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Part I

Improving Variational

Auto-encoders
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Improving variational autoencoders

• Reminder: VAEs optimize the ELBO, with a KL divergence to

bound the data log-likelihood

F (x, θ, φ) = ln p(x)− D (qφ(z|x)||p(z|x)) (1)

• Generally true posterior is not Gaussian: loose bound

• Encourages true posterior to match variational factored Gaussian

produced by recognition net

• Making progress

1. More accurate bound for given posterior
2. Enlarge the family of variational posteriors

• Hierarchical latent variables

• Improved flexibility with flows
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Importance weighted autoencoders [Burda et al., 2016]

• Construct tighter lower bound using importance sampling

• Define importance weights w(x, z) = p(x, z)/qφ(z|x)

Fk(x, θ, φ) = IEz1,...,zk∼qφ(z|x)

[
ln

1

k

k∑
i=1

w(x, zi )

]

≤ ln IEz1,...,zk∼qφ(z|x)

[
1

k

k∑
i=1

w(x, zi )

]
= ln IEz∼qφ(z|x)[w(x, z)]

= ln p(x)

1. VAE lower bound recovered for k = 1

2. More samples tighten the bound: Fk ≤ Fk+1 ≤ ln p(x)

3. If the weights are bounded, then Fk → ln p(x) as k →∞

• Use as objective to train models,e.g. using k≈10

• Use as likelihood estimator, e.g. with k≈103
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Training procedure importance weighted autoencoders

• Gradients of importance weighted lower bound

∇Fk(x) = IEz1:k∼qφ(z|x)

[
k∑

i=1

w̃i∇
(

ln p(x, zi )− ln qφ(zi |x)
)]

• Similar to VAE, but samples weighted w.r.t. true posterior

w̃i = p(zi |x)/qφ(zi |x)
k∑

j=1

w(x, zj) (2)

• Allows for more accurate models with complex posteriors

From [Burda et al., 2016]: True posterior p(z|x) VAE (left) and IW-VAE (right)
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Top-down hierarchical sampling

• Multiple levels of latent variables at

increasing resolutions

• Autoregressive distribution p(z1|z2)

over latent variables in 2D grid

• Sample latent variables in same order

when encoding or sampling

• Posterior no longer Gaussian

• q(z1, z2|x) = q(z1|x, z2)q(z2|x)

• Extended VAE log-likelihood bound

F = ln p(x)− DKL(q(z1:L|x)||p(z1:L|x)

= IEq(z1|x)[ln p(x|z1)]︸ ︷︷ ︸
Reconstruction

−
L∑

i=1

IEq(zi+1)[DKL(q(zi |x)||p(zi |zi+1)])︸ ︷︷ ︸
Regularization
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Variational inference with normalizing flows

• Variational inference (in VAE) uses limited class of posteriors

• For example, Gaussian with diagonal covariance

• Optimizing loose bound on data log-likelihood

• Improve posterior approximation with invertible flow

Figure from [Rezende and Mohamed, 2015]
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Normalizing flows

• Let density “flow” through set of invertible transformations

zK = fK ◦ · · · ◦ f2 ◦ f1(z0),

ln qK (zK ) = ln q0(z0)−
K∑

k=1

ln

∣∣∣∣det
∂fk
∂zk

∣∣∣∣

• O(D) determinant, rather than O(D3), for planar and radial flows

f (z) = z + uh(w>z + b)

f (z) = z + βh(α, r) (z− z0)

Figure from [Rezende and Mohamed, 2015]
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Autoregressive flow [Kingma et al., 2016]

• Restictive flows in [Rezende and Mohamed, 2015]

• Planar flow similar to MLP with single hidden unit

• Use autoregressive transformations in flow

• Rich and tractable class of transformations

• Fewer transformations needed

8/47



Autoregressive flow [Kingma et al., 2016]

• Class of affine transformations with respect to z

zt+1 = µt + σt � zt

• Autoregressive computation of affine parameters

µt
i+1 = f (zt1:i ) σt

i+1 = g(zt1:i )

• Triangular Jacobian, log-determinant
∑D

i=1 log σt
i

• Free to chose form of autoregressive NN dependency
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Improved VAE — Recap

Ways to improve the tightness of the ELBO:

• Importance weighted autoencoder

• Hierarchical top-down sampling

• Density flow transformation

10/47



Beyond conditional independence assumption in VAE

• Standard VAE decoders assumes conditional independence

p(x|z) =
D∏
i=1

p(xi |z), (3)

p(xi |z) = N (xi ; f
µ
θ (z)i , f

σ
θ (z)i ) (4)

• Conditional log-likelihood is `2 reconstruction term

• Bad metric of image similarity

• Leads to blurry images, and over-generalization
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Hybrid PixelCNN-VAE model [Gulrajani et al., 2017b, Chen et al., 2017]

