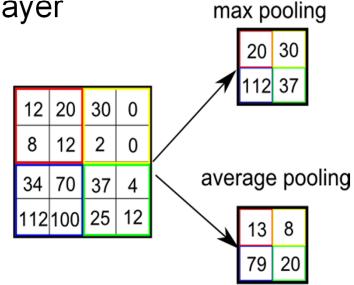
Spatial Transformers in Feed-Forward Networks

Max Jaederberg, Karen Simonyan, Andrew Zisserman and Koray Kavukcuoglu

Google DeepMind and University of Oxford

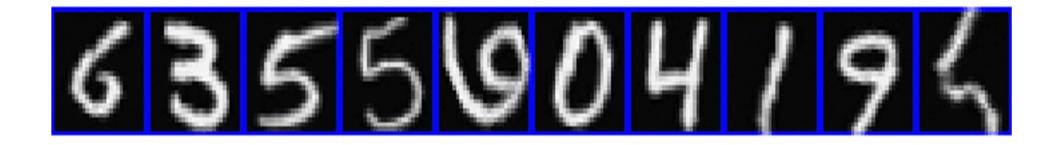
ConvNets

- Interleaving convolutional layers with max-pooling layers allows translation invariance.
- Pooling is simplistic.
- Only small invariances per pooling layer
- Limited spatial transformation
- Pools across entire image
- + Exceptionally effective
- Can we do better?



Motivation 1: transformations of input data

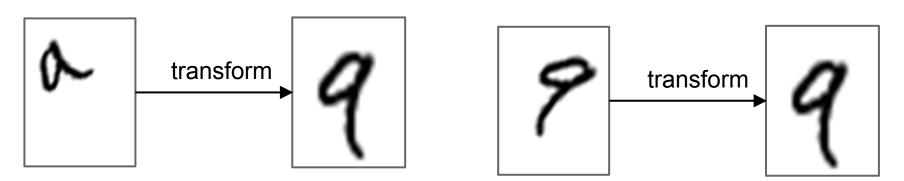
Rotated MNIST (+/- 90°)



Motivation 2: attention

Conditional Spatial Warping

- Conditional on input featuremap, spatially warp image.
- + Transforms data to a space expected by subsequent layers
- + Intelligently select features of interest (attention)
- + Invariant to more generic warping

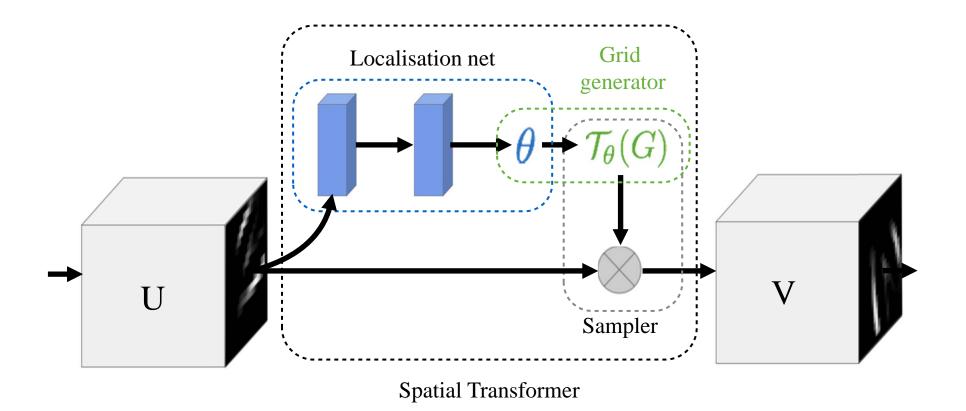


Conditional Spatial Warping

Spatial transform

output

A differentiable module for spatially transforming data, conditional on the data itself

