

Deep neural nets for human pose estimation in videos

Tomas Pfister, James Charles, Andrew Zisserman Department of Engineering Science University of Oxford http://www.robots.ox.ac.uk/~vgg

Aim:

Estimate 2D upper body joint positions (wrist, elbow, shoulder, head) with high accuracy in real-time

Outline

- Two types of loss functions for pose estimation
 - Coordinate net
 - Heatmap net
- Optical flow for pose estimation in videos
- Results (cf state of the art)

Method overview: single frame learning

1. Coordinate Net

Input frame(s)

→ Coordinate ConvNet →

Estimated pose

e.g. DeepPose CVPR14, Pfister et al ACCV14

2. Heatmap Net

e.g. Jain et al ICLR14, Tompson et al CVPR15

Coordinate Net: regress joint positions

Input frame

Pose ConvNet

Estimated pose

Training loss: L2 on joint positions

OverFeat like architecture

Heatmap Net: regress heatmap for each joint

Input frame(s)

256 x 256

64 x 64

Represent joint position by Gaussian

Training loss: L2 on pixels

Comparison

Regression target

Coordinate Net

Coordinates

Heatmap Net

Heatmap

BBC sign language videos data set

Training: 15 videos each 0.5-1hr long, all frames annotated

Testing:

5 videos, 200 annotated frames per video

Extended Training: 72 videos with noisy automated annotations Training set

Testing set

Results on architecture comparison

- Heatmap net superior to coordinate net
- Performance of coordinate net saturates with more training data

Why is the heatmap network superior?

- 1. Can represent multimodal estimates, so can model uncertainty/confidence
- 2. In training there is an error signal from every pixel, so better smoothing for back propagation

Also, it is easier to visualize (and understand) what is being learnt

Regression target

Coordinate Net

Coordinates

Heatmap

Heatmap Net

Timelapse of training

Multiple modes example

early in training

late in training

What do the layers learn?

Three randomly selected activations from each layer

Input frame

conv8 (output)

Body parts (some)

conv4

Learning from videos

• Temporal information

- How do we learn from temporal information with a ConvNet?

Hand moving in x direction

Late fusion using flow

Warp the heatmaps from previous/next frames & combine

Cf S. Zuffi et al., Estimating human pose with flowing puppets. Proc. ICCV, 2013 Charles et al., Upper Body Pose Estimation with Temporal Sequential Forests, BMVC 2014

Optical flow Example: Heatmap Net & Optical flow

Flow: Brox et al GPU flow from OpenCV, or FastDeepFlow

Optical flow Example: Heatmap Net & Optical flow

Flowing ConvNets

• Learn the **pooling** of the warped heatmaps

Results: with/without optical flow

Method: Flowing ConvNets

Input

Results Comparison of pooling types

Results Learnt optical flow pooling weights

Results Comparison to the state of the art

Poses in the Wild

70 **12% improvement** at d = 10px 60 50 Accuracy [%] 20 Cherian et al. (2014) 10 Yang & Ramanan (2013) SpatialNet 0 8 10 12 Distance from GT [px] 16 18 20 14 6

Results: Example pose estimation

Output: Poses in the Wild

50fps on 1 GPU without optical flow, 5fps with optical flow

Results Failure cases

Main failure case: Picking the wrong mode

BBC Pose

Correctable with a **spatial model**

ChaLearn

Additional Pooling Fusion Layers

Estimated pose

Results: Additional Pooling Fusion Layers

Results: Additional Pooling Fusion Layers

FLIC: single image predictions

Summary

- Deep Heatmap ConvNet achieves state of the art with implicit spatial models
- Performance improved by optical flow pooling
- Futures:
 - Robust regression
 - Data dependent flow channel pooling
 - More training data