Interior-point Methods and
the Maximum Flow Problem

Aleksander Madry
I(I’ﬂI

FFFFFFFFFFFFFFFFFFF

What will this talk be about?

At a first glance: It is just a talk about recent progress on
the maximum flow problem

But also: A “success story” of combining combinatorial alg.,
continuous optimization and linear-algebraic tools

v e
- | | mmm LINEAR

o - ALGEBRA

Lieven Vandenberghe = 3‘”’}:’”““‘\.‘
NSy N S
"\ __convex T~
,,,,,,,,,,,,,, Optimization —

ALGORITHMS p
FRALEIGH

BEAUREGARD

Additionally: An example where employing interior-point
method (IPM) leads to very fast algorithms

Bonus: New(?) understanding of IPM’s convergence

Input: Directed graph G,
integer capacities u,,
source s and sink t

Maximum flow problem

Task: Find a feasible s-t flow of max value J

. Input: Directed graph G,
Maximum flow problem integer capacities u,,

value = net flow out of s J source s and sink t

Max flow value
F*=10

v

no overflow on arcs: no leaks at all v#s,t
0 < f(e) < u(e)

Task: Find a feasible s-t flow of max value

4

Input: Directed graph G,
integer capacities u,,
source s and sink t

Maximum flow problem

F*=10

Max flow value J

Task: Find a feasible s-t flow of max value J

What is known about Max Flow?
A LOT of previous work

NETWORK
L

What is known about Max Flow?

NETWORK
A (very) rough history outline FIOWS
[Dantzig ‘51] O(mn2U)
[Ford Fulkerson ’56] O(mn U)
[Dinitz ’70] O(mn?)
[Dinitz ‘70] [Edmonds Karp '72] O(m?n)
[Dinitz ‘73] [Edmonds Karp ’72] O(m?log U)
[Dinitz ‘73] [Gabow ’85] O(mnlog U)
[Goldberg Rao 98] O(m min(m?/2,n2/3) log U)
[Lee Sidford ’14] O(mn?/2 log U)

Our focus: Sparse graph (m=0(n)) and unit-capacity (U=1) regime

- It is a good benchmark for combinatorial graph algorithms
- Already captures interesting problems, e.g., bipartite matching

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)

What is known about Max Flow?
A (very) rough history outline

[Dantzig ‘51]

[Ford Fulkerson ’56]

[Dinitz ’'70]

[Dinitz ‘70] [Edmonds Karp '72]
[Dinitz ‘73] [Edmonds Karp ’72]
[Dinitz ‘73] [Gabow ’85]
[Goldberg Rao "98]

[Lee Sidford '14]

O(n3)
O(n?)
O(n3)
O(n3)
O(n2?)
O(n?)
6(n3/2)
6(n3/2)

NETWORK
FLOWS

Our focus: Sparse graph (m=0(n)) and unit-capacity (U=1) regime

- It is a good benchmark for combinatorial graph algorithms
- Already captures interesting problems, e.g., bipartite matching

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)

What is known about Max Flow?
Emerging barrier: 0O(n3/2)

[Even Tarjan ’75, Karzanov ‘73]: Achieved this bound for U=1 long time ago

Last 40 years: Matching this bound in increasingly
more general settings, but no improvement

This indicates a fundamental limitation of our techniques

Our goal: Show a new approach finally breaking this barrier

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)

Breaking the O(n3/2) barrier

Undirected graphs and approx. answers (O(n3/2) barrier still holds here)

[CKMST ‘11]: (1-€)-approx. to max flow in O(n*/3€3) time

4

[LSR ’13, S 13, KLOS 14, P ’14]: (1-€)-approx. in O(ne2) time

M “13]: Exact O(n'%7)=0(n*-*3)-time alg.
for directed graphs

(n = # of vertices, O() hides polylog factors)

Previous approach

Augmenting paths framework
[Ford Fulkerson ‘56]

Basic idea:
Repeatedly find s-t paths in S @‘t
the residual graph

Advantage: Simple, purely ¢
combinatorial and greedy ¢
(flow is built path-by-path) =

Problem: Very difficult to analyze \L

Naive impl Unclear how to get

Sophisticat a further speed-up via this routi>t
and arguments: O(n3/2) time \/

[Karzanov ‘73] [Even Tarjan ‘75]

Beyond augmenting paths

New approach:
Bring linear-algebraic techniques into play

Idea: Probe the global flow structure
of the graph by solving linear systems

How to relate flow structure to linear algebra?
(And why should it even help?)

