Introduction to Recurrent Neural Networks

Jakob Verbeek

Modeling sequential data with Recurrent Neural Networks

• Compact schematic drawing of standard multi-layer perceptron (MLP)

- So far we considered "one-to-one" prediction tasks
 - Classification: one image to one class label, which digit is displayed 0...9
 - Regression: one image to one scalar, how old is this person?
- Many prediction problems have a sequential nature to them
 - Either in input, in output, or both
 - Both may vary in length from one example to another

- One-to-many prediction
- Image captioning
 - Input: an image
 - Output: natural language description, variable length sequence of words

a brown dog is running through the grass

many to many

many to many

- Text classification
 - Input: a sentence
 - Output: user rating

Author: JustMeOnline from Portugal

I decided to watch it, because i liked the movie very much, and this TV Series was in the same level of quality, with the same environment, with more cold crimes and a good investigation...

- Machine translation of text from one language to another
 - Sequences of different length on input and output

French English Spanish Detect lang	uage 👻	En En	glish French Spanish - Translate		
I decided to watch it, because i was in the same level of quality, crimes and a good investigation	liked the movie very much, a with the same environment	and this TV Series × Je , with more cold sé pl	Je décidai de le regarder, parce que je aimé le film beaucoup, et que ce téléviseur série a été dans le même niveau de qualité, avec le même environnement, avec plus de crimes froides et une bonne enquête.		
.↓			□ ●) <	🖋 Suggest an edit	
one to one	one to many	many to one	many to many	many to many	

- Part of speech tagging
 - For each word in sentence predict PoS label (verb, noun, adjective, etc.)
- Temporal segmentation of video
 - Predict action label for every video frame
- Temporal segmentation of audio
 - Predict phoneme labels over time

- Possible to use a k-order autoregressive model over output sequences
 - Limits memory to only k time steps in the past

- Not applicable when input sequence is not aligned with output sequence
 - Many-to-one tasks, unaligned many-to-many

Recurrent neural networks

- Recurrent computation of hidden units from one time step to the next
 - Hidden state accumulates information on entire sequence, since the field of view spans entire sequence processed so far
 - Time-invariant function makes it applicable to arbitrarily long sequences
- Similar ideas used in
 - Hidden Markov models for arbitrarily long sequences
 - Parameter sharing across space in convolutional neural networks
 - But has limited field of view: parallel instead of sequential processing

Recurrent neural networks

- Basic example for many-to-many prediction
 - Hidden state linear function of current input and previous hidden state, followed by point-wise non-linearity
 - Output is linear function of current hidden state, followed by point-wise non-linearity

$$z_t = \phi(A x_t + B z_{t-1})$$

$$y_t = \psi(C z_t)$$

Recurrent neural network diagrams

- Two graphical representations are used
 - "Unfolded" flow diagram

many to many

Recurrent flow diagram

B

- Unfolded representation shows that we still have an acyclic directed graph
 - Size of the graph (horizontally) is variable, given by sequence length
 - Weights are shared across horizontal replications
- Gradient computation via back-propagation as before
 - Referred to as "back-propagation through time" (Pearlmutter, 1989)

Recurrent neural network diagrams

- Deterministic feed-forward network from inputs to outputs
- Predictive model over output sequence is obtained by defining a distribution over outputs given y
 - ► For example: probability of a word given via softmax of word score
- Training loss: sum of losses over output variables
 - Independent prediction of elements in output given input sequence

$$z_t = \phi(A x_t + B z_{t-1})$$
$$y_t = \psi(C z_t)$$

$$p(w_t = k | x_{1:t}) = \frac{\exp y_{tk}}{\sum_{v=1}^{V} \exp y_{tv}}$$

More topologies: "deep" recurrent networks

 Instead of a recurrence across a single hidden layer, consider a recurrence across a multi-layer architecture

