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Visual recognition

input = output =
image / video class name(s)
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Input / output compatibility

Requires a compatibility function F between input x and output y:

y* = argmax, F(x,y; W)

\F(x,y; W) S
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Input / output compatibility

Requires a compatibility function F between input x and output y:

y* = argmax, F(x,y; W)
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Directly measuring the image / class compatibility is challenging
- first embed input and output
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Encode output using a vectorial representation:

Yy = 72SYA > 0(y)

“Similar” classes u and v should be mapped to similar vectors @(u) and 0(v):

: output embedding space: R€
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Challenges of a large # of classes

The three design choices of output embedding:
* embedding function

* input/output compatibility function

* learning objective function

Results
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Problems with a large number of classes
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Challenges of large number of classes

* Soft boundaries between classes
 Difficulty to collect labeled training data

* Computational and memory costs

Xerox @)
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Soft boundaries between classes

Standard assumption: finite number of distinct classes
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Soft boundaries between classes

Standard assumption: finite number of distinct classes

As the number of concepts increases,
we have to deal with:

- more and more complex concepts
- more and more unusual concepts
- overlapping concepts

Deng, Krause, Berg, Fei-Fei, “Hedging Your Bets: Optimizing Accuracy-Specificity
Trade-offs in Large Scale Visual Recognition”, CVPR12.

@ the finite and distinct assumptions become less and less realistic
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Difficulty to collect labeled training data

As the number of classes increases, the problem becomes finer-grained

As an example, ImageNet10K contains:
134 classes of fungus

- 183 classes of ungulates

. 262 classes of vehicles

Skidder

Deng, Berg, Li, Fei-Fei, “What does classifying more than 10,000 image categories tell us?”, ECCV’10.

As the classes to be recognized become finer-grained:
- collecting data becomes harder and harder
- annotating the data requires expert knowledge

@ only few training samples for some classes
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Computational and memory costs

Standard approach to learning a large set of classifiers

— learn a set of one-vs-rest classifiers independently

Deng, Berg, Li, Fei-Fei, “What does classifying more than 10,000 image categories tell us?”, ECCV’10.
Sanchez, Perronnin, “High-dimensional signature compression for large-scale image classification”, CVPR11.

© trivially parallelizable
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Standard approach to learning a large set of classifiers

— learn a set of one-vs-rest classifiers independently
Deng, Berg, Li, Fei-Fei, “What does classifying more than 10,000 image categories tell us?”, ECCV’10.
Sanchez, Perronnin, “High-dimensional signature compression for large-scale image classification”, CVPR11.

© trivially parallelizable

@ training cost

@ inference cost in O(# classes)

@ memory cost

- linear cost might be prohibitive for very large # classes
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« Soft boundaries between classes
— from a discrete set of classes to a potentially o set of continuous classes

 Difficulty to collect labeled training data
— correct choice of embedding function ® enables parameter sharing

- side information can be incorporated

* Computational and memory costs
— number of “compatibility” parameters can be easily parametrized
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output embedding space: R®
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Three classes of embedding functions:
* Data-independent embeddings

* Learned embeddings (from training dataset)
* Embeddings derived from side information (external to training set)

Page 18
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A taxonomy of embeddings

output embedding space: R€
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Three classes of embedding functions:

* Data-independent embeddings

* Learned embeddings (from training dataset)

* Embeddings derived from side information (external to training set)

Page 19
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Embeddings derived from side information
From a class hierarchy

Embed a class in a binary space:
- dimensionality is the number of classes in hierarchy
- adimension is 1 if it corresponds to the considered class or one of its ancestors

e(6) =11,0,1,0,0,1,0]

- classes in same path share parameters

Tsochantaridis, Joachims Hofmann, Altun,

G e e @ “Large margin methods for structured and interdependent output variables”, JMLR'0S5.