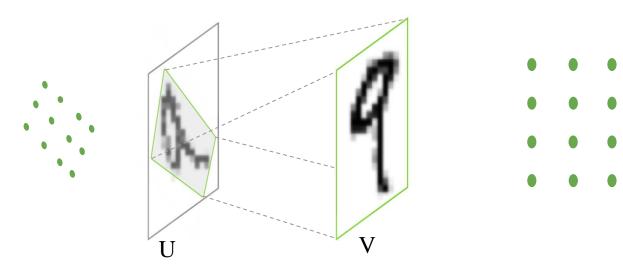


Sampling Grid

Warp regular grid by an affine transformation

Can parameterise, e.g. affine transformation

$$\begin{pmatrix} x_i^s \\ y_i^s \end{pmatrix} = \mathcal{T}_{\theta}(G_i) = \mathbf{A}_{\theta} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix} = \begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \end{bmatrix} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix}$$

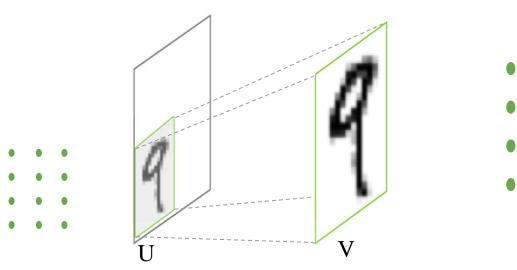


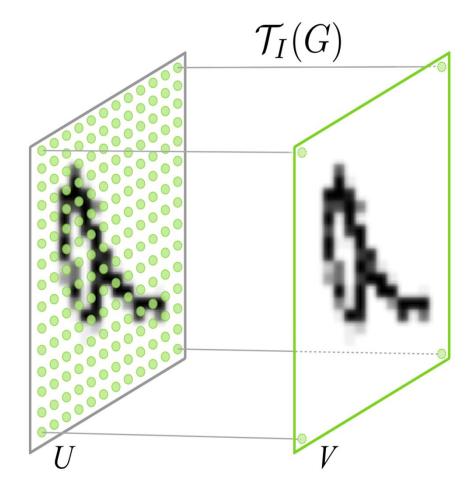
Sampling Grid

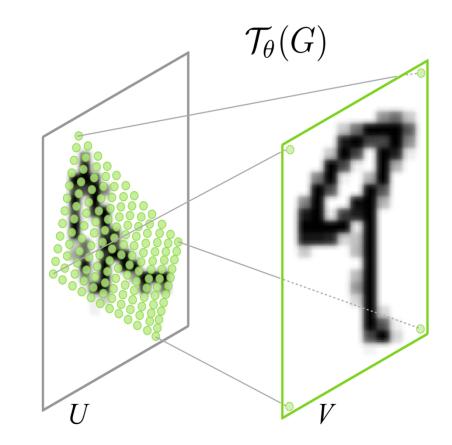
Warp regular grid by an affine transformation

Can parameterise attention

$$\begin{pmatrix} x_i^s \\ y_i^s \end{pmatrix} = \mathcal{T}_{\theta}(G_i) = \mathbf{A}_{\theta} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix} = \begin{bmatrix} s & 0 & t_x \\ 0 & s & t_y \end{bmatrix} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix}$$







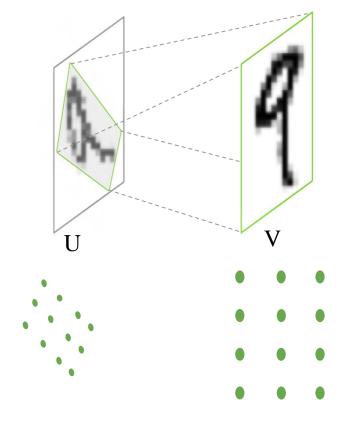
Identity transformation

affine transformation

Sampler

Sample input featuremap U to produce output feature map V (i.e. texture mapping)

e.g. for bilinear interpolation:

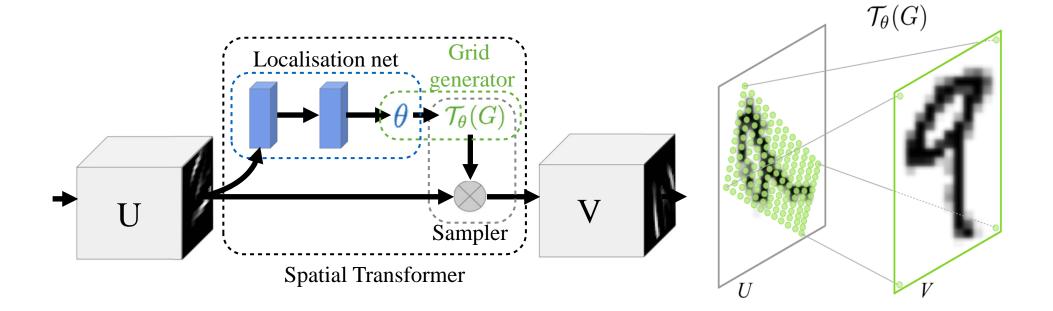


$$V_i^c = \sum_n^H \sum_m^W U_{nm}^c \max(0, 1 - |x_i^s - m|) \max(0, 1 - |y_i^s - n|)$$

and gradients are defined to allow backprop, eg:

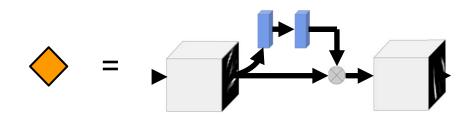
$$\frac{\partial V_i^c}{\partial U_{nm}^c} = \sum_n^H \sum_m^W \max(0, 1 - |x_i^s - m|) \max(0, 1 - |y_i^s - n|)$$

A differentiable module for spatially transforming data, conditional on the data itself



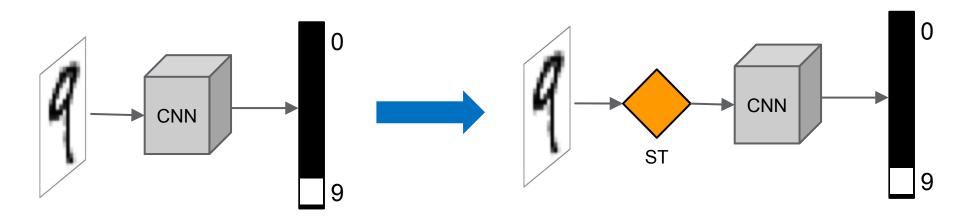
Spatial Transformer Networks

• Spatial Transformers is differentiable, and so can be inserted at any point in a feed forward network and trained by back propogration



Example:

• digit classification, loss: cross-entropy for 10 way classification



MNIST Digit Classification

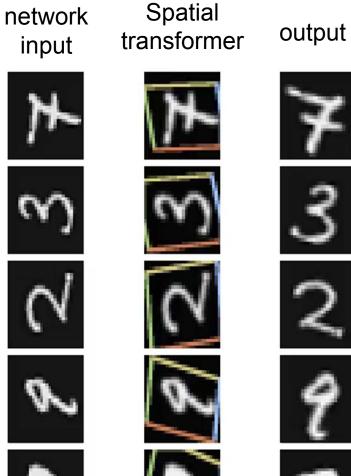
Training data: 6000 examples of each digit

Testing data: 10k images

Can achieve testing error of 0.23%

Task: classify MNIST digits

- Training and test randomly rotated by (+/- 90°)
- Fully connected network with affine ST on input



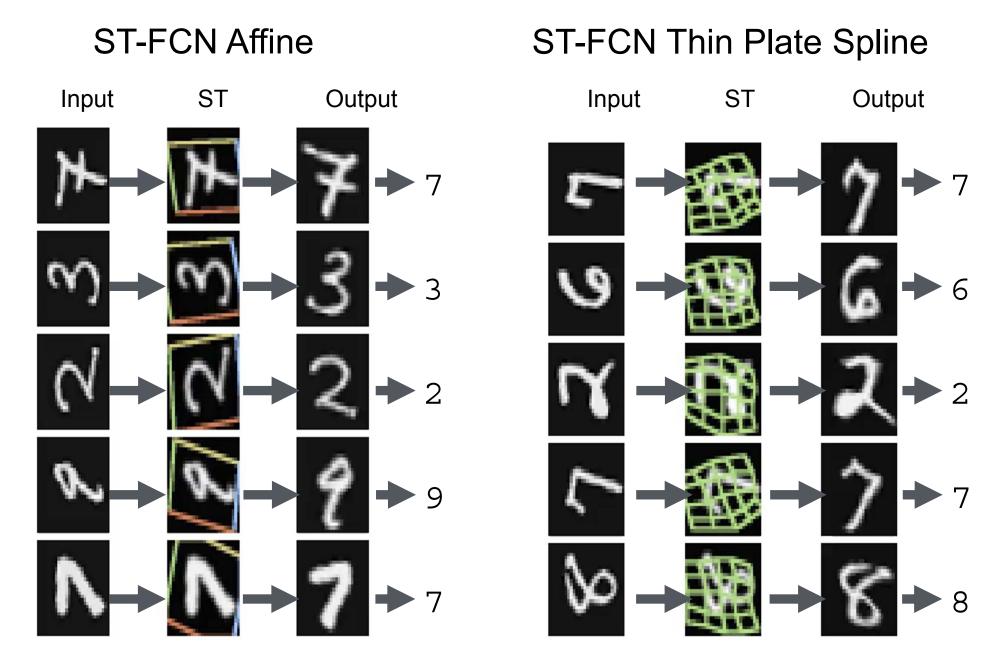
- Performance:
- FCN 2.1
- CNN 1.2
- ST-FCN 1.2
- ST-CNN 0.7

