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Machine Learning Basics

I Supervised Learning: use of labeled training set
I ex: email spam detector with training set of already labeled

emails

I Unsupervised Learning: discover patterns in unlabeled data
I ex: cluster similar documents based on text content

I Reinforcement Learning: learning sequence of actions based
on feedback or reward

I ex: machine learn to play a game by winning or losing
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What is Deep Learning

I Part of the ML field of learning representations of data

I Learning algorithms derive meaning out of data by using a
hierarchy of multiple layers of units (neurons)

I Each unit computes a weighted sum of its inputs and the
weighted sum is passed through a non linear function

I each layer transforms input data in more and more abstract
representations

I Learning = find optimal parameters (weights) from data
I ex: deep automatic speech transcription or neural machine

translation systems have 10-20M of parameters
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Supervised Learning Process

I Learning by generating error signal that measures the
differences between network predictions and true values

I Error signal used to update the network parameters so that
predictions get more accurate
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Brief History

Figure from https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction

I 2012 breakthrough due to
I Data (ex: ImageNet)
I Computation (ex: GPU)
I Architectures (ex: ReLU)
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Success stories of deep learning in recent years

I Convolutional neural networks (CNNs)

I For stationary signals such as audio, images, and video

I Applications: object detection, image retrieval, pose
estimation, etc.

Figure from [He et al., 2017]
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Success stories of deep learning in recent years

I Recurrent neural networks (RNNs)

I For variable length sequence data, e.g. in natural language

I Applications: sequence to sequence prediction (machine
translation, speech recognition) . . .

Images from: https://smerity.com/media/images/articles/2016/ and
http://www.zdnet.com/article/google-announces-neural-machine-translation-to-improve-google-translate/
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It’s all about the features . . .
I With the right features anything is easy . . .

I “Classic” vision / audio processing approach
I Feature extraction (engineered) : SIFT, MFCC, . . .
I Feature aggregation (unsupervised): bag-of-words, Fisher vec.,
I Recognition model (supervised): linear/kernel classifier, . . .

Image from [Chatfield et al., 2011]
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It’s all about the features . . .

I Deep learning blurs boundary feature / classifier
I Stack of simple non-linear transformations
I Each one transforms signal to more abstract representation
I Starting from raw input signal upwards, e.g. image pixels

I Unified training of all layers to minimize a task-specific loss

I Supervised learning from lots of labeled data
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Convolutional Neural Networks for visual data
I Ideas from 1990’s, huge impact since 2012 (roughly)

I Improved network architectures
I Big leaps in data, compute, memory

I ImageNet: 106 images, 103 labels

[LeCun et al., 1990, Krizhevsky et al., 2012]
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Convolutional Neural Networks for visual data
I Organize “neurons” as images, 2D grid

I Convolution computes activations from one layer to next
I Translation invariant (stationary signal)
I Local connectivity (fast to compute)
I Nr. of parameters decoupled from input size (generalization)

I Pooling layers down-sample the signal every few layers
I Multi-scale pattern learning
I Degree of translation invariance

Example: image classification
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Hierarchical representation learning
I Representations learned across layers
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Applications: image classification
I Output a single label for an image:

I Object recognition: car, pedestrian, etc.
I Face recognition: john, mary, . . .

I Test-bed to develop new architectures
I Deeper networks (1990: 5 layers, now >100 layers)
I Residual networks, dense layer connections

I Pre-trained classification networks adapted to other tasks

[Simonyan and Zisserman, 2015, He et al., 2016, Huang et al., 2017] 13 / 27



Applications: Locate instances of object categories

I For example, find all cars, people, etc.

I Output: object class, bounding box, segmentation mask, . . .

[He et al., 2017]
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Applications: Scene text detection and reading

I Extreme variability in fonts and backgrounds

I Trained using synthetic data: real image + synth. text

Synthetic training data generated by [Gupta et al., 2016]
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Recurrent Neural Networks (RNNs)

I Not all problems have fixed-length input and output
I Problems with sequences of variable length

I Speech recognition, machine translation, etc.

