

Towards Robust Visual Object Tracking: Proposal Selection & Occlusion Reasoning

Yang HUA

PhD Defense, June 10 2016

Rapporteur	Dr. Patrick PÉREZ
Rapporteur	Pr. Deva RAMANAN
Examinateur	Pr. Jiří MATAS
Examinateur	Dr. Florent PERRONNIN
Directeur de these	Dr. Cordelia SCHMID
Co-encadrant de these	Dr. Karteek ALAHARI

 Emerging technologies which require robust object tracking — Microsoft HoloLens

 Emerging technologies which require robust object tracking — Microsoft HoloLens

 Emerging technologies which require robust object tracking — Google Self-Driving Car

Image courtesy of Google (https://www.google.com/selfdrivingcar/)

 Emerging technologies which require robust object tracking — Google Self-Driving Car

 Emerging technologies which require robust object tracking — HEXO+ Drone

 Emerging technologies which require robust object tracking — HEXO+ Drone

Visual Object Tracking

- "... the problem of estimating the **trajectory** of an object in the image plane **as it moves around a scene**" [Yilmaz'06]
- Setup: initial object position is defined at the beginning of a video

(1) bounding box

(2) ellipse

(3) contour

Visual Object Tracking

- "... the problem of estimating the **trajectory** of an object in the image plane **as it moves around a scene**" [Yilmaz'06]
- Setup: initial object position is defined at the beginning of a video

(1) bounding box

(2) ellipse

(3) contour

RADAR Miles, 19953

Tracking-By-Detection Template matching [Lucas and Kanade, 1981, Tomasi and Kanade, 1991]

Tracking-By-Detection Discriminative modeling [Avidan, 2004, Grabner et al., 2006, Hare et al., 2011]

- - - - - ▶ Now

g-By-Detection native modeling 1994, Gesterer et el., Nere et el., 2011]

Tracking Dataset & Challenge [Wu et al., 2013, Kristan et al., 2013]

Deep Learning for Tracking [Nam & Han, 2016]

Visual Object Tracking: Applications

 Plays a fundamental role for high-level computer vision tasks — Video segmentation [Li'13]

Visual Object Tracking: Applications

 Plays a fundamental role for high-level computer vision tasks — Action localization [Weinzaepfel'15]

Challenge: Significant Transformations

Challenge: Significant Transformations

Challenge: Occlusion or Leaving/Re-entering the Field-of-View

Challenge: Occlusion or Leaving/Re-entering the Field-of-View

Contributions of this thesis

Proposal and selection framework for short-term tracking

- Publication: Y. Hua, K. Alahari, and C. Schmid. Online object tracking with proposal selection. In ICCV, 2015
- Award: "Winning tracker" in the VOT-TIR2015 challenge

Contributions of this thesis

• Robust model update in the context of long-term tracking

• Publication: Y. Hua, K. Alahari, and C. Schmid. Occlusion and motion reasoning for long-term tracking. In ECCV, 2014

Outline

• Online Object Tracking with Proposal Selection

• Occlusion and Motion Reasoning for Long-term Tracking

• Conclusion and Future Work

- A successful approach on diverse benchmarks [Wu'13, Kristan'13/'14]
 - Structured Output Tracking with Kernels (Struck) [Hare'11]
 - Pixel based LUT Tracker (PLT) [Heng'12]
 - Discriminative Scale Space Tracker (DSST) [Danelljan'14]

Update model

- Two key points
 - Discriminative learning

- Two key points
 - Discriminative learning

- Two key points
 - Discriminative learning
 - Pixel-accurate localization

IoU = 0.9

IoU = 0.7

IoU = 0.5

- Limitations of existing methods
 - Can not handle challenging conditions where an object undergoes transformations, e.g., severe rotation
 - Select tracking results based on detection score only

Frame 10

Our approach: Proposal Selection Tracking

0

Frame T

Do detection

Update model

Our approach: Proposal Selection Tracking

Update model

Proposals

- Detection proposals
- Geometry proposals
 - Compute frame-to-frame pixel correspondences with optical flow [Brox'11]
 - Estimate similarity transformations with Hough transform voting [Lowe'04]

