What objects tell about actions

Cees Snoek

Qualcomm Technologies Netherlands B.V.

QIIALCOMM³

University of Amsterdam
The Netherlands

Goal: action recognition

Balance Beam

Blowing Candles

Bowline

Brushing Teeth

Javelin Throw

Hammering

Playing Cello

Nunchucks

Mopping Floor

Dan Oneata, PhD Thesis, 2015

Actions: state-of-the-art

Camera motion compensated trajectories [Wang & Schmid, ICCV13]

Local descriptors: HOG, HOF, MBH

Fisher vector video encoding [Perronnin et al, CVPR10]
Power and L2 normalization on PCA reduced vectors
Stacking multiple layers [Peng et al, ECCV14]

UCF101		THUMOS14	Lvol	THUMOS14	toot	Hollywood2	,	HMDB51	
UCFIUI		THUMOSI4 vai							
Soomro et al. [41]	43.9%	Varol <i>et al</i> . [47]	62.3%	Varol <i>et al</i> . [47]	63.2%	Zhu et al. [60]	61.4%	Zhu <i>et al</i> . [60]	54.0%
Cai et al. [1]	83.5%			Oneata et al. [31]	67.2%	Vig et al. [48]	61.9%	Oneata et al. [30]	54.8%
Wu et al. [55]	84.2%					Jain et al. [14]	62.5%	Wang et al. [51]	57.2%
Wang et al. [52]	85.9%					Oneata et al. [30]	63.3%	Peng et al. [32]	59.8%
Peng et al. [32]	87.7%					Wang et al. [51]	64.3%		
								Peng et al. [33]	66.8%

Motion is the key ingredient in modern action recognition

Deep action learning

Two stream CNN

Simonyan & Zisserman, NIPS 2014

CNN outputs connected to LSTM

Donahue et al., CVPR 2015

Two streams and LSTM on snippets

Ng et al., CVPR 2015

Inspiration from language acquisition

Children first learn nouns, then verbs.

Nouns provide semantic and syntactic frames to aid in mapping the verb to its meaning.

Nouns pave the way for learning verbs?

Gentner & Boroditsky, 2009

PRELUDE: OBJECTS

www.image-net.org

Learning nouns from ImageNet

WordNet for images

14M images for 21K synsets

Yearly ImageNet competition

Automatically label 1.4M images with 1K objects Measure top-5 classification error

Output Scale T-shirt Steel drum Drumstick Mud turtle

Objects: state-of-the-art

Year 2010 Year 2012 Year 2014

SuperVision

Krizhevsky *et al.* NIPS12

GoogleNet

WGG

Image

conv-64

de de conv-65

de de conv-66

de conv-66

de de conv-66

de conv

Szegedy et al. CVPR15 Simonyan et al. ICLR15

Contribution

Empirical study on the benefit of having *objects* in the video representation for action recognition.

Mihir Jain

Jan van Gemert

What do 15,000 object categories tell us about classifying and localizing actions? *Mihir Jain, Jan van Gemert, and Cees Snoek*. In *CVPR* 2015.

Experiment 1

OBJECTS: WHAT AND WHERE?

What objects emerge in actions?

Playing Cello

Typing

Bodyweight squats

Experiment 2

OBJECTS: SELECT AND GENERALIZE?

Learning what objects matter per action

HMDB51 and UCF101 share 12 action classes

We learn on training sets of HMDB51 and UCF101 what objects matter most per action

We test action classification on HMDB51 test set

Object-action relations are generic

	Motion	HMDB51
Brush hair	96.7	96.7
Climb	87.8	92.2
Dive	87.8	84.4
Golf	98.9	98.9
Handstand	90.0	90.0
Pullup	91.1	92.2
Punch	85.6	88.9
Pushup	72.2	88.9
Ride bike	76.7	91.1
Shoot ball	86.7	93.3
Shoot bow	92.2	94.4
Throw	37.8	36.7
Mean	83.6	87.5

Experiment 3

ACTIONS: STATE-OF-THE-ART

Action classification

UCF101		THUMOS14 val		THUMOS14 test		Hollywood2		HMDB51	
Soomro et al. [41]	43.9%	Varol et al. [47]	62.3%	Varol et al. [47]	63.2%	Zhu et al. [60]	61.4%	Zhu et al. [60]	54.0%
Cai et al. [1]	83.5%			Oneata et al. [31]	67.2%	Vig et al. [48]	61.9%	Oneata et al. [30]	54.8%
Wu et al. [55]	84.2%					Jain et al. [14]	62.5%	Wang et al. [51]	57.2%
Wang et al. [52]	85.9%					Oneata et al. [30]	63.3%	Peng et al. [32]	59.8%
Peng et al. [32]	87.7%					Wang et al. [51]	64.3%		
								Peng et al. [33]	66.8%
Objects	65.6%		49.7%		44.7%		38.4%		38.9%
Motion	84.2%		56.9%		63.1%		64.6%		57.9%
Objects + Motion	88.1%		66.8%		70.8%		66.2%		61.1%