• Variational autoencoder

• Latent variable z generates global dependencies

• Pixels conditionally independent given code

• Autoregressive PixelCNN

• Needs many layers to induce long-range

dependencies

• Doesn’t learn latent representation
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Hybrid PixelVAE model [Gulrajani et al., 2017b]

• Latent var. input to deterministic upsampling decoder f (z)

• Pixel-CNN layers induce local pixel dependencies

p(z) = N (z; 0, I ) , (5)

p(x) =

∫
z

p(z)
∏
i

p(xi |x<i , f (z)) (6)
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Samples PixelVAE model LSUN dataset

• Model with three levels of stochasticity

• Latent variables at 1×1

• Latent variables at 8×8

• PixelCNN at 64×64

• Hierarchical representation learning

Re-sampling PixelCNN only Re-sampling 8×8 + PixelCNN
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Hybrid VAE-Flow model [Lucas et al., 2019]

• Use flow-model to induce pixel dependencies and non-Gaussianity

• Avoid slow-sampling of pixelCNN, allows for adversarial training
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Hybrid VAE-Flow model [Lucas et al., 2019]

• Simple prior on latents, factored conditional on feature space

p(z) = N (z; 0, I ) , (7)

py(y|z) = N (y;µ(z),diag (σ(z))) (8)

• Flow across feature space and image space: x = f −1(y)

• Variational inference network on latent space given image

q(z|x) = N (y;m(x),diag (s(x))) (9)

• Evidence lower-bound with change of variables

ln p(x) ≥ IEq(z|x)[ln py(f (x)|z)]− DKL(q(z|x)||p(y)) + ln

∣∣∣∣det
∂f (x)

∂x

∣∣∣∣
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Hybrid VAE-Flow model - Ablation

• Adversarial training critical for good sample quality

• MLE critical for good held-out likelihoods

• Flow improves both likelihoods and sample quality
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Hybrid VAE-Flow model - Comparison to Glow

• AV-ADE: better samples, worse likelihood

• Temperature annealing allows Glow to trade-off the two

LSUN 64×64: Chruches (C) and Bedrooms (B). Figure from [Lucas et al., 2019]
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Hybrid VAE-Flow model - Samples and Images

LSUN 64×64: Dining rooms. Samples left, training images right.

Figure from [Lucas et al., 2019]
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Part II

Recent advances in flow-based

generative modeling

20/47



Reduced temperature sampling [Kingma and Dhariwal, 2018]

• Sample closer to the mode of the distribution

pτ (x) ∝ p(x)1/τ (10)

• Approaches mode of p(x) as τ → 0

• Approaches uniform as τ →∞

• Modifies the flow in non-trivial manner

ln pτ (x) ± τ−1 ln pY (f (x)) + τ−1 ln |det (Jf (x))| (11)

• Unchanged flow for pY (y) = N (y ; 0, I ) and det (Jf (x)) = const.

pτ (x) ∝ N (f (x); 0, τ I ) (12)

• Can sample from reduced Gaussian in latent space, and then project

21/47



Reduced temperature sampling [Kingma and Dhariwal, 2018]

• Sample closer to the mode of the distribution

pτ (x) ∝ p(x)1/τ (10)

• Approaches mode of p(x) as τ → 0

• Approaches uniform as τ →∞

• Modifies the flow in non-trivial manner

ln pτ (x) ± τ−1 ln pY (f (x)) + τ−1 ln |det (Jf (x))| (11)

• Unchanged flow for pY (y) = N (y ; 0, I ) and det (Jf (x)) = const.

pτ (x) ∝ N (f (x); 0, τ I ) (12)

• Can sample from reduced Gaussian in latent space, and then project

21/47



Reduced temperature sampling [Kingma and Dhariwal, 2018]

• Sample closer to the mode of the distribution

pτ (x) ∝ p(x)1/τ (10)

• Approaches mode of p(x) as τ → 0

• Approaches uniform as τ →∞

• Modifies the flow in non-trivial manner

ln pτ (x) ± τ−1 ln pY (f (x)) + τ−1 ln |det (Jf (x))| (11)

• Unchanged flow for pY (y) = N (y ; 0, I ) and det (Jf (x)) = const.

pτ (x) ∝ N (f (x); 0, τ I ) (12)

• Can sample from reduced Gaussian in latent space, and then project

21/47



Reduced temperature sampling [Kingma and Dhariwal, 2018]

• Sample closer to the mode of the distribution

pτ (x) ∝ p(x)1/τ (10)

• Approaches mode of p(x) as τ → 0

• Approaches uniform as τ →∞

• Modifies the flow in non-trivial manner

ln pτ (x) ± τ−1 ln pY (f (x)) + τ−1 ln |det (Jf (x))| (11)

