Finding People in Images and Videos

Navneet DALAL
GRAVIR, INRIA Rhône-Alpes

Thesis Advisors
Cordelia SCHMID et Bill TRIGGS

17 July, 2006
Institut National Polytechnique de Grenoble
Goals & Applications

Goal: Detect and localise people in images and videos

Applications:
- Images, films & multi-media analysis
- Pedestrian detection for smart cars
- Visual surveillance, behavior analysis
Difficulties

Wide variety of articulated poses
Variable appearance and clothing
Complex backgrounds
Unconstrained illumination
Occlusions, different scales

Videos sequences involves motion of the subject, the camera and the objects in the background

Main assumption: upright fully visible people
Talk Outline

Overview of detection methodology

Static images
 Feature sets
 Object localisation
 Extension to other object classes

Videos
 Motion features
 Optical flow estimation

Part based person detection

Conclusions and perspectives
Overview of Methodology

Detection Phase

- Scan image(s) at all scales and locations
- Extract features over windows
- Run linear SVM classifier on all locations
- Fuse multiple detections in 3-D position & scale space

Object detections with bounding boxes

Scale-space pyramid

Detection window

Focus on building robust feature sets (static & motion)
Finding People in Images
Existing Person Detectors/Feature Sets

Current Approaches

Haar wavelets + SVM:
 • Papageorgiou & Poggio, 2000; Mohan et al 2000

Rectangular differential features + adaBoost:
 • Viola & Jones, 2001

Edge templates + nearest neighbour:
 • Gavrila & Philomen, 1999

Model based methods
 • Felzenszwalb & Huttenlocher, 2000; Ioffe & Forsyth, 1999

Other works
 • Leibe et al, 2005; Mikolajczyk et al, 2004

Orientation histograms

Freeman et al, 1996; Lowe, 1999 (SIFT); Belongie et al, 2002 (Shape contexts)
Static Feature Extraction

Input image

- Normalise gamma
- Compute gradients
- Weighted vote in spatial & orientation cells
- Contrast normalise over overlapping spatial cells
- Collect HOGs over detection window

Linear SVM

Feature vector $f = [\ldots, \ldots, \ldots]$
Overview of Learning Phase

Learning phase

Input: Annotations on training images

- Create fixed-resolution normalised training image data set
- Encode images into feature spaces
- Learn binary classifier

Resample negative training images to create hard examples

- Encode images into feature spaces
- Learn binary classifier

Object/Non-object decision

Retraining reduces false positives by an order of magnitude!
HOG Descriptors

Parameters

- Gradient scale
- Orientation bins
- Percentage of block overlap

Schemes

- RGB or Lab, colour/gray-space
- Block normalisation
 - L_2-norm,
 \[v \leftarrow v / \sqrt{v^2 + \epsilon} \]
 - L_1-norm,
 \[v \leftarrow \sqrt{v / (\|v\|_1 + \epsilon)} \]

![Diagram of R-HOG/SIFT and C-HOG](image)
Evaluation Data Sets

<table>
<thead>
<tr>
<th>Database</th>
<th>Train</th>
<th>Test</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIT pedestrian database</td>
<td>507 positive windows</td>
<td>200 positive windows</td>
<td>709 annotations+ reflections</td>
</tr>
<tr>
<td></td>
<td>Negative data unavailable</td>
<td>Negative data unavailable</td>
<td></td>
</tr>
<tr>
<td>INRIA person database</td>
<td>1208 positive windows</td>
<td>566 positive windows</td>
<td>1774 annotations+ reflections</td>
</tr>
<tr>
<td></td>
<td>1218 negative images</td>
<td>453 negative images</td>
<td></td>
</tr>
</tbody>
</table>
Overall Performance

MIT pedestrian database

R/C-HOG give near perfect separation on MIT database
Have 1-2 order lower false positives than other descriptors

INRIA person database
Performance on INRIA Database

DET – different descriptors on INRIA database

- Ker. R–HOG
- Lin. R2–HOG
- Lin. R–HOG
- Lin. C–HOG
- Lin. EC–HOG
- Wavelet
- PCA–SIFT
- Lin. G–ShapeC
- Lin. E–ShapeC

false positives per window (FPPW) vs. miss rate
Effect of Parameters

Gradient smoothing, σ

Reducing gradient scale from 3 to 0 decreases false positives by 10 times

Orientation bins, β

Increasing orientation bins from 4 to 9 decreases false positives by 10 times
Normalisation Method & Block Overlap

Normalisation method

Strong local normalisation is essential

Block overlap

Overlapping blocks improve performance, but descriptor size increases
Effect of Block and Cell Size

Trade off between need for local spatial invariance and need for finer spatial resolution
Most important cues are head, shoulder, leg silhouettes.
Vertical gradients inside a person are counted as negative.
Overlapping blocks just outside the contour are most important.
Multi-Scale Object Localisation