More topologies: multi-dimensional recurrent networks

- Instead of a recurrence across a single (time) axis, consider a recurrence across a multi-dimensional grid
- For example: axis aligned directed edges
 - Each node receives input from predecessors, one for each dimension

More topologies: bidirectional recurrent neural networks

- Standard RNN only uses left-context for many-to-many prediction
- Use two separate recurrences, one in each direction
 - Aggregate output from both directions for prediction at each time step
- Only possible on a given input sequence of arbitrary length
 - Not on output sequence, since it needs to be predicted/generated

More topologies: output feedback loops

- So far the element in the output sequence at time t was independently drawn given the state at time t
 - State at time t depends on the entire input sequence up to time t
 - No dependence on the output sequence produced so far
- Problematic when there are strong regularities in output, eg character or words sequences in natural language

$$p(w_{1:T}|x_{1:T}) = \prod_{t=1}^{T} p(w_t|x_{1:t})$$

More topologies: output feedback loops

 To introduce dependence on output sequence, we add a feedback loop from the output to the hidden state

many to many

$$p(y_{1:T}|x_{1:T}) = \prod_{t=1}^{T} p(y_t|x_{1:t}, y_{1:t-1})$$

- Without output-feedback, the state evolution is a deterministic non-linear dynamical system
- With output feedback, the state evolution becomes a stochastic non-linear dynamical system
 - Caused by the stochastic output, which flows back into the state update

How do we generate data from an RNN ?

- RNN gives a distribution over output sequences
- Sampling: sequentially sample one element at a time
 - Compute state from current input and previous state and output
 - Compute distribution on current output symbol
 - Sample output symbol
- Compute maximum likelihood sequence?
 - Not feasible with feedback since output symbol impacts state
- Marginal distribution on n-th symbol
 - Not feasible: marginalize over exponential nr. of sequences
- Marginal probability of a symbol appearing anywhere in seq.
 - Not feasible: average over all marginals

many to many

Approximate maximum likelihood sequences

- Exhaustive maximum likelihood search exponential in sequence length
- Use Beam Search, computational cost linear in
 - Beam size K, vocabulary size V, (maximum) sequence length T

Ensembles of networks to improve prediction

- Averaging predictions of several networks can improve results
 - Trained from different initialization and using different mini-batches
 - Possibly including networks with different architectures, but not per se
 - For CNNs see eg [Krizhevsky & Hinton, 2012] [Simomyan & Zisserman, 2014]
- For RNN sequence prediction
 - Train RNNs independently
 - "Run" RNNs in parallel for prediction, updating states with common seq.
 - Average distribution over next symbol
 - Sample or beam-search based on av. distribution

How to train an RNN without output feedback?

- Compute full state sequence given the input (deterministic given input)
- Compute loss at each time step w.r.t. ground truth output sequence
- Backpropagation ("through time") to compute gradients w.r.t. loss

How to train an RNN with output feedback?

- Compute state sequence given input and ground-truth output, deterministic due to known and fixed output
- Loss at each time step wrt ground truth output seq, backprop through time
- Note discrepancy between train and test
 - Train: predict next symbol from ground-truth sequence so far
 - Test: predict next symbol from generated sequence so far
 - Might deviate from observed ground-truth sequences

many to many

Scheduled sampling for RNN training

- Compensate discrepancy between train and test procedure by training from generated sequence [Bengio et al. NIPS, 2015]
 - Learn to recover from partially incorrect sequences
- Directly training from sampled sequences does not work well in practice
 - At the start randomly initialized model generates random sequences
 - Instead, start by training from ground-truth sequence, and progressively increase probability to sample generated symbol in the sequence

Scheduled sampling for RNN training

- Evaluation image captioning
 - Image in, sentence out
 - Higher scores are better
- Scheduled sampling improves baseline, also in ensemble case
- Uniform Scheduled Sampling: sample uniform instead of using model
 - Already improves over baseline, but not as much as using model
- Always sampling gives very poor results, as expected