© simple and efficient
@ which taxonomy to use? - learn tree structure, e.g. from confusion matrix

Bengio, Weston, Grangier, “Label embedding trees for large multi-class tasks”, NIPS'10.
Deng, Satheesh, Berg, Fei-Fei, “Fast and Balanced: Efficient Label Tree Learning for Large Scale Object Recognition”, NIPS™11.
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Embeddings derived from side information

From attributes
Ruby-throated

Attributes: properties of an object HmmingoIr

which are shared across classes
Ferrari, Zisserman, “Learning visual attributes”, NIPS'07.

size = small
underparts color = olive

Lampert, Nickisch, Harmeling, “Learning to detect unseen back color = grey

object classes by between-class attribute transfer”, CVPR’09.

- is small? - yes
Use attribute-to-class 1 7
associations to encode classes: 1 4= olive underparts? - yes
Akata, Perronnin, Harchaoui, Schmid, 0
“Label-Embedding for Attribute-Based Classification”, CVPR’13. \
white back? — no

© visually similar categories are close
@ requires expert knowledge
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http://en.wikipedia.org/?title=Wikipedia:Featured_picture_candidates/Ruby-throated_Hummingbird

Embeddings derived from side information
From textual resources

Exploit co-occurrence of class names in a textual corpus:
« at document level: factorize the word-document matrix with LSA, pLSA, etc.

o at local level: find word representation which is useful to predict surrounding words
Mikolov, Chen, Corrado, Dean, “Efficient estimation of word representations in vector space”, ICLR13.
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Embeddings derived from side information
From textual resources

Exploit co-occurrence of class names in a textual corpus:
« at document level: factorize the word-document matrix with LSA, pLSA, etc.

o at local level: find word representation which is useful to predict surrounding words
Mikolov, Chen, Corrado, Dean, “Efficient estimation of word representations in vector space”, ICLR13.

°® LY
Example embedding learned from wikipedia: I ? T
Frome, Corrado, Shlens, Bengio, Dean, Ranzato, Mikolov, PR 3l -i_
“DeViSE: A deep visual-semantic embedding model”, I : “ ®
NIPS'13. CRte Wb .
e
© semantically similar categories are close #; A
) ) ) ° 3 o" . °
® no guarantee that visually similar AR o
categories are close . .o
reptiles
B virds insects B food

musical instruments [l clothing [l dogs
Bl acuatic life animals transportation
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Embeddings derived from side information
Domain-specific embeddings

For the problem of character recognition, use a small (7 X 5 pixels)
synthesized version of the character:

A =2 B ok B

Larochelle, Erhan, Bengio, “Zero-data learning of new tasks”, AAAT'08.
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For the problem of character recognition, use a small (7 X 5 pixels)
synthesized version of the character:

A =2 B -k B

Larochelle, Erhan, Bengio, “Zero-data learning of new tasks”, AAAT'08.

Can go one step further by:
- synthesizing the characters — image _
- embedding the synthesized image O(y) = ®(synthesis(y))

© input and output embeddings live in the same space

@ synthesis + feature extraction comes at a cost

Rodriguez-Serrano, Sandhawalia, Bala, Perronnin, Saunders, “Data-driven vehicle identification by image
matching”, ECCV Workshops'12.
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Challenges of a large # of classes

The three design choices of output embedding:
* embedding function

* input/output compatibility function

* learning objective function

Results
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Challenges of a large # of classes
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Compatibility function

Inference requires a compatibility function F between inputs and outputs:
y* = argmax, F(x,y; W)

input embedding space: R¢ output embedding space: R°®

(o] O JA
) Y

e T

\F(x,y; W) A

How to measure the compatibility between ®(x) € R% and ©(y) € R¢,
with d # e in general?
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Bilinear compatibility function

General case where d # e:

FO,y; W)=1[ @) ][ w H

0(y)

where W is the d X e matrix that parametrizes the compatibility function

— input and output play symmetric roles

- related to metric learning: W encodes a metric between inputs/outputs

Page 29
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Bilinear compatibility function

General case where d # e:

Foy;W)=[| &(x)" ][ w H@)(Y)‘

where W is the d X e matrix that parametrizes the compatibility function

Other possibilities:

. mapping input to output: F(x,y; W) = —||WTd(x) — 0(y)||?
- mapping output to input: F(x, y; W) = —||®(x) — WO(y)||?
Page 30 Xerox i‘




What if d and e are large? — high computational and memory costs
Use a low-rank decomposition of W: W = UTV with:
- U ar xd matrix

_ } r Ld,e
- IV ar X e matrix
F(x,y; W) = ®(x)TWO(y) rewrites as:

T !/ !/

Fl,y;U,V) = (Ue(0) (Ve)) = @' ()70’ (y)

with ®'(x) = U®(x) and O'(y)VO(y)

— no clear cut between compatibility function and input/output embedding
— joint embedding of input/output in a common r-dim space

Xerox @)



Advantages of a joint embedding

joint input / output embedding space

Joint embedding enables performing the following operations:
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Advantages of a joint embedding

joint input / output embedding space

Joint embedding enables performing the following operations:
- image-to-image matching: search by example
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Advantages of a joint embedding

joint input / output embedding space

Joint embedding enables performing the following operations:
- image-to-image matching: search by example
- class-to-image matching: search by text query
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joint input / output embedding space

Joint embedding enables performing the following operations:
- image-to-image matching: search by example
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Advantages of a joint embedding

joint input / output embedding space

Joint embedding enables performing the following operations:
image-to-image matching: search by example

- class-to-image matching: search by text query

- image-to-class matching: annotation

— bridges the gap between search and classification

Gordo, Rodriguez-Serrano, Perronnin, Valveny, “Leveraging category-level labels for instance-level image retrieval”, CVPR’12
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Bi-linear compatibility function might be sufficient for very high-
dimensional linearly separable inputs / outputs

But how to introduce non-linearity? Two solutions:
- solution 1: exploit relationship with structured output learning
- solution 2: exploit the relationship with neural networks and deep learning

Pose Xerox @)



Non-linear compatibility function

Solution 1: exploit the relationship with structured learning

Given:

« W(x,y) = &(x) ® O(y) ade-dim vector (joint input/output embedding)
- w the de-dim linearization of W

we can rewrite the compatibility function as:

Fx,y; W) = o(x)'We(y) = w'¥(x,y)

— standard structured output learning formalism

— use kernelized version

Tsochantaridis, Joachims Hofmann, Altun, “Large Margin Methods for Structured and Interdependent
Output Variables”, JMLR05.

Foge 38 Xerox @)
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Non-linear compatibility function

Solution 2: exploit the relationship with neural networks

Introducing ® = [0(1), ..., ®(k)] the e X k matrix of output embeddings:
(x,.; W) =0T (d(x)TW)

l]—>[|—>[|

D (x) z=WTd(x)

— fully-connected neural network with 1 hidden layer and no non-linearity
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Non-linear compatibility function

Solution 2: exploit the relationship with neural networks

Introducing ® = [0(1), ..., ®(k)] the e X k matrix of output embeddings:
(x,.; W) =0T (d(x)TW)

D (x) z=o0(WTd(x))

— fully-connected neural network with 1 hidden layer and no non-linearity

. add non-linearities
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Non-linear compatibility function

Solution 2: exploit the relationship with neural networks

Introducing @ = [0(1), ..., 0(k)] the e X k matrix of output embeddings:
(x,.; W) =0T (d(x)TW)

l]—>|]—>[|—>

d(x) z=oc(WTd(x)) Tz

— fully-connected neural network with 1 hidden layer and no non-linearity
- add non-linearities

- add more hidden layers
— deep learning of the compatibility function

Hadsell, Chopra, LeCun, “Dimensionality reduction by learning an invariant mapping, CVPR’06.
Frome, Corrado, Shlens, Bengio, Dean, Ranzato, Mikolov, “DeViSE: A deep visual-semantic embedding model”, NIPS13.