Apply robust mode detection, like mean shift

$H_i = [\exp(s_i)\sigma_x, \exp(s_i)\sigma_y, \sigma_s]$

$f(x) = \sum_i w_i \exp\left(-\frac{\|x - x_i\|^2 / 2}{H_i^{-1}}\right)$

Clip Detection Score

Multi-scale dense scan of detection window

Final detections

Bias

Threshold

Apply robust mode detection, like mean shift

18
Effect of Spatial Smoothing

Spatial smoothing aspect ratio as per window shape, smallest sigma approx. equal to stride/cell size.
Relatively independent of scale smoothing, sigma equal to 0.4 to 0.7 octaves gives good results.
Effect of Other Parameters

Different mappings

Hard clipping of SVM scores gives the best results than simple probabilistic mapping of these scores

Effect of scale-ratio

Fine scale sampling helps improve recall
Results Using Static HOG

No temporal smoothing of detections
Conclusions for Static Case

Fine grained features improve performance

Rectify fine gradients then pool spatially
 • No gradient smoothing, [1 0 -1] derivative mask
 • Orientation voting into fine bins
 • Spatial voting into coarser bins
Use gradient magnitude (no thresholding)
Strong local normalization
Use overlapping blocks
Robust non-maximum suppression
 • Fine scale sampling, hard clipping & anisotropic kernel

Human detection rate of 90% at 10^{-4} false positives per window
Slower than integral images of Viola & Jones, 2001
Applications to Other Classes

Parameter Settings

Most HOG parameters are stable across different classes

Parameters that change
- Gamma compression
- Normalisation methods
- Signed/un-signed gradients
Results from Pascal VOC 2006

<table>
<thead>
<tr>
<th></th>
<th>Person</th>
<th>Car</th>
<th>Motorbike</th>
<th>Bicycle</th>
<th>Bus</th>
<th>Sheep</th>
<th>Horse</th>
<th>Cow</th>
<th>Cat</th>
<th>Dog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambridge</td>
<td>0.030</td>
<td>0.254</td>
<td>0.178</td>
<td>0.249</td>
<td>0.138</td>
<td>0.131</td>
<td>0.091</td>
<td>0.149</td>
<td>0.151</td>
<td>0.118</td>
</tr>
<tr>
<td>ENSMP</td>
<td>-</td>
<td>0.398</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.159</td>
<td>-</td>
</tr>
<tr>
<td>HOG</td>
<td>0.164</td>
<td>0.444</td>
<td>0.390</td>
<td>0.414</td>
<td>0.117</td>
<td>0.251</td>
<td>-</td>
<td>0.212</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Laptev=HOG+Ada-boost</td>
<td>0.114</td>
<td>-</td>
<td>0.318</td>
<td>0.440</td>
<td>-</td>
<td>-</td>
<td>0.140</td>
<td>0.224</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TUD</td>
<td>0.074</td>
<td>-</td>
<td>0.153</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TKK</td>
<td>0.039</td>
<td>0.222</td>
<td>0.265</td>
<td>0.303</td>
<td>0.169</td>
<td>0.227</td>
<td>0.137</td>
<td>0.252</td>
<td>0.160</td>
<td>0.113</td>
</tr>
</tbody>
</table>

HOG outperformed other methods for 4 out of 10 classes. Its adaBoost variant outperformed other methods for 2 out of 10 classes.
Finding People in Videos
Finding People in Videos

Motivation

Human motion is very characteristic

Requirements

Must work for moving camera and background
Robust coding of relative motion of human parts

Previous works

Viola et al, 2003
Gavrila et al, 2004
Efros et al, 2003
Handling Camera Motion

Camera motion characterisation
- Pan and tilt is locally translational
- Rest is depth induced motion parallax

Use local differential of flow
- Cancels out effects of camera rotation
- Highlights 3D depth boundaries
- Highlights motion boundaries

Robust encoding into oriented histograms
- Some focus on capturing motion boundaries
- Other focus on capturing internal motion or relative dynamics of different limbs
Motion HOG Processing Chain

1. Collect HOGs for all blocks over detection window
2. Overlap of Blocks
3. Normalise contrast within overlapping blocks of cells
4. Compute differential flow
5. Accumulate votes for differential flow orientation over spatial cells
6. Compute optical flow
7. Normalise gamma & colour

- Input image
- Consecutive image
- Flow field
- Magnitude of flow
- Differential flow X
- Differential flow Y