Approach vs Metric	BLEU-4	METEOR	CIDER
Baseline	28.8	24.2	89.5
Baseline with Dropout	28.1	23.9	87.0
Always Sampling	11.2	15.7	49.7
Scheduled Sampling	30.6	24.3	92.1
Uniform Scheduled Sampling	29.2	24.2	90.9
Baseline ensemble of 10	30.7	25.1	95.7
 Scheduled Sampling ensemble of 5	32.3	25.4	98.7

Limitations recurrent networks

- Recurrent net can be unrolled as deep network with shared parameters
 - As deep as the number of time steps of the RNN
 - Very deep for very long sequences
- Gradients of "deep" layers (far from input) computed via chainrule as product of Jacobians between layers (time-steps)
 - Product of Jacobians tend to either "explode" to inf. or "vanish" to zero
 - Similar effect observed in non-recurrent networks
- Approaches to address this issue
 - Non-recurrent case: add skip connections from earlier layers towards output: Residual networks, dense networks
 - Introduction of "gates" that shield a hidden unit from input and/or output for several layers, effectively shortening the depth for that unit

- LSTM consist of hidden state h and a "memory cell" c
- Gates are used to modulate the state updates
 [Hochreiter & Schmidhuber, Neural Computation, 1997]

- Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)
- LSTM defines a dynamical system on hidden state h and a "memory cell" c
- Involves a number of additional processing elements
 - Cell update: can forget previous cell state, can ignore input

- Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)
- LSTM defines a dynamical system on hidden state **h** and a "memory cell" **c**
- Involves a number of additional processing elements
 - Forget gate f: "remember" or "forget" previous cell state c

 $f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$

- Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)
- LSTM defines a dynamical system on hidden state h and a "memory cell" c
- Involves a number of additional processing elements
 - Input gate i: controls flow of input to cell state
 - Input modulator \widetilde{C} , maps input and previous state to cell state update

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)
- LSTM defines a dynamical system on hidden state h and a "memory cell" c
- Involves a number of additional processing elements
 - Output gate o, controls flow of cell state to output
 - Output vector also passed to next time step of LSTM unit

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh(C_t)$$

Gated Recurrent Unit (GRU) cells

- GRU is simplified gated RNN as compared to LSTM [Cho et al., Empirical Methods in Natural Language Processing, 2014]
- Two gates, single state signal
 - Forget gate: z
 - Read gate: r

$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

Examples of character-level LSTM language model

- Training data: all Paul Graham essays, about 1 million characters
- Random sample from the trained model:

"The surprised in investors weren't going to raise money. I'm not the company with the time there are all interesting quickly, don't have to get off the same programmers. There's a super-angel round fundraising, why do you can do. If you have a different physical investment are become in people who reduced in a startup with the way to argument the acquirer could see them just that you're also the founders will part of users' affords that and an alternation to the idea. [2] Don't work at first member to see the way kids will seem in advance of a bad successful startup. And if you have to act the big company too."

• Learns to spell words, as well as long range grammatical dependencies

[examples taken from Andrej Karpathy]

Examples of character-level LSTM language model

Training data: all of Shakespeak (4.4 MB)

Random sample from the trained model:

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO: Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown: Come, sir, I will make did behold your worship.

VIOLA: I'll drink it.

• Specific style structure is also captured by the model

Examples of character-level LSTM language model

- Training data: linux source code (474 MB)
- Very long range dependencies on bracket structure

```
* Increment the size file of the new incorrect UI FILTER group information
 * of the size generatively.
 */
static int indicate_policy(void)
{
  int error;
  if (fd == MARN_EPT) {
    /*
     * The kernel blank will coeld it to userspace.
     */
    if (ss->segment < mem_total)</pre>
      unblock_graph_and_set_blocked();
    else
      ret = 1;
    goto bail;
  }
  segaddr = in_SB(in.addr);
  selector = seg / 16;
  setup works = true;
  for (i = 0; i < blocks; i++) {</pre>
    seq = buf[i++];
    bpf = bd->bd.next + i * search;
    if (fd) {
      current = blocked;
    }
  }
  rw->name = "Getjbbregs";
  bprm self clearl(&iv->version);
  regs->new = blocks[(BPF STATS << info->historidac)] | PFMR CLOBATHINC SECONDS << 12;</pre>
  return segtable;
}
```

