriminator weights or

penalty on gradient magnitude [Gulrajani et al., 2017a]

• Removes log-sigmoid transformation w.r.t. normal GAN

36/47

Wasserstein GAN

• Dual formulation of Wasserstein distance

DWS(pdata||q) = inf
γ∈Γ(p,q)

T (γ) (26)

=
1

k
max
||D||L≤k

IEpdata
[D(x)]− IEpz [D(G (z))] (27)

1. ||.||L is the lipschitz norm

2. In practice: restrict D to some deep net architecture

3. Enforce Lipschitz constraint by clipping discriminator weights or

penalty on gradient magnitude [Gulrajani et al., 2017a]

• Removes log-sigmoid transformation w.r.t. normal GAN

36/47

Wasserstein GAN

• Dual formulation of Wasserstein distance

DWS(pdata||q) = inf
γ∈Γ(p,q)

T (γ) (26)

=
1

k
max
||D||L≤k

IEpdata
[D(x)]− IEpz [D(G (z))] (27)

1. ||.||L is the lipschitz norm

2. In practice: restrict D to some deep net architecture

3. Enforce Lipschitz constraint by clipping discriminator weights or

penalty on gradient magnitude [Gulrajani et al., 2017a]

• Removes log-sigmoid transformation w.r.t. normal GAN

36/47

Wasserstein GAN

• Dual formulation of Wasserstein distance

DWS(pdata||q) = inf
γ∈Γ(p,q)

T (γ) (26)

=
1

k
max
||D||L≤k

IEpdata
[D(x)]− IEpz [D(G (z))] (27)

1. ||.||L is the lipschitz norm

2. In practice: restrict D to some deep net architecture

3. Enforce Lipschitz constraint by clipping discriminator weights or

penalty on gradient magnitude [Gulrajani et al., 2017a]

• Removes log-sigmoid transformation w.r.t. normal GAN

36/47

Wasserstein GAN

• Dual formulation of Wasserstein distance

DWS(pdata||q) = inf
γ∈Γ(p,q)

T (γ) (26)

=
1

k
max
||D||L≤k

IEpdata
[D(x)]− IEpz [D(G (z))] (27)

1. ||.||L is the lipschitz norm

2. In practice: restrict D to some deep net architecture

3. Enforce Lipschitz constraint by clipping discriminator weights or

penalty on gradient magnitude [Gulrajani et al., 2017a]

• Removes log-sigmoid transformation w.r.t. normal GAN

36/47

Experimental comparison GAN and WGAN

• WGAN loss may decrease in a more stable manner

• WGAN loss correlates better with sample quality

GAN
37/47

Experimental comparison GAN and WGAN

• WGAN loss may decrease in a more stable manner

• WGAN loss correlates better with sample quality

WGAN
37/47

In practice

Is this analysis relevant in practice?

• This analysis regards the ideal losses (DKL VS. DWS)

• In practice, both are approximated by similar discriminators

• LWGAN = 1
k

max||D||L≤k IEpdata [D(x)]− IEpz [D(G(z))]

• LGAN = 1
k

maxD IEpdata [log(D(x))]− IEpz [log(1− D(G(z)))]

• In practice, non-overlapping support does not break the discriminator

• Constraining the Lipshitz constant is a good regularizer

• Removing the log avoids vanishing gradients

38/47

In practice

Is this analysis relevant in practice?

• This analysis regards the ideal losses (DKL VS. DWS)

• In practice, both are approximated by similar discriminators

• LWGAN = 1
k

max||D||L≤k IEpdata [D(x)]− IEpz [D(G(z))]

• LGAN = 1
k

maxD IEpdata [log(D(x))]− IEpz [log(1− D(G(z)))]

• In practice, non-overlapping support does not break the discriminator

• Constraining the Lipshitz constant is a good regularizer

• Removing the log avoids vanishing gradients

38/47

In practice

Is this analysis relevant in practice?