Detection windows

Cell

Block

Overlap of Blocks
Overview of Feature Extraction

- **Input image**
 - Static HOG Encoding
 - Motion HOG Encoding

- **Consecutive image(s)**
 - Collect HOGs over detection window
 - Linear SVM

- **Object/Non-object decision**

Data Set

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>5 DVDs, 182 shots</td>
</tr>
<tr>
<td></td>
<td>5562 positive windows</td>
</tr>
<tr>
<td>Test 1</td>
<td>Same 5 DVDs, 50 shots</td>
</tr>
<tr>
<td></td>
<td>1704 positive windows</td>
</tr>
<tr>
<td>Test 2</td>
<td>6 new DVDs, 128 shots</td>
</tr>
<tr>
<td></td>
<td>2700 positive windows</td>
</tr>
</tbody>
</table>
Coding Motion Boundaries

Treat x, y-flow components as independent images.
Take their local gradients separately, and compute HOGs as in static images.

Motion Boundary Histograms (MBH) encode depth and motion boundaries.
Coding Internal Dynamics

Ideally compute relative displacements of different limbs

 Requires reliable part detectors

Parts are relatively localised in our detection windows

Allows different coding schemes based on fixed spatial differences

Internal Motion Histograms (IMH) encode relative dynamics of different regions
Simple difference

Take x, y differentials of flow vector images $[I_x, I_y]$.

Variants may use larger spatial displacements while differencing, e.g. $[1 0 0 0 -1]$.

Center cell difference

Wavelet-style cell differences

\begin{array}{ccc}
+1 & +1 & +1 \\
+1 & -1 & +1 \\
+1 & +1 & +1 \\
\end{array}

\begin{array}{ccc}
+1 & +1 & +1 \\
+1 & +1 & +1 \\
+1 & +1 & +1 \\
\end{array}

\begin{array}{ccc}
+1 & -2 & +1 \\
+1 & +1 & +1 \\
+1 & +1 & +1 \\
\end{array}
Flow Methods

Proesman’s flow [Proesmans et al. ECCV 1994]
 15 seconds per frame

Our flow method
 Multi-scale pyramid based method, no regularization
 Brightness constancy based damped least squares solution
 \[[x, y]^T = (A^T A + \beta I)^{-1} A^T b \]
 on 5X5 window
 1 second per frame

MPEG-4 based block matching
 Runs in real-time

Input image
Proesman’s flow
Our multi-scale flow
Performance Comparison

Only motion information

With motion only, MBH scheme on Proesmans’ flow works best

Appearance + motion

Combined with appearance, centre difference IMH performs best
Trained on Static & Flow

Tested on flow only

Tested on appearance + flow

Adding static images during test reduces performance margin

No deterioration in performance on static images
Motion HOG Video

No temporal smoothing, each pair of frames treated independently
Recall-Precision for Motion HOG

Unresolved issue!

Recall-precision plots for the combined static + motion HOG shows there is no gain over the static HOG. Results are disappointing; probable reason is different internal biases during non-maximum suppression for static and motion HOG.

Recall-Precision — descriptors on INRIA static-moving person database
Conclusions for Motion HOG

Summary

When combined with appearance, IMH outperforms MBH
Regularization in flow estimates reduces performance
MPEG4 block matching looks good but motion estimates not
good for detection
Larger spatial difference masks help
Strong local normalization is very important
Relatively insensitive to number of orientation bins

Window classifier reduces false positives by 10 times
Issue of unexpectedly low precision for full detector
Slow compared to static HOG
Human Part Detectors

Current approaches:
Mohan et al, 2000; Mikolajczyk et al, 2004

Current approach to part detectors
Use manual part annotations to learn individual classifiers
Parameters optimized for each detector

Other approaches
Cluster block feature vectors to automatically learn different part representations
Part-based Human Detectors

- Learn part detectors
- Scan part detectors over the detection window
- Accumulate top 3 estimates for each part over spatial histograms
- Collect spatial histograms for all parts over the detection window
- Linear SVM

Spatial Histograms

- Head & Shoulders
- Torso
- Legs

Graph: DET - Different part-based classifiers
Contributions

Bottom-up approach to object detection
Robust feature encoding for person detection
Gives state-of-the-art results for person detection
Also works well for other object classes
Proposed differential motion features vectors for feature extraction from videos
Future Work

Fix the motion HOG integration
Real time implementation is possible
Use rejection cascade algorithms for selecting most relevant features
Part based detector for handling partial occlusions
Extend motion HOG to activity recognition
Use higher level image analysis to improve performance
Thank You
Multi-Scale Object Localisation

Multi-scale dense scan of detection window

Goal

Final detections

Bias

Clip Detection Score

Threshold

$H_i = [\exp(s_i)\sigma_x, \exp(s_i)\sigma_y, \sigma_s]$

$f(x) = \sum_i^n w_i \exp\left(-\frac{(x - x_i) / H_i^{-1}}{2}\right)$

Apply robust mode detection, like mean shift