Ground truth

Detection proposal

Geometry proposal

Selection

- Multiple cues for selection
 - Detection scores
 - Edgebox score [Zitnick'14], originally from edge response [Dollár'13]

High edgebox score

Low edgebox score

Selection

- Multiple cues for selection
 - Edgebox scores from edge responses and motion boundaries
 [Weinzaepfel'15] are complementary

Edge Responses

Motion boundaries
Selection

- How to combine multiple cues?
 - Propose a two-phase strategy

Phase I

Detection score

Phase I

In frame t, select candidates whose detection scores (DS_i^t) are statistically similar to the best detection score (DS_{best}^t) , i.e.,

$$\frac{DS_{best}^t - DS_i^t}{DS_{best}^t} < 1\%$$

Selection

- How to combine multiple cues?
 - Propose a two-phase strategy

Phase I

Detection score

Motion boundaries

Phase II
 Determine result with the best
 normalized edgebox scores
 from edge responses and
 motion boundaries

$$ES_{norm}^{t} = \frac{ES^{t} - \mu_{[t-5,t-1]}}{\sigma_{[t-5,t-1]}}$$

Selection

How to combine multiple cues?
 Need for the two-phase strategy

Low edgebox score, but high detection score High edgebox score, but low detection score

• Online Tracking Benchmark (OTB) Dataset [Wu'13]

- Online Tracking Benchmark (OTB) Evaluation Metrics
 - Precision Plot: Percentage of frames with location error less than threshold
 - Success Plot: Percentage of frames with overlap larger than threshold

- Online Tracking Benchmark (OTB) Results: Our variants
 - -Our-ss
 - Proposal: detection (single scale)
 - Selection: detection score

- Online Tracking Benchmark (OTB) Results: Our variants
 - -Our-ms
 - Proposal: detection (multiple scales)
 - Selection: detection score

- Online Tracking Benchmark (OTB) Results: Our variants
 - -Our-ms-rot
 - Proposal: detection (multiple scales) + geometry
 - Selection: detection score

- Online Tracking Benchmark (OTB) Results: Our variants
 - Our-ms-rot-e
 - Proposal: detection (multiple scales) + geometry
 - Selection: detection + edgebox (edge response) scores

Success plot

- Online Tracking Benchmark (OTB) Results: Our variants
 - Our-ms-rot-em
 - Proposal: detection (multiple scales) + geometry
 - Selection: detection + edgebox (edge & motion boundary response) scores
 Success plot

• Online Tracking Benchmark (OTB) Results: Ours vs. others

• Online Tracking Benchmark (OTB) Results: Ours vs. others

• Online Tracking Benchmark (OTB) Results: Ours vs. others

- Participated in VOT 2015 competitions with a simplified framework
- Visual Object Tracking (VOT) Challenge Evaluation Metrics
 - Accuracy: Average overlap during successful tracking
 - Robustness: Number of times a tracker drifts off the target

• Thermal Infrared Visual Object Tracking (VOT-TIR) 2015 Challenge Dataset (20 seq.) [Felsberg'15]

 Thermal Infrared Visual Object Tracking (VOT-TIR) 2015 Challenge Results

Selection: detection score only			
Acc. (Overlap)	Rob. (#Failures)		
0.670	0.35		

Number of Failures

 Thermal Infrared Visual Object Tracking (VOT-TIR) 2015 Challenge Results

Selection: detection score only		Selection: detection + edgebox score	
Acc. (Overlap)	Rob. (#Failures)	Acc. (Overlap)	Rob. (#Failures)
0.670	0.35	0.702	0.30