• This analysis regards the ideal losses (DKL VS. DWS)

• In practice, both are approximated by similar discriminators

• LWGAN = 1
k

max||D||L≤k IEpdata [D(x)]− IEpz [D(G(z))]

• LGAN = 1
k

maxD IEpdata [log(D(x))]− IEpz [log(1− D(G(z)))]

• In practice, non-overlapping support does not break the discriminator

• Constraining the Lipshitz constant is a good regularizer

• Removing the log avoids vanishing gradients

38/47

In practice

Is this analysis relevant in practice?

• This analysis regards the ideal losses (DKL VS. DWS)

• In practice, both are approximated by similar discriminators

• LWGAN = 1
k

max||D||L≤k IEpdata [D(x)]− IEpz [D(G(z))]

• LGAN = 1
k

maxD IEpdata [log(D(x))]− IEpz [log(1− D(G(z)))]

• In practice, non-overlapping support does not break the discriminator

• Constraining the Lipshitz constant is a good regularizer

• Removing the log avoids vanishing gradients

38/47

In practice

Is this analysis relevant in practice?

• This analysis regards the ideal losses (DKL VS. DWS)

• In practice, both are approximated by similar discriminators

• LWGAN = 1
k

max||D||L≤k IEpdata [D(x)]− IEpz [D(G(z))]

• LGAN = 1
k

maxD IEpdata [log(D(x))]− IEpz [log(1− D(G(z)))]

• In practice, non-overlapping support does not break the discriminator

• Constraining the Lipshitz constant is a good regularizer

• Removing the log avoids vanishing gradients

38/47

In practice

Is this analysis relevant in practice?

• This analysis regards the ideal losses (DKL VS. DWS)

• In practice, both are approximated by similar discriminators

• LWGAN = 1
k

max||D||L≤k IEpdata [D(x)]− IEpz [D(G(z))]

• LGAN = 1
k

maxD IEpdata [log(D(x))]− IEpz [log(1− D(G(z)))]

• In practice, non-overlapping support does not break the discriminator

• Constraining the Lipshitz constant is a good regularizer

• Removing the log avoids vanishing gradients

38/47

Lipschitz continuity as a regularizer

• Reminder: k-Lispschitz means |f (x)− f (y)| ≤ |x − y |
• Reminder: For linear functions, the largest singular value

• Lispschitz continuity now widely used, but avoid clipping

• Spectral Normalization [Miyato et al., 2018]

• Approximate the spectral norm using the power iteration method

• Divide each weight matrix by it’s spectral norm

• Spectral norm of full network is bounded by the product of norms

• Gradient penalty [Gulrajani et al., 2017a]

• Add a penalty to the loss:

Gpen = λEx [||∇xD(x)||2 − 1)2]

39/47

Lipschitz continuity as a regularizer

• Reminder: k-Lispschitz means |f (x)− f (y)| ≤ |x − y |
• Reminder: For linear functions, the largest singular value

• Lispschitz continuity now widely used, but avoid clipping

• Spectral Normalization [Miyato et al., 2018]

• Approximate the spectral norm using the power iteration method

• Divide each weight matrix by it’s spectral norm

• Spectral norm of full network is bounded by the product of norms

• Gradient penalty [Gulrajani et al., 2017a]

• Add a penalty to the loss:

Gpen = λEx [||∇xD(x)||2 − 1)2]

39/47

Lipschitz continuity as a regularizer

• Reminder: k-Lispschitz means |f (x)− f (y)| ≤ |x − y |
• Reminder: For linear functions, the largest singular value

• Lispschitz continuity now widely used, but avoid clipping

• Spectral Normalization [Miyato et al., 2018]

• Approximate the spectral norm using the power iteration method

• Divide each weight matrix by it’s spectral norm

• Spectral norm of full network is bounded by the product of norms

• Gradient penalty [Gulrajani et al., 2017a]

• Add a penalty to the loss:

Gpen = λEx [||∇xD(x)||2 − 1)2]