Page 41
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The learning objective function

Two cases:

* The embedding is known and fixed a priori
— optimize over W only

* The embedding is learned:
— optimize over W and 0

Page 44 Xerox 6‘)



The learning objective function

Two cases:

 The embedding is known and fixed a priori
— optimize over W only

* The embedding is learned:
— optimize over W and ©
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W can be learned from a set of classes and extrapolated to new classes for which
we have no labeled training data: zero-shot recognition

- replacing labeled training data with descriptions

output embedding space

at training time:

&
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W can be learned from a set of classes and extrapolated to new classes for which
we have no labeled training data: zero-shot recognition

- replacing labeled training data with descriptions

output embedding space

at inference time:

o

Generalization ability depends on the distance of “new” classes to existing ones
Palatucci, Pomerleau, Hinton, Mitchell, “Zero-shot learning with semantic output codes”, NIPS'09.
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Maximizing compatibility: )
n
arg maxy, — Z F(x;,yi; W)
n i=1

+ constraints on W (regularization)

IfFCe,y; W) = —|[WTd(x) — 0()||? or F(x,y; W) = —||®(x) — WO(y)]|?
— regression

If F(x,y; U,V) = —=||[U®(x) — VO(y)||?
— Canonical Correlation Analysis (CCA)

© simple optimization
@ does not optimize the end-goal
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Fixed O, learn W

Large-margin framework

Let us assume an image annotation task: given an image, rank the correct
labels higher than the incorrect ones

t = ‘_ﬁ YT = % )we want to enforce:

F(x,y©; W) > F(x,y—; W)

— use a large-margin framework

page s Xerox @)



Multi-class loss (mono-label problems):

L(x,y; W) = maxj{A(y, yj) — F(x,y; W) + F(x, Vj; W)}

Crammer, Singer, “On the algorithmic implementation of multi-class kernel-based vector machines”, MLR'01.

where A(y, y;) quantifies the loss of misclassifying y and y;.
- {01} lossify = y;ory # y;
- more complex distances in Euclidean space are possible

— optimize: arg maxyy, % e P(x;,yi; W)

+ some constraints on W (reqularization)

Pooe 0 Xerox @)



Fixed O, learn W

Large-margin framework

Ranking loss (mono- and multi-label problems):

L(x,y; W) = ;‘=1 maX{O, A(y, yj) — F(x,y; W) + F(x, Vj; W)}

T. Joachims, “Optimizing search engines using clickthrough data”, SIGKDD’02.
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Fixed O, learn W

Large-margin framework

Ranking loss (mono- and multi-label problems):

L(x,y; W) = 25?:1 maX{O, A(y, y]-) — F(x,y; W) + F(x, Vj; W)}

T. Joachims, “Optimizing search engines using clickthrough data”, SIGKDD’02.

Can also be applied to ranking images from text queries:

Only difference: given a triplet (y =£ , x*
we want to enforce:

Fix*,y; W) > F(x~,y; W)

page 2 Xerox @)




In the bilinear compatibility case:
A y ) —Fl,yt W)+ Fl,y W) =AY,y ) —x"Wh* —y7)

— closely related to large-margin metric learning

Weinberger, Saul, “Distance metric learning for large margin nearest neighbor classification’, JMLR'09.
Chechik, Shalit, Sharma, Bengio, “An online algorithm for large scale image similarity learning”, NIPS'09.

See also: Kulis, “Metric learning: a survey”, FTML13.
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Challenges of a large # of classes

The three design choices of output embedding:
* embedding function

* input/output compatibility function

* learning objective function

Results

Page St Xerox 6*)



Outline

Challenges of a large # of classes

The three design choices of output embedding:
* embedding function

* input/output compatibility function

* learning objective function

Results

Page 55




Example applications

Zero-shot recognition

- is small? — yes

size = small
Ruby-throated underparts color = olive 1 l d
> ts? -
Hummingbird back color = grey Clive Underpartss - yes

0 \
.o white back? - no

Standard approach - Direct Attribute Prediction (DAP):