Number of Failures

• Video demo

motocross sequence

---- DSST ----- PLT14 ----- Struck ----- Our-ms-rot ----- Ground truth

Summary: Proposal Selection Tracking

- Proposed a generalized discriminative tracking-by-detection framework for short-term tracking
 - New geometry proposals
 - A novel selection scheme based on multiple cues
- Achieved state-of-the-art performance on challenging datasets
- Participated in recent challenges
 - "Winning tracker" from 24 trackers in the VOT-TIR2015
 - Ranked sixth among 62 trackers in the VOT2015
- Publication
 - Y. Hua, K. Alahari, and C. Schmid. Online object tracking with proposal selection. In ICCV, 2015
- Source code released at
 - -http://thoth.inrialpes.fr/research/pstracker/

Outline

• Online Object Tracking with Proposal Selection

• Occlusion and Motion Reasoning for Long-term Tracking

• Conclusion and Future Work

Background

- Many tracking methods suffer from the template update problem [Matthews'04]
 - To update, or not to update?

Frame 1

Frame 245

Frame 341

Frame 468

Related Work

- Long-term tracking
 - Investigated in "Tracking-Learning-Detection" [Kalal'12]
 - "... where the object may become occluded, significantly change scale, and leave/re-enter the field-of-view" [Supancic III'13]

Related Work

- Key step for long-term tracking: When to update the model
 - Forward-backward tracking for checking errors [Kalal'10/12]
 - Self-paced learning for collecting relevant samples [Supancic III'13]

Our approach: Occlusion and Motion Reasoning

Our approach: Occlusion and Motion Reasoning

Motion Cues

- Optical flow
- Long-term tracks [Ochs'14]
 - Built on dense optical flow method [Brox'11]
 - Verification step: consistency of forward and backward flow

Motion Cues

Application

- Segmentation of Moving Objects by Long Term Video Analysis [Ochs'14]
- Spatio-temporal Video Segmentation with Long-range Motion Cues [Lezama'11]

- Goal: Label long-term tracks as foreground or background
- Formulation: Energy minimization problem

$$E(x) = \sum_{i=1}^{n} \phi_i(x_i) + \lambda \sum_{(i,j) \in \varepsilon} \phi_{ij}(x_i, x_j)$$

where $\phi_i(x_i = 1) = \begin{cases} 1 - \frac{1}{1 + \exp(\alpha * d_t + \beta)} & \text{if } track_i \in box_t \\ 0.5 & \downarrow & otherwise \end{cases}$
detection score of box_t

- Goal: Label long-term tracks as foreground or background
- Formulation: Energy minimization problem

$$E(x) = \sum_{i=1}^{n} \phi_i(x_i) + \lambda \sum_{\substack{(i,j) \in \varepsilon}} \phi_{ij}(x_i, x_j)$$
where $\phi_{ij}(x_i, x_j) = \begin{cases} \exp(-\lambda_d d(i,j)) & \text{if } x_i \neq x_j \\ 0 & \text{otherwise} \end{cases}$
pointwise distance between tracks

- Goal: Label long-term tracks as foreground or background
- Formulation: Energy minimization problem

$$E(x) = \sum_{i=1}^{n} \phi_i(x_i) + \lambda \sum_{(i,j)\in\varepsilon} \phi_{ij}(x_i, x_j)$$

• Solver: Graph cuts algorithm [Kolmogorov'04]

Occlusion state estimation via long-term tracks

• Selectively update model according to the state of the object

Frame 251: Partial occlusion Continue to track and no model updating <u>Frame 254: Full occlusion</u> Stop tracking and no model updating Frame 269: Object reappears Recover from occlusion by scanning detector globally

• Video demo

Motion Reasoning

- Estimate accumulated similarity transformations over frames
- Add a new detector if a significant change occurs

Frame 1

Frame 4

Motion Reasoning

• Video demo

- Evaluation metrics [Kalal'12]
 - $-F_1$ score = 2 * precision * recall / (precision + recall)
 - The threshold of overlap is set to 0.5