39/47

Lipschitz continuity as a regularizer

• Reminder: k-Lispschitz means |f (x)− f (y)| ≤ |x − y |
• Reminder: For linear functions, the largest singular value

• Lispschitz continuity now widely used, but avoid clipping

• Spectral Normalization [Miyato et al., 2018]

• Approximate the spectral norm using the power iteration method

• Divide each weight matrix by it’s spectral norm

• Spectral norm of full network is bounded by the product of norms

• Gradient penalty [Gulrajani et al., 2017a]

• Add a penalty to the loss:

Gpen = λEx [||∇xD(x)||2 − 1)2]

39/47

Wrap up

• A lot of other losses have been develloped

• The lipschitz regularization is a widely adopted regularization

• The log is usually avoided to improve gradients when Discriminator

is good.

40/47

Latent variable inference in GANs [Donahue et al., 2017]

• Vanilla GAN lacks a mechanism to infer z from x

• Generator: maps latent variable z to data point x

• Encoder: infers latent representation z from data point x

41/47

Latent variable inference in GANs [Donahue et al., 2017]

• Vanilla GAN lacks a mechanism to infer z from x

• Generator: maps latent variable z to data point x

• Encoder: infers latent representation z from data point x

41/47

Latent variable inference in GANs [Donahue et al., 2017]

• Vanilla GAN lacks a mechanism to infer z from x

• Generator: maps latent variable z to data point x

• Encoder: infers latent representation z from data point x

41/47

Latent variable inference in GANs [Donahue et al., 2017]

• Vanilla GAN lacks a mechanism to infer z from x

• Generator: maps latent variable z to data point x

• Encoder: infers latent representation z from data point x

41/47

Induced joint distributions over (x, z)

• Generator: pG (x, z) = pz(z) δ (x− G (z))

• Encoder: pE (x, z) = pdata(x) δ (z− E (x))

• Discriminator: pair (x, z) completed by generator or encoder?

42/47

Induced joint distributions over (x, z)

• Generator: pG (x, z) = pz(z) δ (x− G (z))

• Encoder: pE (x, z) = pdata(x) δ (z− E (x))

• Discriminator: pair (x, z) completed by generator or encoder?

42/47

Induced joint distributions over (x, z)

• Generator: pG (x, z) = pz(z) δ (x− G (z))

• Encoder: pE (x, z) = pdata(x) δ (z− E (x))

• Discriminator: pair (x, z) completed by generator or encoder?

42/47

Induced joint distributions over (x, z)

• Generator: pG (x, z) = pz(z) δ (x− G (z))

• Encoder: pE (x, z) = pdata(x) δ (z− E (x))

• Discriminator: pair (x, z) completed by generator or encoder?

42/47

Bidirectional GANs [Donahue et al., 2017]

V (D,E ,G) = IEpdata [lnD(x,E(x))] + IEp(z)[ln(1− D(G(z), z))]

min
G ,E

max
D

V (D,E ,G)

• For optimal discriminator objective equals JS divergence

max
D

V (D,E ,G) = 2DJS (pE (x, z)||pG (x, z))− ln 4

• At optimum G and E are each others inverse

43/47

Bidirectional GANs [Donahue et al., 2017]

V (D,E ,G) = IEpdata [lnD(x,E(x))] + IEp(z)[ln(1− D(G(z), z))]

min
G ,E

max
D

V (D,E ,G)

• For optimal discriminator objective equals JS divergence

max
D

V (D,E ,G) = 2DJS (pE (x, z)||pG (x, z))− ln 4

• At optimum G and E are each others inverse

43/47

Bidirectional GANs [Donahue et al., 2017]

V (D,E ,G) = IEpdata [lnD(x,E(x))] + IEp(z)[ln(1− D(G(z), z))]

min
G ,E

max
D

V (D,E ,G)

• For optimal discriminator objective equals JS divergence

max
D

V (D,E ,G) = 2DJS (pE (x, z)||pG (x, z))− ln 4

• At optimum G and E are each others inverse

43/47

Unpaired image-to-image translation [Zhu et al., 2017]