• Unchanged flow for pY (y) = N (y ; 0, I ) and det (Jf (x)) = const.

pτ (x) ∝ N (f (x); 0, τ I ) (12)

• Can sample from reduced Gaussian in latent space, and then project

21/47



Reduced temperature sampling [Kingma and Dhariwal, 2018]

• Sample closer to the mode of the distribution

pτ (x) ∝ p(x)1/τ (10)

• Approaches mode of p(x) as τ → 0

• Approaches uniform as τ →∞

• Modifies the flow in non-trivial manner

ln pτ (x) ± τ−1 ln pY (f (x)) + τ−1 ln |det (Jf (x))| (11)

• Unchanged flow for pY (y) = N (y ; 0, I ) and det (Jf (x)) = const.

pτ (x) ∝ N (f (x); 0, τ I ) (12)

• Can sample from reduced Gaussian in latent space, and then project

21/47



Additive coupling layers

y1 = x1, y2 = x2 + t (x1)

• Residual layer with variable partitioning

• Can be combined with affine flow layers y = W x

• Determinant constant in x

• Change of basis w.r.t. original variables

Increasing temperature from left to right. Figure from [Kingma and Dhariwal, 2018].
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Recipes for “efficient” invertible flows

y = f (x), Jf (x) =
∂y

∂x>
, (13)

pX (x) = pY (y)× |det (Jf (x))| (14)

• Training: compute f (x) and log-determinant

• Sampling: compute f −1(y)

Figure from [R.Chen et al., 2019]

(a) Planar flow

[Rezende and Mohamed, 2015]

(b) Inverse Autoregressive Flow

[Kingma et al., 2016]

(c) Real-NVP [Dinh et al., 2017]

(d) Invertible ResNet

[Behrmann et al., 2019,

R.Chen et al., 2019]
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Invertible ResNets [Behrmann et al., 2019]

• Residual Networks [He et al., 2016a, He et al., 2016b]

y := f (x) = x + gθ(x) (15)

• Improves gradient propagation in very deep networks

• State of the art across many tasks, including vision CNNs
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Invertible ResNets

• Residual Networks [He et al., 2016a, He et al., 2016b]

y := f (x) = x + gθ(x) (16)

• ResNets are invertible if Lip(gθ) < 1, i.e.

||gθ(x1)− gθ(x2)||22 ≤ ||x1 − x2||22 (17)

• Inverse can be computed as fixed-point

x0 := y , (18)

x i+1 := y − gθ(x i ) (19)

• Unbiased determinant estimator [R.Chen et al., 2019]

• Possible to use ResNet for flow-based generative model
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Generative modeling with invertible ResNets

f (x) = x + gθ(x) (20)

• All variables updates in every flow step,

unlike variable partitioning-scheme in Real-NVP

• Faster “mixing” between variables

Figure from [Behrmann et al., 2019]
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Invertible ResNets [Behrmann et al., 2019]

• Hybrid discriminative-generative training

L = λ ln p(x) + ln p(y |x) (21)

• Network fully invertible,

until last linear classifier that projects on the label space

Results on CIFAR-10 from [R.Chen et al., 2019]
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Part III

Stabilizing GAN training
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A discussion on the GAN training loss

• Recall divergence measures between distributions

• Kullback-Leibler divergence: maximum likelihood training

• Infinite if q (model) has a zero in the support of p (data)

DKL(p||q) =

∫
x

p(x)
[

ln q(x)− ln p(x)
]

(22)

• Jensen-Shannon divergence: idealized loss approximated by the

discriminator

• Symmetric KL to mixture of p and q

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)
(23)
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A discussion on the GAN training loss

• Training loss for the Discriminator:

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEz∼p(z)[ln(1− Dφ(fθ(z)))] (24)

• Training loss for the Discriminator:

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEz∼p(z)[ln(1− Dφ(fθ(z)))]

• Approximates the ideal loss:

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)
(25)

• The blue term is independent from the model pθ, and disapears

when differentiating

• The generator is trained on the red term
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Quality driven training

• Training loss for the generator: DKL

(
q
∣∣∣∣∣∣ p+q

2

)

• It is an integral on q, opposite to maximum-likelihood estimation

Quality-driven training

(b)

Data

Model

Mode-dropping

Coverage-driven training

(a)

Data

Model

Over-generalization

1
2DKL

(
q
∣∣∣∣∣∣ p+q

2

)
1
2DKL

(
p
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Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1. Strong discriminator leads to vanishing gradients of

IEpz [ln(1− D(G (z)))] w.r.t. generator

• Happens early in training with poor generator

• Tuning of capacity and training regime of discriminator

2. Minimizing −IEpz [ln(D(G (z)))] instead to boost gradient

• Optimizes KL(pG ||pdata)− 2JS(pG ||pdata)

• Wrong sign in the JS divergence

• Same stable points in the minimax optimization

• Helps, but problem remains: as Dφ becomes strong, gradients vanish
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Question:

Can we think of a better ’ideal loss’?