I RNNs can store information about past inputs for a time that
is not fixed a priori
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Recurrent Neural Networks (RNNs)

I Example for language modeling

I Generative power of RNN language models

I Example of generation after training on Shakespeare

Figure from http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Handling Long Term Dependencies

I Problems if sequences are too long
I Vanishing / exploding gradient

I Long Short Term Memory (LSTM) networks
[Hochreiter and Schmidhuber, 1997]

I Learn to remember / forget information for long period of time
I Gating mechanism
I Now widely used (LSTMs or GRUs)

Figure from https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Applications: Neural Machine Translation
I End-to-End translation
I Most online machine translation systems (Google, Systran,

DeepL) now based on this approach
I Map input sequence to a fixed vector, decode target sequence

from it [Sutskever et al., 2014]
I Models later extended with attention mechanism

[Bahdanau et al., 2014]
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Applications: End-to-end Speech Transcription

I Architecture similar to neural machine translation

I Speech encoder based on CNNs or pyramidal LSTMs
[Chorowski et al., 2015]
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Applications: Natural language image description
I Beyond detection of a fixed set of object categories
I Generate word sequence from image data
I Image search, visually impaired,etc.

Example from [Karpathy and Fei-Fei, 2015]
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Wrap-up — Take-home messages
I Core idea of deep learning

I Many processing layers from raw input to output
I Joint learning of all layers for single objective

I A strategy that is effective across different disciplines
I Computer vision, speech recognition, natural language

processing, game playing, etc.

I Widely adopted in large-scale applications in industry
I Face tagging on Facebook over 109 images per day
I Speech recognition on iPhone
I Machine translation at Google, Systran, DeepL, etc.

I Open source development frameworks available (pytorch,
tensorflow and the like)

I Limitations: compute and data hungry
I Parallel computation using GPUs
I Re-purposing networks trained on large labeled data sets
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Outlook — Some directions of ongoing research (1/2)

I Optimal architectures and hyper-parameters
I Possibly under constraints on compute and memory
I Hyper-parameters of optimization: learning to learn (meta

learning)

I Irregular structures in input and/or output
I (molecular) graphs, 3D meshes, (social) networks, circuits,

trees, etc.

I Reduce reliance on supervised data
I Un-, semi-, self-, weakly- supervised, etc.
I Data augmentation and synthesis (e.g. rendered images)
I Pre-training, multi-task learning

I Uncertainty and structure in output space
I For text generation tasks (ASR, MT): many different plausible

outputs
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Outlook — Some directions of ongoing research (2/2)

I Analyzing learned representations
I Better understanding of black boxes
I Explanable AI
I Neural networks to approximate/verify long standing models

and theories (link with cognitive sciences)

I Robustness to adversarial examples that fool systems

I Introducing prior knowledge in the model

I Biases issues (GenderShades and the like1)

I Common sense reasoning

I etc.

1Bolukbasi & al. (2016). Man is to Computer Programmer as Woman is to
Homemaker? Debiasing Word Embeddings. arXiv:1607.06520

24 / 27



References I

[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014).
Neural machine translation by jointly learning to align and translate.
CoRR, abs/1409.0473.

[Chatfield et al., 2011] Chatfield, K., Lempitsky, V., Vedaldi, A., and Zisserman, A.
(2011).
The devil is in the details: an evaluation of recent feature encoding methods.
In BMVC.

[Chorowski et al., 2015] Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., and
Bengio, Y. (2015).
Attention-based models for speech recognition.
In NIPS.

[Gupta et al., 2016] Gupta, A., Vedaldi, A., and Zisserman, A. (2016).
Synthetic data for text localisation in natural images.
In CVPR.

[He et al., 2017] He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017).
Mask r-cnn.
arXiv, 1703.06870.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016).
Identity mappings in deep residual networks.
In ECCV.

25 / 27



References II

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997).
Long short-term memory.
Neural Comput., 9(8):1735–1780.

[Huang et al., 2017] Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K.
(2017).
Densely connected convolutional networks.
In CVPR.

[Karpathy and Fei-Fei, 2015] Karpathy, A. and Fei-Fei, L. (2015).
Deep visual-semantic alignments for generating image descriptions.
In CVPR.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. (2012).
Imagenet classification with deep convolutional neural networks.
In NIPS.

[LeCun et al., 1990] LeCun, Y., Denker, J., and Solla, S. (1990).
Optimal brain damage.
In NIPS.

[Simonyan and Zisserman, 2015] Simonyan, K. and Zisserman, A. (2015).
Very deep convolutional networks for large-scale image recognition.
In ICLR.

26 / 27



References III

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. (2014).
Sequence to sequence learning with neural networks.
In NIPS.

27 / 27


	Introduction
	Convolutional Neural Networks
	Recurrent Neural Networks
	Wrap up