• Learn 2-way mapping between different image domains

• Without using supervised aligned training samples

1. Discriminator ensures realistic samples in each domain

2. Cycle-consistency loss ensures alignment

44/47

Unpaired image-to-image translation [Zhu et al., 2017]

• Learn 2-way mapping between different image domains

• Without using supervised aligned training samples

1. Discriminator ensures realistic samples in each domain

2. Cycle-consistency loss ensures alignment

44/47

Unpaired image-to-image translation [Zhu et al., 2017]

• Learn 2-way mapping between different image domains

• Without using supervised aligned training samples

1. Discriminator ensures realistic samples in each domain

2. Cycle-consistency loss ensures alignment

44/47

Unpaired image-to-image translation [Zhu et al., 2017]

• Learn 2-way mapping between different image domains

• Without using supervised aligned training samples

1. Discriminator ensures realistic samples in each domain

2. Cycle-consistency loss ensures alignment

44/47

Some successful examples

• Without using any supervised/aligned examples!

45/47

Some successful examples

• Without using any supervised/aligned examples!

45/47

Some successful examples

• Without using any supervised/aligned examples!

45/47

Some successful examples

• Without using any supervised/aligned examples!

45/47

And a failure case

46/47

Wrap-up on GANs

Summary of what we discussed

• Improved losses using lipschitz constraints, inspired by earth-mover

distance

• Adversarially trained inference networks.

• Style transfer

47/47

Thank you!

Jakob Verbeek

INRIA, Grenoble, France

jakob.verbeek@inria.fr

References i

Arjovsky, M., Chintala, S., and Bottou, L. (2017).

Wasserstein generative adversarial networks.

In ICML.

Behrmann, J., Grathwohl, W., Chen, R., Duvenaud, D., and Jacobsen, J.-H. (2019).

Invertible residual networks.

In ICML.

Burda, Y., Salakhutdinov, R., and Grosse, R. (2016).

Importance weighted autoencoders.

In ICLR.

Chen, X., Kingma, D., Salimans, T., Duan, Y., Dhariwal, P., Schulman, J., Sutskever, I.,

and Abbeel, P. (2017).

Variational lossy autoencoder.

In ICLR.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017).

Density estimation using real NVP.

In ICLR.

Donahue, J., Krähenbühl, P., and Darrell, T. (2017).

Adversarial feature learning.

In ICLR.

References ii

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017a).

Improved training of Wasserstein GANs.

In NeurIPS.

Gulrajani, I., Kumar, K., Ahmed, F., Taiga, A. A., Visin, F., Vazquez, D., and Courville, A.

(2017b).

PixelVAE: A latent variable model for natural images.

In ICLR.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a).

Deep residual learning for image recognition.

In CVPR.

He, K., Zhang, X., Ren, S., and Sun, J. (2016b).

Identity mappings in deep residual networks.

In ECCV.

Kingma, D. and Dhariwal, P. (2018).

Glow: Generative flow with invertible 1x1 convolutions.

In NeurIPS.

Kingma, D., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling, M. (2016).

Improved variational inference with inverse autoregressive flow.

In NeurIPS.

References iii

Lucas, T., Shmelkov, K., Alahari, K., Schmid, C., and Verbeek, J. (2019).

Adaptive density estimation for generative models.

In NeurIPS.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018).

Spectral normalization for generative adversarial networks.

In ICLR.

R.Chen, Behrmann, J., Duvenaud, D., and Jacobsen, J.-H. (2019).

Residual flows for invertible generative modeling.

In NeurIPS.

Rezende, D. and Mohamed, S. (2015).

Variational inference with normalizing flows.

In ICML.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. (2017).

Unpaired image-to-image translation using cycle-consistent adversarial networks.

In ICCV.

	Improving Variational Auto-encoders
	Recent advances in flow-based generative modeling
	Stabilizing GAN training
	Appendix