Generalizations 1: transformations

- Affine transformation 6 parameters
- Projective transformation 8 parameters
- Thin plate spline transformation
- Etc

Any transformation where parameters can be regressed

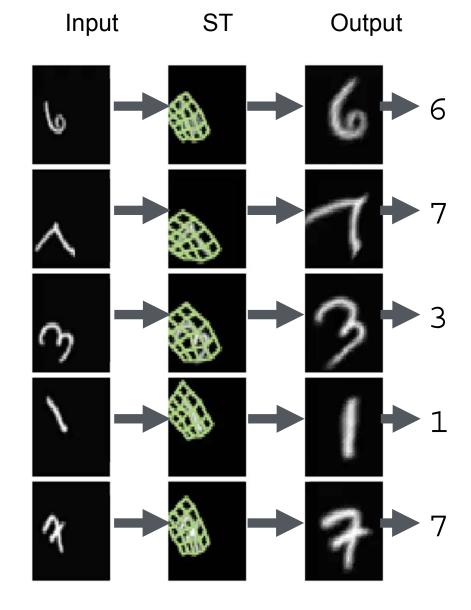
Rotated MNIST



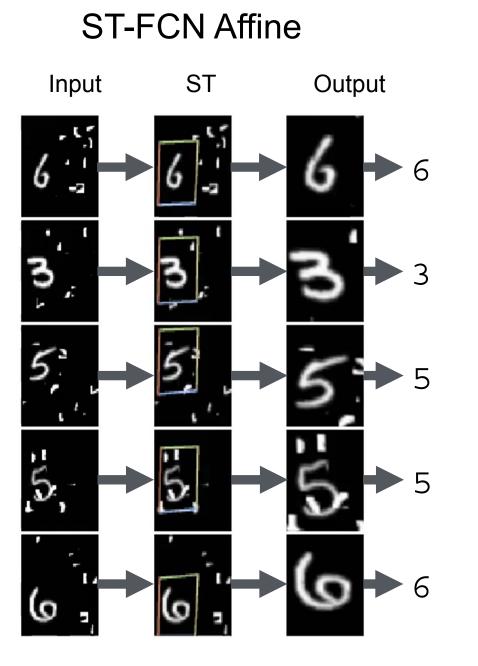
Rotated, Translated & Scaled MNIST

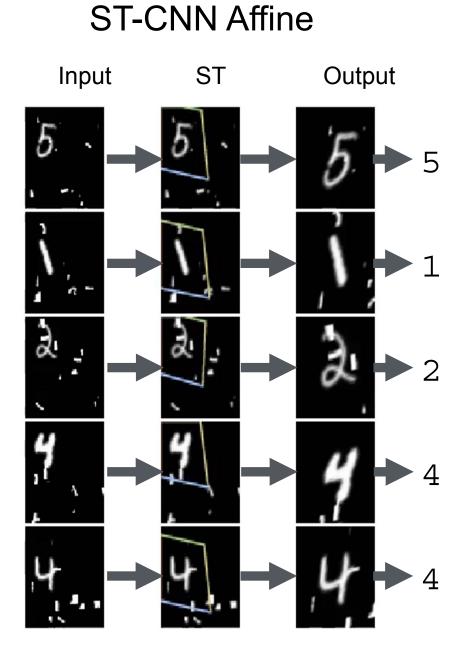
ST-FCN Projective ST Output Input 9 0 0 5 8 5