- Methods for comparison
 - Struck: Structured Output Tracking with Kernels (Struck) [Hare'11]
 - Tracking-Learning-Detection (TLD) [Kalal'12]
 - Self-paced learning for long-term tracking (SPLTT) [Supancic III'13]
• Online Tracking Benchmark (OTB) Dataset (50 seq.) [Wu'13]

- Overall results on 50 sequences comparing with other methods

	Struck	TLD	SPLTT	Ours
F_1 score	0.565	0.513	0.661	0.657

- The results comparable to our ICCV 2015 tracker
 - i.e., Proposal Selection Tracker Single Scale (PST-ss)
 - However, significantly better on sequences with occlusion

Online Tracking Benchmark (OTB) Dataset (50 seq.) [Wu'13]
Video demo

- Online Tracking Benchmark (OTB) Dataset [Wu'13]
 - -Ambiguity of ground truth annotation

• Tracking-Learning-Detection (TLD) Dataset (3 seq.) [Kalal'12]

• Results on three long-term sequences

	Struck	TLD	SPLTT	Ours
Pedestrian 2	0.175	0.500	0.950	0.979
Pedestrian 3	0.353	0.886	0.989	1.000
Car Chase	0.036	0.340	0.290	0.312

• Video demo

CarChase Sequence

Summary: Occlusion and Motion Reasoning

- Proposed a principled way to identify the state of the object based on motion cues
 - Identify occlusion state via long-term track segmentation
 - Estimate change-in-viewpoint with geometric transformations
- Addressed model update problem for long-term tracking
 - Selectively update/create the object model based on the state of the object
- Publication
 - Y. Hua, K. Alahari, and C. Schmid. Occlusion and motion reasoning for long-term tracking. In ECCV, 2014

Outline

• Online Object Tracking with Proposal Selection

• Occlusion and Motion Reasoning for Long-term Tracking

• Conclusion and Future Work

Conclusion

- Online Object Tracking with Proposal Selection
 - Proposed a generalized discriminative tracking-by-detection framework for short-term tracking
 - Achieved state-of-the-art performance on challenging datasets
- Occlusion and Motion Reasoning for Long-term Tracking
 - Proposed a principled way to identify the state of the object using motion cues
 - -Addressed the model update problem for long-term tracking
- Publications & Award
 - Y. Hua, K. Alahari, and C. Schmid. Occlusion and motion reasoning for long-term tracking. In ECCV, 2014
 - Y. Hua, K. Alahari, and C. Schmid. Online object tracking with proposal selection. In ICCV, 2015
 - "Winning tracker" in the VOT-TIR2015 challenge

Future Work: Proposal Selection Tracking

- Handle deformable objects
 - Propose more candidates from
 - General object proposals [Zhu'15, Ren'15]
 - Deformable object trackers [Godec'11, Liu '15]

Future Work: Proposal Selection Tracking

- Handle deformable objects
 - Propose more candidates from
 - General object proposals [Zhu'15, Ren'15]
 - Deformable object trackers [Godec'11, Liu '15]
 - Object segmentation [Li'13, Wen'15]

Future Work: Proposal Selection Tracking

- Handle deformable objects
 - Select best candidates based on
 - Matching [Cho'14, Revaud'15]
 - Multi-hypothesis trajectory analysis [Lee'15]

Future Work: Occlusion and Motion Reasoning

- Utilize deep learning for motion representation
 - Learn motion patterns from video data
 - Learn to identify the state of the object
 - Harvest training data without violating model-free setting

Thank You

This PhD thesis is supported in part by the MSR-Inria joint project, Google Faculty Research Award, and the ERC advanced grant ALLEGRO

Appendix

- Experimental results: OTB (Precision & Success Plot)
- Experimental results: VOT2014
- Framework of simplified PST
- Experimental results: VOT2015
- Rank table of VOT2015 and VOT-TIR2015
- A brief review of tracking problems

- Online Tracking Benchmark (OTB) Results: Our variants
 - -Our-ss
 - Proposal: detection (single scale)
 - Selection: detection score

- Online Tracking Benchmark (OTB) Results: Our variants
 - -Our-ms
 - Proposal: detection (multiple scales)
 - Selection: detection score

