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Extensions of HMM

I HMM + discriminative technique (Kapadia, 1998)
I Goal is sequence classification
I Input: R observation sequences Xr with class labels
I Output: parameters for each class which optimize the

cross-entropy

I Model state duration time T at state k directly by p(T |k)
instead of an exponentially decaying function of T (Rabiner,
1989)

I Autoregressive HMM (Ephraim et al., 1989)

I Input-Output HMM (Bengio and Frasconi, 1995)
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More Extensions of HMM

I Factorial HMM (Ghahramani and Jordan, 1997)
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Linear Dynamical Systems

I Continuous latent variables and summations become integrals
I Consider a linear-Gaussian state space model
I Kalman Filter (Kalman, 1960)

p(zn|zn−1) = N (zn|Azn−1, Γ) (13.75)

p(xn|zn) = N (xn|Czn,Σ) (13.76)

Traditionally, it is given by

zn = Azn−1 + wn (13.78)

xn = Czn + vn (13.79)

z1 = µ0 + µ (13.80)

where
w ∼ N (w|0, Γ) (13.81)

v ∼ N (v|0,Σ) (13.82)

u ∼ N (u|0, V0). (13.83)
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Prediction

I p(zn|x1, . . . , xn)

I Joint distribution over all latent and observed variables is a
Gaussian as the linear-Gaussian model

I So we can use the methods for multivariate Gaussian

I The inference process is similar to that of HMM, summations
are replaced by integrations.

I Kalman gain matrix

where
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Interpretation of Kalman Filter
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Backward Inference

I p(zn|x1, . . . , xN )

I Backward recursion

µ̂n = µn + Jn(µ̂n+1 −Aµn) (13.100)

V̂n = Vn + Jn(V̂n+1 − Pn)JT
n (13.101)

where Jn = VnAT (Pn)−1.

I First forward pass generates µn and Vn, and then backward
pass.
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Learning in LDS

I Model parameters θ = {A, Γ, C, Σ,µ0, V0}
I Maximum likelihood method and EM algorithm

I E step: given θold, run the inference algorithm to determine
p(Z|X, θold)

I M step: given p(Z|X, θold), maximize the complete-data log
likelihood function w.r.t. θ
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Extension of LDS

I Limitation of Kalman Filter: the linear-Gaussian model
assumption implies that the marginal distribution of the
observed variables is a Gaussian

I Gaussian mixture: K components lead to a mixture of K
Gaussians

I Extended Kalman Filter(EKF)(Zarchan and Musoff, 2005):
the state transition and observation models are not
linear-Gaussian, but can be approximated

I Switching State Space Model(Ghahramani and Hinton, 1998):
multiple Markov chains of continuous linear-Gaussian latent
variables together with a discrete Markov chain (HMM) whose
output determines which continuous Markov chain to use.

I Switching Hidden Markov Model: multiple discrete Markov
chains and use one of them as the switch
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Particle Filter

I For systems which are not linear-Gaussian, use
Sampling-importance-resampling method (Sec. 11.1.5) to
obtain a sequential Monte Carlo (SMC) algorithm

I Also known as
I Bootstrap filter (Gordon et al., 1993)
I Survival of the fittest (Kanazawa et al., 1995)
I the Condensention algorithm (Isard and Blake, 1998)

I A continuous probability distribution is approximated by a set

of discrete samples {z(l)
n } with weights

I How to choose the importance function q(z)?

I Popular choice: p(xn+1|z(l)
n+1) as it is simple to evaluate

I Optimal choice (A. Doucet et al., 2000): p(zn+1|zn, xn) which
is hard to compute
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Particle Filter Operation

I Propagate: draw random samples from the approximated
distribution p(zn+1|Xn)

I Update: use the new observation xn+1 to evaluate the weight

w
(l)
n+1 ∝ p(xn+1|z(l)

n+1)
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I Resample: it is necessary only when some samples degenerate
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Questions?

Moray Allan & Tingting Jiang PRML Chapter 13: Sequential Data