ST-FCN Thin Plate Spline



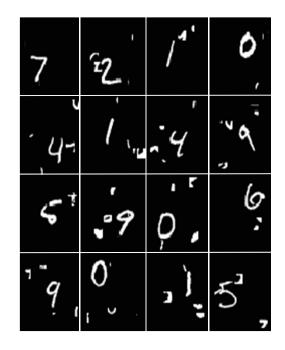
Translated Cluttered MNIST





Results on performance

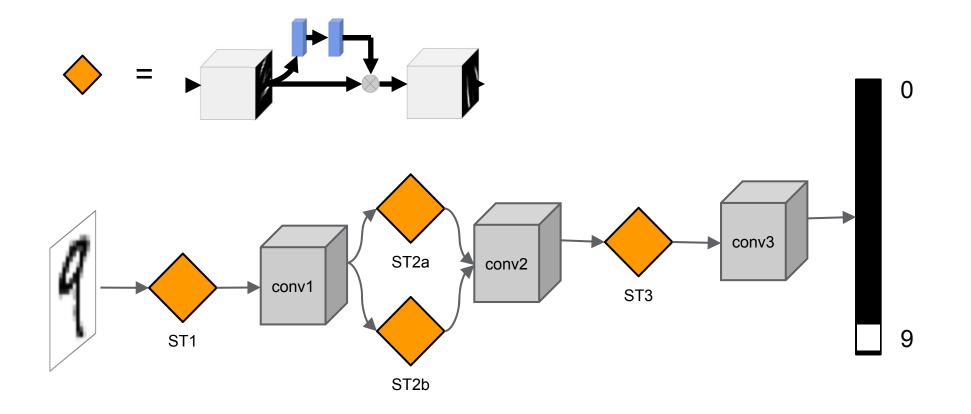
		MNIST Distortion			
Model		R	RTS	P	E
FCN		2.1	5.2	3.1	3.2
CNN		1.2	0.8	1.5	1.4
ST-FCN	Aff	1.2	0.8	1.5	2.7
	Proj	1.3	0.9	1.4	2.6
	TPS	1.1	0.8	1.4	2.4
ST-CNN	Aff	0.7	0.5	0.8	1.2
	Proj	0.8	0.6	0.8	1.3
	TPS	0.7	0.5	0.8	1.1



R: rotation RTS: rotation, translation, scale P: projective E: elastic

Generalization 2: Multiple spatial transformers

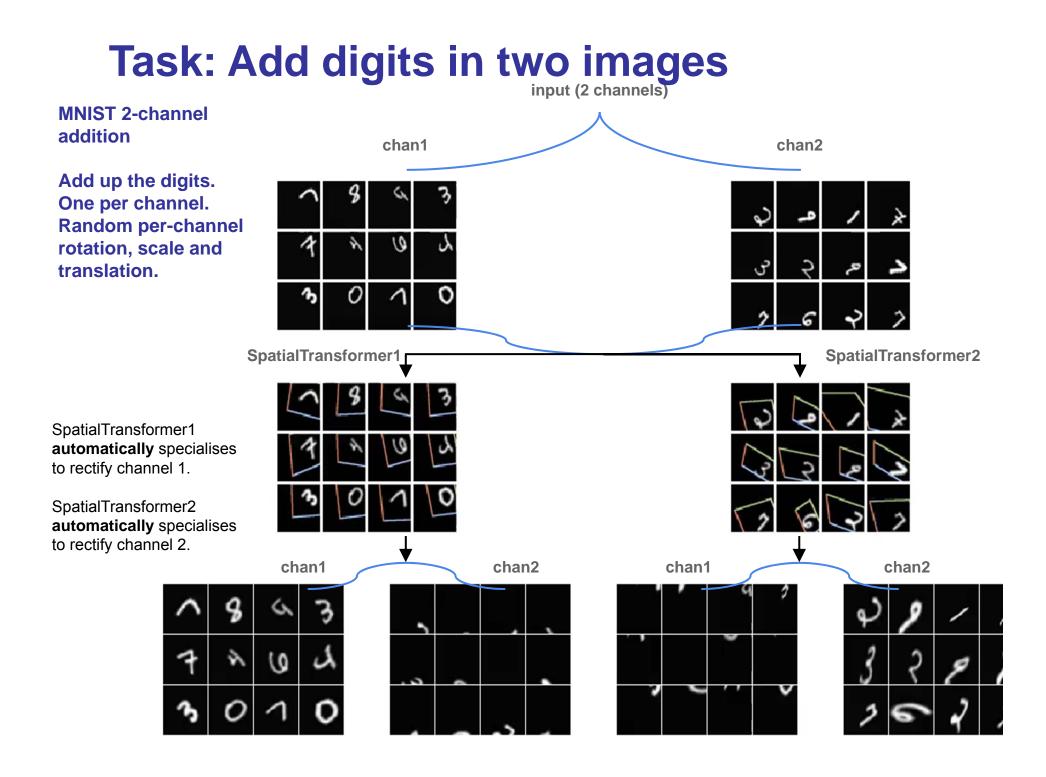
- Spatial Transformers can be inserted before/after conv layers, before/after max-pooling
- Can also have multiple Spatial Transformers at the same level