Key object: Electrical flows

. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

Recipe for elec. flow:
1) Treat edges as
resistors

. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

resistance r,

Recipe for elec. flow:
1) Treat edges as

resistors
q 2) Connect a battery
tosandt /

. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

resistance r,

Recipe for elec. flow:
1) Treat edges as

resistors
q 2) Connect a battery
tosandt /

. Input: Undirected graph G,
Electrical flows (Take ll) resistances‘f, P

source s and sink t

Principle of least energy

Electrical flow of value F:
The unigue minimizer of the energy

E(f) =2, r_f(e)?

among all s-t flows f of value F

Electrical flows = {,-minimization

How to compute an electrical flow?

Solve a linear system!

How to compute an electrical flow?

Solve a Laplacian system! J

Result: Electrical flow is a nearly-linear time primitive
[ST ’04, KMP '10, KMP ’11, KOSZ '13, LS *13, CKPPR ‘14]

How to employ it?

From electrical flows to
undirected max flow

Approx. undirected max flow
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1

Approx. undirected max flow
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1
-> Compute electrical flow of value F*

Approx. undirected max flow
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1

-> Compute electrical flow of value F*
(This flow has no leaks, but can
overflow some edges)

Approx. undirected max flow
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1
-> Compute electrical flow of value F*
(This flow has no leaks, but can
overflow some edges)
- To fix that: Increase resistances on the
overflowing edges

Repeat
- At the end: Take an average of

all the flows as the final answer

Evolution of resistances:
Based on Multiplicative Weight Update method

[FS ’97, PST 95, AHK ’'05]

Bounding the running time

- Each iteration runs in O(n) time
- How many iterations do we need?

Can show: # of iterations = worst-case overflow p

Think: p measures the electrical vs. max flow difference
Key question: If f_ = elect. flow of value F* wrt all r.=1
What is p = max, fc(e)?

Proof: Suffices to show that

Claim: p £ m¥/2=0(n'/2) E(f.) <m
£) <

Bounding the running time

- Each iteration runs in O(n) time
- How many iterations do we need?

Can show: # of iterations = worst-case overflow p

Think: p measures the electrical vs. max flow difference
Key question: If f_ = elect. flow of value F* wrt all r.=1
What is p = max, f.(e)?

Proof: Suffices to show
E(fE) = Ze r.e fE(e)

Note: if f is the max flow (of value F’) then
E(f)=2.r, f(e)?=2,f (e)?

Claim: p £ m¥/2=0(n'/2)

Bounding the running time

- Each iteration runs in O(n) time
- How many iterations do we need?

Can show: # of iterations = worst-case overflow p

Think: p measures the electrical vs. max flow difference
Key question: If f_ = elect. flow of value F* wrt all r.=1

What is p = max, f.(e)?

4« Proof: Suffices to show

E(f) =2, r, fc(e)

NAta: if Ffic thoa mav flaw [Afvaliie EXY +than

Claim: p £ m¥/2=0(n'/2)

This gives an O(npe3) = O(n3/2&3) time
B (1-€)-approx algorithm "

= \XTEgYy T/ \VTr —

Breaking the Q(n3/2) time bound
Claim: p £ m/2=0(n1/2) s this bound tight?

Will be so only if there exists an edge that
(single-handily) contributes most of the energy of f;

(Recall: We showed p? =max, f(e)? < Z_ f(e)? = E(f;) < m)

Can this even happen? =n” paths with =n” vertices each

Breaking the Q(n3/2) time bound
Claim: p £ m/2=0(n1/2) s this bound tight?
Will be so only if there exists an edge that

(single-handily) contributes most of the energy of f;
(Recall: We showed p? =max, f(e)? < Z_ f(e)? = E(f;) < m)

Can this even happen? Unfortunately, yes
Max flow: e o o
T F*=n*
s —® @ @ @ t

Breaking the Q(n3/2) time bound

Claim: p £ m¥/2=0(n'/2)

Will be so only if there exists an edge that

Is this bound tight?

(single-handily) contributes most of the energy of f;
(Recall: We showed p? =max, f(e)? < Z_ f(e)? = E(f;) < m)

Can this even happen=

Electr. flow:

+
——
-y

[]

o
<
o

bt

°
—O @ @

S

DEAD ? ~ n1/2
END ’

Unfortunately, yes

s

Breaking the Q(n3/2) time bound

Key idea: Perturb the graph by removing
such high-energy edges whenever they emerge

Breaking the Q(n3/2) time bound

Key idea: Perturb the graph by removing
such high-energy edges whenever they emerge

O

—

)

Careful energy-based argument
gives the desired O(n#/3 £3) time algorithm

Later on: [LSR '13, S *13, KLOS 14, P'14]: (1-€)-approx. in O(ng2) time
via a version of an {_-based gradient descent

Directed Maximum Flow

Why the progress on approx. undirected max flow
does not apply to the directed case?