Lampert, Nickisch, Harmeling, “Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer”, CVPR’09
predict absence / presence of each attribute + combine probabilities

Approach based on output embedding — Attribute Label Embedding (ALE):

Akata, Perronnin, Harchaoui, Schmid, “Label-embedding for attribute-based classification”, CVPR’13
- encode classes using attributes + map input / output with bilinear function

— ALE outperforms DAP, e.g. on 200 birds dataset: 18 % accuracy vs 10.5%
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http://en.wikipedia.org/?title=Wikipedia:Featured_picture_candidates/Ruby-throated_Hummingbird

Traditional Deep Visual Semantic
Visual Model Embedding Model
label similarity metric
( softmax Iayer) transformation
Lz core embedding
visual é visual vector

model parameter model lookup table

initialization I

image image label

parameter
initialization

Skip-gram
Language Model

nearby word

( softmax layer )
|
embedding
vector
lookup table

source word

Frome et al., “DeViSE: A Deep visual-semantic embedding model”, NIPS’13

Comparison on ImageNet’12:
- flat loss: traditional visual model performs best
- hierarchical loss: model based on output embedding performs best

- system based on output embedding makes more plausible errors

Page 57
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Example applications m e |‘

Scene text recognition

Standard OCR approach:

- detect characters + combine character predictions
Bissacco, Cummins, Netzer, Neven, “PhotoOCR: Reading Text in Uncontrolled Conditions”, ICCV’13

)

o)
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Example applications "A hm.‘

Scene text recognition

Standard OCR approach:

- detect characters + combine character predictions
Bissacco, Cummins, Netzer, Neven, “PhotoOCR: Reading Text in Uncontrolled Conditions”, ICCV’13

- w “C”in first half?
) - yes
Approach based on output embedding: . 1 d

encoding | ety “P” in first half?
- encode output words to respect “CVPR” . . no

lexicographic similarity \
— is a character present and where? | - “P”in second half?

Rodriguez-Serrano and Perronnin, “Label embedding for text recognition”, BMVC'13.
Almazan, Gordo, Fornés, Valveny, “Handwritten word spotting with corrected attributes”, ICCV'13.

— yes

Po0e Xerox @)




Example applications 30N RS AGY

Scene text recognition

Standard OCR approach:

- detect characters + combine character predictions
Bissacco, Cummins, Netzer, Neven, “PhotoOCR: Reading Text in Uncontrolled Conditions”, ICCV’13

i, “C”in first half?
1 w . yes

Approach based on output embedding: :
encoding | O de—3p “P”in first half?
- encode output words to respect “CVPR” . no
lexicographic similarity 1 \
— is a character present and where? | “P"in second half?

Rodriguez-Serrano and Perronnin, “Label embedding for text recognition”, BMVC'13.
Almazan, Gordo, Fornés, Valveny, “Handwritten word spotting with corrected attributes”, ICCV'13.

. ABBY [32] 35.00
Results on Street View Text (SVT) Mishra et al. [16] 7396
— close to photoOCR at fraction of training cost Goel et al. [?21] 77.28
; ) « : - PhotoOCR 15 90.39
Almazan, Gordo, Fornés, Valveny, “Word Spotting and Recognition £
with Embedded Attributes”, TPAMI, to appear. @Osed (KCSR) @
-~
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The three design choices output embedding:
* The embedding function

* The input/output embedding function

* The learning objective function

— can be combined in an almost co number of ways
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Output embedding enables handling a large number of classes:

* Soft boundaries between classes
— from a discrete set of classes to a potentially oo set of continuous classes

 Difficulty to collect labeled training data
— correct choice of embedding function enables parameter sharing

- side information might be incorporated

* Computational and memory costs
— number of model parameters can be easily parametrized
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Output embedding is related to many other machine learning and
computer vision concepts:

multi-task learning
structured learning ECOC
deep learning metric learning
transfer learning attributes

zero-shot recognition
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