Task: Add digits in two images

MNIST digits under rotation, translation and scale

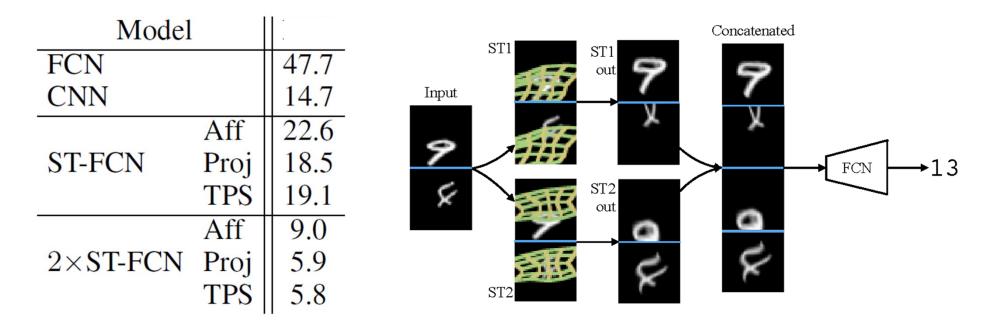
Architecture Concatenated ST1 ST1 out Input **→**13 FCN ST2out ST2



Task: Add digits in two images

MNIST digits under rotation, translation and scale

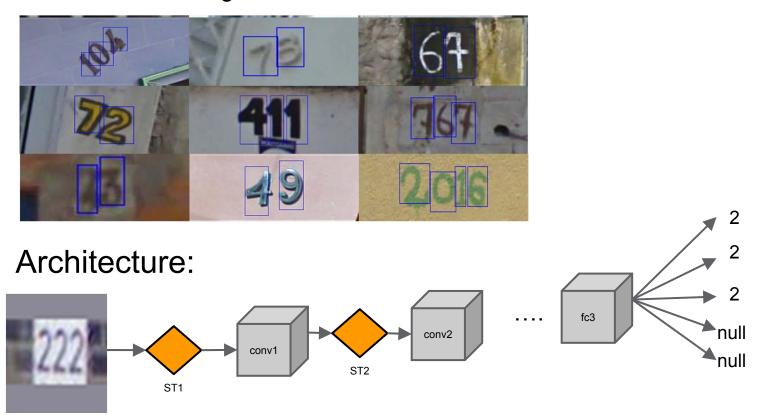
Performance % error



Applications and comparisons with the state of the art

Street View House Numbers (SVHN)

200k real images of house numbers collected from Street View Between 1 and 5 digits in each number



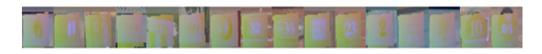
4 spatial transformer + conv layers, 4 conv layers, 3 fc layers, 5 character output layers