Key problem: To solve directed max flow (even approx.),
one needs to solve exact undirected max flow

First-order methods are inherently unable
to deliver good enough accuracy here

We need a bigger hammer

(Path-following) Interior-point method (IPM)

[Dikin ‘67, Karmarkar 84, Renegar ’88,...]

A powerful framework for solving general LPs (and more)

Idea: Take care of “hard” constraints
by adding a “barrier” to the objective

s.t. Ax=b
x20 \ «“ ” .
easy” constraints
\ (use projection)

“hard” constraints

LP: minc'x

(Path-following) Interior-point method (IPM)

[Dikin ‘67, Karmarkar 84, Renegar ’88,...]

A powerful framework for solving general LPs (and more)

Idea: Take care of “hard” constraints

cmin Ty -
LP(1): min ¢'x - p Z; log by adding a “barrier” to the objective

s.t. Ax=Db
x=>0"

Observe: The barrier term
enforces x 2 0 implicitly

Furthermore: for large pu, LP(p) is easy to solve and

LP(p) = original LP, as p=>0*

Path-following routine:
-> Start with (near-)optimal solution x(p) to LP(p) for large u>0

- Take an improvement step that gradually reduces p while
maintaining the (near-)optimality of x(p) (wrt current p)

>

central path = optimal solutions to LP(u) for all u>0

(0,0)

P, = {x| Ax = b}
X. — analytic center

Path-following routine:
-> Start with (near-)optimal solution x(p) to LP(p) for large u>0

- Take an improvement step that gradually reduces p while
maintaining the (near-)optimality of x(p) (wrt current p)

Can we use IPM to get a faster max flow alg.?
Conventional wisdom: This will be too slow!

-> Each Newton's step = solving a linear system O(n*)=0(n?2-373) time
(prohibitive!)

But: When solving flow problems — only O(m) time [Ds ‘08]

Fundamental question: What is the number of iterations?
[Renegar ’88]: O(m1/2 Iog 8'1)

Unfortunately: This gives only an O(m3/2)-time algorithm

Improve the O(m'/2) bound? T
Although believed to be very suboptimal, END ?
its improvement is a major challenge °

[M ‘13]: An improved O(m?3/7) iterations bound for
unit-capacity max flow interior-point method

Observation: IPM is solving max flow using electrical flows too!

Result: Better grasp of step size choice (£, vs. {, interplay)

e A simple energy-based argument recovers the O(m?/2) bound
e Lack of high-energy edges - better than O(m?*/2) convergence

Problem: Removal of such high-energy edges is too drastic

Instead: Apply a careful perturbation + preconditioning of the LP
(This not only changes the current solution but also the central path)

Use a new type of potential-based (non-local) convergence argument

Most of these elements seems broadly applicable (and new)

Will this lead to breaking the Q(m?'/2) convergence barrier for all LPs?

Conclusions
and the Bigger Picture

Maximum Flows and Electrical Flows
N L=

- Interior-point - o I

method

Elect. flows + IPMs - A powerful new approach to max flow

Can this lead to a nearly-linear time
algorithm for the exact directed max flow?

We seem to have the “critical mass” of ideas

Elect. flows = next generation of “spectral” tooIs?J

o » Better “spectral” graph partitioning,
e Algorithmic grasp of random walks,

Max Flow and Interior-Point Methods

Contributing back: Max flow and electrical flows
as a lens for analyzing general IPMs?

Our techniques can be lifted to the general LP setting

We can solve any LP within O(m3/7L) iterations
But: this involves perturbing of this LP

Some (seemingly) new elements of our approach:

* Better grasp of £, vs. {, interplay wrt the step size 6
 Perturbing the central path when needed
 Usage of non-local convergence arguments

Can this lead to breaking the Q(m/2) barrier for all LPs?

[Lee Sidford ‘14]: O(n1/2) iteration bound

Bridging the Combinatorial and the Continuous

paths, trees, partitions, matrices, eigenvalues,
routings, matchings, <mmmmmd |inear systems, gradients,
data structures... convex sets...

Powerful approach: Exploiting the interplay of the two worlds

Some other early “success stories” of this approach:

e Spectral graph theory aka the “eigenvalue connection”
* Fast SDD/Laplacian system solvers

* Graph sparsification, random spanning tree generation
* Graph partitioning

...and this is just the beginning!

Thank you

Questions?

