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Contributions @ Dense interpolation of an input matching @ Variational refinement
: : : . - One-level variational minimization:
- A novel optical flow estimation method that: _ :
Ieverap : : : nputs to our _method. _ e initialization: dense matching interpolation
. ges recent advances in matching algorithms 1) a matching between the two images Jon-local Smoothness term
) mtro_duce_s A ec_lge-_a_ware geodesm_dlstance that handles * obtained with DeepMatching [1] (= 5000 matches /image pair) e classical solver (fixed point iterations, successive over relaxation)
motion discontinuities and occlusions
e yields state-of-the-art results 2) the contours of the first image

- Avoids coarse-to-fine minimization and works better for sufficiently * obtained with the Structured Edge Detector (SED) [3]

) Experimental results:
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- Interpolation procedure for every pixel p:
- Code available online at http://lear.inrialpes.fr/software 1) Find the K nearest matches according to the geodesic distance (see below)

images

2) Interpolation at pixel p using either: '

]  Nadaraya-Watson: * Local affine fit: (best for rotations &
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/ ¢minimization simple average of nearest matches we solve a simple least-square problem o :
N weighted by p—dist_geodesic(p,pi) (the match weight is the same than at left) 0 *
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Final result - Minimum cost among all possible paths between two points given a :
. . LL
pixel-wise cost map O ‘ , ,
- Used to find the nearest matches of each pixel for local interpolation g -
- - - "Edge-aware" if the cost map iIs the output of an edge detector (e.g. SED [3
Motivations g P P : (€.9. SED (3]
- Variational approaches are generally minimized using a coarse to-fine A (> e T Impact of interpolators Sensitivity to contours & matching
scheme | VAR - Ay ; L S £ i - Local interpolation: - Contours:
: : : S—— [ = — i p* T * Nadaraya-Watson (NW) e Local affine (LA) «SED[3] *gPb <« Canny «image gradient
_ Failures in coarse-to-fine minimization R i & A T - Variational refinement: with/without - Matching:
- Drawbacks of coarse-to-fine: - T4\ \\ M d path Matching | Interpolator || MPL-Sintel | KITTI * DeepMatching (DM) [1]
. ) ) > DM NW 4.14 4 .
« edges and matches are not well-defined 4 IIage-edges g | e + Kd-tree assisted PatchMatch (KPM) [2]
at coarse scales (thin parts might merge) Conrsest leve Flow estimateat coarsest Tevel, ! |/ £l oM | ta | sess | sase - Geodesic distance:
e Euclidean < geodesic (exact or approx.)
- - - Matching Contour Distance MPI-Sintel | Kitti || Time
» often unable to recover from errors Comparison with coarse-to-fine KPM SED | Geodesic (approx) | 5764 | 1131 | G.ds
> , _ 100 Nearest matches of o DM SED Geodesic (approx.) 3.686 | 3.334 || 16.4s
that a eal’ed at Coarser ScaleS " Orfginal rame Flow estimate aftercoarse—to-fme' . . ) DM SED Geodesic (exact) 3.677 3.216 5045
PP ’ ' retrieved with Euclidean (X) or for the same input matching and contours: DM - Euclidean 4.617 3.663 |  40s
geodesic (+) distance Flow iothod [ MPE Sitel | KITTI | Middlobury [ Time DA ciiiy oo Eiﬁﬁiiii 1351 | 2308 | 1645
. DM+-coarse-to-fine 4.095 4.422 0. 321 25s eodesic (approx. . ) As
* No theoretical guarantees or proof of 7 b e DM+ EpicFlow | 3.686 | 3334 | 0380 | 164s DIl | Geodosc pprox) | 4061 3309 | 104
convergence
o Geodesic NN belong to the same object/region! Comparison to the state of the art:
- Main ideas ntal- o KITTI:
Directly initialize the variational minimization with a dense * MPI-Sintel. |
e Di Initializ variati Inimization wi - - . .
_ yr _ | Fast geodes|c distance approximation: Method AEE | ABF-occ | S0-10 51040 540+ || Time| [ Method AEF-noc | ABE | Out-Noc 3 | Out-AT 3 || Time
Interpolation of the matching computed at full image scale EpicFlow | 6.285 | 32.564 | 1.135 3.727 38.021 | 16.ds| | PH-Flow L3729 | ST% | 05 |
. . . . . TF+OFM 6.727 33.929 1.512  3.765 39.761 ~400s BTF-ILLUM 1.5 2.8 6.5270 11.03% 80s
- Computed in a small graph instead of on all image pixels: DeepFlow 7212 | 38781 | 1.284 4107  44.118 19s | | EpicFlow 1.5 3.8 7.88% 17.08% 168
. . . . . . : : : S2D-Matching || 7.872 40.093 1.172  4.695 48.782 ~2000s TGV2ADCSIFT 1.5 4.5 6.20% 15.15% 12s (GPU)
* We leverage the fact that motion boundaries and image edges coincide » Graph nodes: matches in the first image ClassictNLP | 8201 | 40925 | 1.208 5090 51162 | ~800s | | DeepFlow 15 | 58 | 72% | 1mro% |17
. " l " I " I " MDP-Flow2 8.445 43.430 1.420 5.449 50.507 709s NLTGV-SC 1.6 3.8 5.93% 11.96% 16s (GPU)
most of the time * E?Ch pixel is a?’SIgn_ed to its closest match (usmg geOdeSI(_: distance) NLTGV-SC || 8.746 | 42.242 | 1587 4780  53.860 Data-Flow 1.9 5.5 711% 14.57% || 180s
— | —~ * Djikstra's algorithm is used to compute geodesic distance in the graph LDOF 0.116 | 42.344 | 1485 4.839  57.296 30s | | TF+OFM 20 | 50 | 1022% | 18.46% | 350s
J \l\_\ ,\\/\’} - No loss of performance compared to exact geodesic distances, 1000x speed-up Best published results!
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e Our interpolation is robust to motion discontinuities and occlusions
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