SVHN 64x64

144,151 69

- CNN: 4.0% error
- (single model) Goodfellow et al 2013
- Attention: 3.9% error
- (ensemble with MC averaging) Ba et al, ICLR 2015
- ST net: 3.6% error
- (single model)

SVHN 128x128



- CNN: 5.6% error
- (single model)
- Attention: 4.5% error
- (ensemble with MC averaging) Ba et al, ICLR 2015

6) 32 - 35

151 69

144 151 69 6

144

23

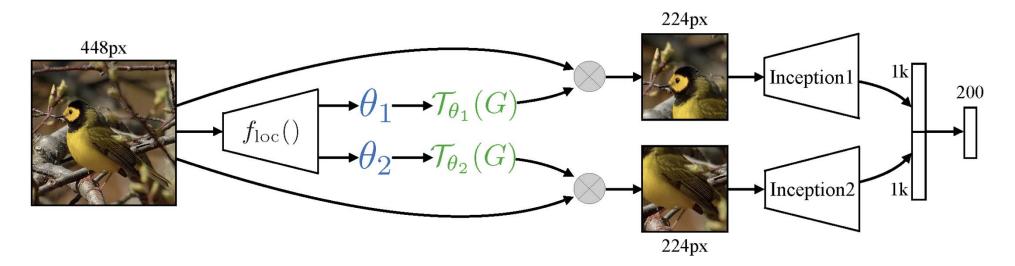
- 1 11 55 144 151 69° 69 32 35 18 23 2 10 24
- ST net: 3.9% error
- (single model)

Fine Grained Visual Categorization

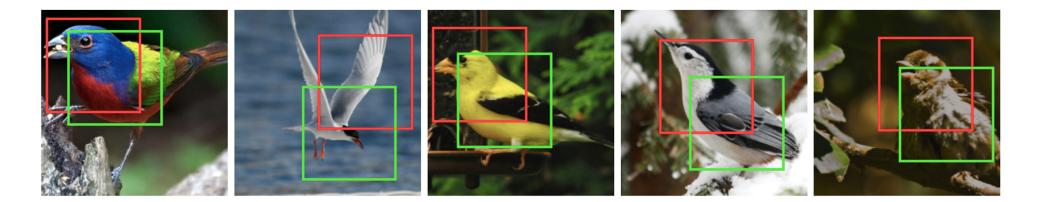
CUB-200-2011 birds dataset

- 200 species of birds
- 6k training images
- 5.8k test images

Spatial Transformer Network

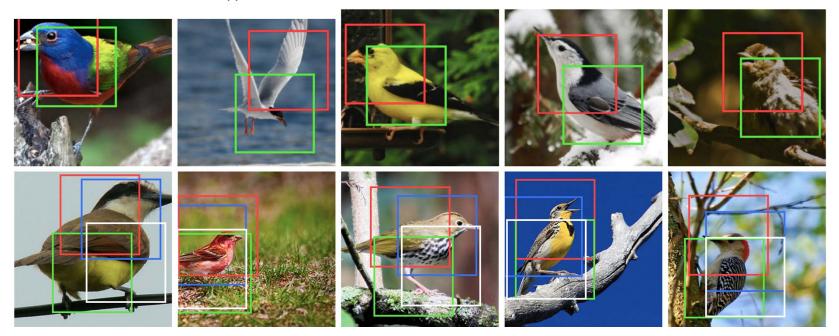


- Pre-train inception networks on ImageNet
- Train spatial transformer network on fine grained multi-way classification



CUB Performance

Model	
Cimpoi '15 4	66.7
Zhang '14 [30]	74.9
Branson '14 2	75.7
Lin '15 [20]	80.9
Simon '15 [24]	81.0
CNN (ours) 224px	82.3
2×ST-CNN 224px	83.1
$2 \times \text{ST-CNN}$ 448px	83.9
$4 \times \text{ST-CNN}$ 448px	84.1



Summary

- Spatial Transformers allow dynamic, conditional cropping and warping of images/feature maps.
- Can be constrained and used as very fast attention mechanism.
- Spatial Transformer Networks localise and rectify objects automatically. Achieve state of the art results.
- Can be used as a generic localisation mechanism which can be learnt with backprop.