- Online Tracking Benchmark (OTB) Results: Our variants
 - -Our-ms-rot
 - Proposal: detection (multiple scales) + geometry
 - Selection: detection score

- Online Tracking Benchmark (OTB) Results: Our variants
 - Our-ms-rot-e
 - Proposal: detection (multiple scales) + geometry
 - Selection: detection + edgebox (edge response) scores

- Online Tracking Benchmark (OTB) Results: Our variants
 - -Our-ms-rot-em
 - Proposal: detection (multiple scales) + geometry
 - Selection: detection + edgebox (edge & motion boundary response)

• Online Tracking Benchmark (OTB) Results: Ours vs. others

• Online Tracking Benchmark (OTB) Results: Ours vs. others

• Online Tracking Benchmark (OTB) Results: Ours vs. others

• Visual Object Tracking (VOT) 2014 Challenge Dataset (25 seq.) [Kristan'14]

- Visual Object Tracking (VOT) 2014 Challenge Evaluation Metrics
 - Accuracy: Average overlap during successful tracking
 - Robustness: Number of times a tracker drifts off the target

• Visual Object Tracking (VOT) 2014 Challenge Results

Method	Accuracy	Robust.	Average
Our-ms-rot	6.07	8.58	7.33
Our-ms	4.73	10.13	7.43
DSST	6.78	13.99	10.39
SAMF	6.46	15.65	11.06
DGT	12.67	10.13	11.40
KCF	6.16	16.71	11.44
PLT14	16.04	6.98	11.51
PLT13	19.74	4.00	11.87
eASMS	15.37	15.10	15.24
Our-ss	16.11	14.47	15.29

• Visual Object Tracking (VOT) 2014 Challenge Results

Method	Accuracy	Robust.	Average
Our-ms-rot	6.07	8.58	7.33
Our-ms	4.73	10.13	7.43
DSST	6.78	13.99	10.39
SAMF	6.46	15.65	11.06
DGT	12.67	10.13	11.40
KCF	6.16	16.71	11.44
PLT14	16.04	6.98	11.51
PLT13	19.74	4.00	11.87
eASMS	15.37	15.10	15.24
Our-ss	16.11	14.47	15.29

 Participated in VOT competitions with a simplified Proposal Selection Tracking framework

• Visual Object Tracking (VOT) 2015 Challenge Dataset (60 seq.) [Kristan'15]

• Visual Object Tracking (VOT) 2015 Challenge Results

Selection: detection score only			
Acc. (Overlap) Rob. (#Failures)			
0.559 1.35			

Number of Failures

• Visual Object Tracking (VOT) 2015 Challenge Results

Selection: detection score only		Selection: detection + edgebox score		
Acc. (Overlap)	Rob. (#Failures)	Acc. (Overlap) Rob. (#Failures)		
0.559	1.35	0.542	1.32	

Number of Failures

• Rank table of VOT2015 Challenge Results

Method	Accuracy	Robust.	Φ
MDNet*	0.60	0.69	0.38
DeepSRDCF*	0.56	1.05	0.32
EBT	0.47	1.02	0.31
SRDCF*	0.56	1.24	0.29
LDP*	0.52	1.84	0.28
sPST*	0.55	1.48	0.28
SC-EBT	0.55	1.86	0.25
NSAMF*	0.53	1.29	0.25
Struck*	0.47	1.61	0.25
RAJSSC	0.57	1.63	0.24

• Rank table of VOT-TIR2015 Challenge Results

Method	Accuracy	Robust.	Φ
SRDCFir*	0.65	0.58	0.70
sPST*	0.66	2.18	0.64
MCCT*	0.67	3.34	0.55
EBT	0.50	3.50	0.43
CCFP*	0.63	8.55	0.36
ABCD*	0.63	5.81	0.34
Struck*	0.58	8.48	0.30

 Φ : Expected average overlap

Visual Object Tracking: A brief history (problems)

