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 Tracking-by-detection paradigm has been extremely successful on diverse 

benchmarks [Wu et al., 2013] [Kristan et al., 2013/14] [Smeulders et al., 2014] 
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Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In CVPR, 2013. 

A. W. M. Smeulders et al. Visual tracking: an experimental survey. PAMI, 2014 

M. Kristan et al. The visual object tracking VOT2013/2014 challenge results. In ICCV/ECCV VOT Challenge Workshop, 2013/2014. 
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 Successful tracking-by-detection methods  

 Struck [Hare et al., 2011] 

 PLT 13/14 [Heng et al., 2012]  

 DSST [Danelljan et al., 2014] 

S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured output tracking with kernels. In ICCV, 2011. 

C.K. Heng, Y. Sumio, M. Yuichi, T. Hajime, Shrink boost for selecting multi-lbp histogram features in object detection. In CVPR, 2012 

M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg. Accurate scale estimation for robust visual tracking. In BMVC, 2014.  
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 Two key ingredients 

 Discriminative learning 
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 Two key ingredients 

 Discriminative learning 

 Pixel-accurate localization 
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 Two key ingredients 

 Discriminative learning 

 Pixel-accurate localization 
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 Limitations of tracking-by-detection approaches 

 Can not handle challenging conditions where an object undergoes 

transformations, e.g., severe rotation 

DSST Ours Groundtruth 

Frame 1 Frame 10 Frame 30 
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 Limitations of tracking-by-detection approaches 

 Can not handle challenging conditions where an object undergoes 

transformations, e.g., severe rotation 

 Select tracking results based on detection score only 
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Y. Hua, K. Alahari and C. Schmid. Online Object Tracking with Proposal Selection. In ICCV, 2015 

 Proposal Selection Tracker [Hua et al., 2015] 
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 Proposal Selection Tracker [Hua et al., 2015] 

Y. Hua, K. Alahari and C. Schmid. Online Object Tracking with Proposal Selection. In ICCV, 2015 
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 Geometry proposal 

 Compute frame-to-frame pixel correspondences with optical flow [Brox and 

Malik, 2011]  

 Estimate similarity transformations with a Hough transform voting scheme 

T. Brox and J. Malik. Large displacement optical flow: Descriptor matching in variational motion estimation. PAMI, 2011. 
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 Multiple cues for selection 

 Detection scores 

 Edgebox score [Zitnick and Dollár, 2014], originally from edge response [Dollár and 

Zitnick, 2013]  

C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, 2014. 

P. Dollár and C. L. Zitnick. Structured forests for fast edge detection. In ICCV, 2013. 

High edgebox score Low edgebox score 
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 Multiple cues for selection 

 Edgebox scores from edge responses and motion boundaries [Weinzaepfel et al., 

2015] are complementary 

Edge Responses Motion boundaries 

P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. Learning to detect motion boundaries. In CVPR, 2015. 
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 How to combine multiple cues? 

 When detection scores of the top candidates are very similar, we select the 

one with the best edgebox measure 

High edgebox score, but 
 low detection score 
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 Proposal Selection Tracker 

 Our submission 
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 Proposal Selection Tracker 

 Our submission 

 A simplified Proposal Selection Tracker without optical flow calculation 
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 Proposal Selection Tracker 

 Our submission 

 A simplified Proposal Selection Tracker without optical flow calculation 

 Same parameters for both VOT-TIR2015 and VOT2015 challenges 
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J.S. Supancic and D. Ramanan. Self-paced learning for long-term tracking. In CVPR, 2013. 

 Baseline tracking-by-detection framework 

 HOG + Linear SVM [Supancic and Ramanan, 2013]   

 Multi-scale detector with 2 pixels scanning step 

 Small patch (e.g. 18x18) handling 

 Additional correlation checking 

 Occlusion handling 

 Selective model updating 
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 VOT-TIR2015 Challenge Dataset 

Selection: detection score only 

Overlap #Failures 

0.670 0.35 
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 VOT-TIR2015 Challenge Dataset 
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 VOT2015 Challenge Dataset 

Selection: detection score only 

Overlap #Failures 
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 VOT2015 Challenge Dataset 

Selection: detection score only Selection: detection + edgebox score 

Overlap #Failures Overlap #Failures 

0.559 1.35 0.542 1.32 
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 Extending tracking-by-detection as a general proposal and selection 

scheme  

 New geometry proposals  

 A novel selection scheme based on multiple cues 

 Achieving good performance on VOTTIR-2015 and VOT2015 challenge 

datasets 

 Source code is released at project page  

 http://lear.inrialpes.fr/research/pstracker/ 
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 Proposal Selection Tracker will be presented at Poster Session 3B 

(Tuesday, 15 Dec. 2015) 
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 sPST: overall framework 

 Dense HOG 

 Occlusion handling 

 Detailed experimental results 
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 sPST: overall framework 
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 Dense HOG 
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 Dense HOG 
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 Occlusion handling 

 For short-term tracking, we update model with tracking result in every frame 

 Selective model updating: If tracking result in current frame is quite similar 

with tracking result in the previous frame, probably occlusion happens, we 

don’t update model in current frame  

Frame 246 Frame 247 Frame 248 
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 VOT-TIR2015 Challenge Dataset 

Selection: detection score only 

Marker Overlap #Failures 

Baseline 0.669 1.55 
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 VOT-TIR2015 Challenge Dataset 
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 VOT2015 Challenge Dataset 

Selection: detection score only 

Marker Overlap #Failures 

Baseline 0.550 1.42 
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 VOT2015 Challenge Dataset 
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