33/47



Wasserstein or “earth-mover” distance

• Consider joint distribution γ(x , y)

with marginals p(x) = γ(x) and q(y) = γ(y)

• Conditional γ(y |x) “moves mass” to transform p(·) into q(·)

• Cost associated with a given transformation

T (γ) =

∫
x,y

γ(x , y) ||x − y || =

∫
x

p(x)

∫
y

γ(y |x) ||x − y ||

• Wasserstein distance is the cost of optimal transformation

DWS(p||q) = inf
γ∈Γ(p,q)

T (γ) (25)
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Distributions with low dimensional support

• Simple example: support on lines in IR2

• p0 uniform on x2 ∈ [0, 1] for x1 = 0

• pθ uniform on x2 ∈ [0, 1] for x1 = θ

• All measures zero for θ = 0, but for θ 6= 0

• DKL(p0||pθ) =∞
• DJS(p0||pθ) = ln 2

• DWS(p0||pθ) = |θ|

• Wasserstein based on proximity of support

• JS and KL based on overlap of support

• In general measure zero overlap with low dim. supports

• GAN has support with dimension of latent variable z
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Wasserstein GAN

• Dual formulation of Wasserstein distance

DWS(pdata||q) = inf
γ∈Γ(p,q)

T (γ) (26)

=
1

k
max
||D||L≤k

IEpdata
[D(x)]− IEpz [D(G (z))] (27)

1. ||.||L is the lipschitz norm

2. In practice: restrict D to some deep net architecture

3. Enforce Lipschitz constraint by clipping discriminator weights or

penalty on gradient magnitude [Gulrajani et al., 2017a]

• Removes log-sigmoid transformation w.r.t. normal GAN
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Experimental comparison GAN and WGAN

• WGAN loss may decrease in a more stable manner

• WGAN loss correlates better with sample quality

GAN
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In practice

Is this analysis relevant in practice?

• This analysis regards the ideal losses (DKL VS. DWS)

• In practice, both are approximated by similar discriminators

• LWGAN = 1
k

max||D||L≤k IEpdata [D(x)]− IEpz [D(G(z))]

• LGAN = 1
k

maxD IEpdata [log(D(x))]− IEpz [log(1− D(G(z)))]

• In practice, non-overlapping support does not break the discriminator

• Constraining the Lipshitz constant is a good regularizer

• Removing the log avoids vanishing gradients
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Lipschitz continuity as a regularizer

• Reminder: k-Lispschitz means |f (x)− f (y)| ≤ |x − y |
• Reminder: For linear functions, the largest singular value

• Lispschitz continuity now widely used, but avoid clipping

• Spectral Normalization [Miyato et al., 2018]

• Approximate the spectral norm using the power iteration method

• Divide each weight matrix by it’s spectral norm

• Spectral norm of full network is bounded by the product of norms

• Gradient penalty [Gulrajani et al., 2017a]

• Add a penalty to the loss:

Gpen = λEx [||∇xD(x)||2 − 1)2]
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Wrap up

• A lot of other losses have been develloped

• The lipschitz regularization is a widely adopted regularization

• The log is usually avoided to improve gradients when Discriminator

is good.
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Latent variable inference in GANs [Donahue et al., 2017]

• Vanilla GAN lacks a mechanism to infer z from x

• Generator: maps latent variable z to data point x

• Encoder: infers latent representation z from data point x
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Induced joint distributions over (x, z)

• Generator: pG (x, z) = pz(z) δ (x− G (z))

• Encoder: pE (x, z) = pdata(x) δ (z− E (x))

• Discriminator: pair (x, z) completed by generator or encoder?
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Bidirectional GANs [Donahue et al., 2017]

V (D,E ,G) = IEpdata [lnD(x,E(x))] + IEp(z)[ln(1− D(G(z), z))]

min
G ,E

max
D

V (D,E ,G)

• For optimal discriminator objective equals JS divergence

max
D

V (D,E ,G) = 2DJS (pE (x, z)||pG (x, z))− ln 4

• At optimum G and E are each others inverse
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Unpaired image-to-image translation [Zhu et al., 2017]

• Learn 2-way mapping between different image domains

• Without using supervised aligned training samples

1. Discriminator ensures realistic samples in each domain

2. Cycle-consistency loss ensures alignment
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Some successful examples

• Without using any supervised/aligned examples!
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And a failure case
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Wrap-up on GANs

Summary of what we discussed

• Improved losses using lipschitz constraints, inspired by earth-mover

distance

• Adversarially trained inference networks.

• Style transfer
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Thank you!

Jakob Verbeek

INRIA, Grenoble, France

jakob.verbeek@inria.fr
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