Objects combined with motion is powerful Complementary to other advances [Peng et al, ECCV14] State-of-the-art on several datasets

Outline

Supervised action recognition

Unsupervised action recognition

Contribution

Objects2action, a semantic word embedding spanned by a skip-gram model of thousands of object categories. Recognizes actions without the need for video examples.

Mihir Jain

Jan van Gemert

Thomas Mensink

Objects2action: Classifying and localizing actions without any video example. *Mihir Jain, Jan van Gemert, Thomas Mensink, and Cees Snoek. Submitted.*

Lampert et al PAMI 2013, and many others

Zero-shot recognition practice

Classify test videos by (predefined) mutual relationship using class-to-attribute mappings

Problems of attributes

Attributes are difficult to define and annotate

Demands hold-out action train classes a priori to guide the knowledge transfer

Our action recognition does not need any video data nor action annotation as prior knowledge

Objects2action

Simple convex combination of known classifiers

$$C(v) = argmax_z \sum_{y} p_{vy} g_{yz}$$

Test video

Object representation Object/action affinities

$$g_{yz} = s(y)^T s(z),$$

where s() = word2vec

Mikolov et al NIPS 2013

Average vs Fisher Word Vectors

Objects and actions may come as multiple words FieldHockeyPenalty → "FieldHockeyPenalty Field Hockey Penalty"

Default is to average word vectors, simply ignore relations

$$s_{\mathbf{A}}(c) = \frac{1}{|w|} \sum_{w \in c} s(w).$$

We introduce the Fisher Word Vector

model distribution over words, as a sort of topic model

$$s_{\mathrm{F}}(c) = [\mathcal{G}_{\mu_1}^c, \mathcal{G}_{\sigma_1}^c, \dots, \mathcal{G}_{\mu_k}^c, \mathcal{G}_{\sigma_k}^c]^T.$$

Sparsity per action and per video

Not all objects contribute to specific actions Cat seems unlikely to be relevant for kayaking

We consider two sparsity metrics

Selecting most responsive objects to a given action

Selecting most responsive objects to a given video

Zero-shot action localization

- 1. Generate several action tube proposals [Jain et al, CVPR14]
- 2. Encode tubes with objects
- 3. Zero-shot prediction for all tubes, select best one
- 4. Compute AUC for various overlap thresholds

EXPERIMENTS

Results for Salsa spin

FWV	AWV
Salsa	Spin dryer, spin drier
Spin dryer, spin drier	Spinning rod
Dancing-master, dance master	Chili sauce
guacamole	Spinning wheel
swing	Kick starter, kick start
AP = 22.0%	AP = 0.8%

Object2action baselines

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Sparsity	UCF101	HMDB51	THUMOS14	$UCF\ Sports$
	None	13.7%	8.0%	3.4%	13.9%
AWV	Video	14.3%	7.7%	10.0%	13.9%
	Action	17.7%	9.9%	16.5%	28.1%
	None	26.0%	14.2%	22.9%	23.1%
FWV	Video	26.5%	14.5%	25.0%	23.1%
	Action	28.4%	15.5%	30.4%	28.9%
Supervised		63.9%	35.1%	56.3%	60.7%

Not competitive with supervised alternative, but promising

Objects2action vs few-shot learning

Object representation more effective for few-shot Object2action best for less than three examples

Object transfer versus action transfer

Method	Train	Test	UCF101	HMDB51
Action attributes	Even	Odd	16.2%	
Action attributes	Odd	Even	14.6%	
Action labels	Even	Odd	15.4%	12.8%
Action labels	Odd	Even	15.9%	13.9%
Objects2action	ImageNet	Odd	35.2%	16.2%
Objects2action	imagenet	Even	38.7%	24.2%

Objects2action much better than alternative transfers

Conclusion

Objects matter for actions

Actions have object preference, relation is generic

Facilitates recognition without video and action examples

Thank you

dr. Cees Snoek

www.ceessnoek.info

cgmsnoek@uva.nl

twitter.com/cgmsnoek