Case study: image captioning

• Given image generate descriptive english sentence

a brown dog is running through the grass

Image captioning with encoder-decoder system

- Encoder: CNN takes image and maps it into a vector
- For example, fully connected layer of VGG16 network
 - CNN pre-trained on ImageNet classification task (>1 million images)

Image captioning with encoder-decoder system

- Decoder: RNN takes CNN image vector to initialize RNN state
- Typical configuration:
 - Single layer of 512 GRUs
 - Output feedback to ensure coherent sentence

Image captioning with encoder-decoder system

• Example output (Vinyals et al., CVPR 2015)

A person riding a motorcycle on a dirt road.

Two dogs play in the grass.

A group of young people playing a game of frisbee.

Two hockey players are fighting over the puck.

- Translation of a sentence into another language
 - Input and output of different length

- Read source sentence with **encoder** RNN (Sutskever et al., NIPS 2014)
 - Can use bidirectional RNN since input sequence is given
- Generate target sentence with **decoder** RNN
 - Uses a different set of parameters
 - Uses output feedback to ensure output coherency
- Meaning of source sentence encoded in the RNN state vector passed between encoder and decoder
 - For the captioning model, a CNN is used as an image encoder

- Trained from "aligned" corpus of matching source-target sentences
- Encoder and decoder can be learned on multiple language pairs in parallel
 - (English to French) and (Dutch to French) use same decoder
 - (English to French) and (English to Dutch) use same encoder
- Generalizes to translation between new language pairs for which no aligned training corpus was available

- PCA projection of LSTM encoder state after reading a sentence
 - Word order important for meaning, captured in encoder state vector

Attention mechanisms in RNNs

- Encoder-decoder based models compress the entire input into a single vector
 - Difficult to store all details as the sentences grow longer

- Sequential nature of RNN updates makes that start of sentence is less well encoded into the RNN state
 - Using bi-directional RNN helps, but not in the middle of the sentence...

Attention mechanisms in RNNs

- Let decoder attend to part of the input for each state update
 - Selectively: based on current state and input representation
 - Should work for input sequences of variable size
- Sub-network takes state and input encoding, computes attention weights
 - Soft-max over candidate positions in the input
- Feed weighted sum of inputs to the state update

Attention mechanisms in RNNs

- Example correspondences identified by attention mechanism
 - Trained from sentence-level supervision, no word correspondences

Attention mechanisms in image captioning

- Without attention image content encoded into vector output of CNN
 - Decoder cannot "look back" at image
- Attention can be used to focus decoder model on parts of input [Xu et al, ICML'15]

A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Attention mechanisms in image captioning

- What are the image "parts" that we should be looking at? [Pedersoli et al, ICCV'17]
- Activation grid: the locations in a convolutional CNN layer
- Object proposals: plausible object locations predicted by external method
- Spatial transformer: regress deformation of default boxes at locations in activation grid

A man is flying a kite on a sandy beach.

Attention mechanisms in image captioning

- Examples of generated sentences together with the attention regions
 - Region width proportional to attention weight [Pedersoli et al., ICCV'17]

Further reading

- "Pattern Recognition and Machine Learning" Chris Bishop.
 Springer, 2006.
- "Supervised Sequence Labelling with Recurrent Neural Networks" Alex Graves, 2012 (free online)
- "Deep Learning"

Ian Goodfellow, Yoshua Bengio, Aaron Courville.

MIT Press, in preparation.

http://www.deeplearningbook.org/