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Overview

• Introduction to local features

• Harris interest points + SSD, ZNCC, SIFT

• Scale & affine invariant interest point detectors• Scale & affine invariant interest point detectors

• Evaluation and comparison of different detectors

• Region descriptors and their performance 



Local features

( )
local descriptor

Several / many local descriptors per image
Robust to occlusion/clutter + no object segmentation required

Photometric : distinctive
Invariant : to image transformations + illumination changes



Local features: interest points



Local features: Contours/segments



Local features: segmentation



Application: Matching

Find corresponding locations in the image



Illustration – Matching

Interest points extracted with Harris detector (~ 500 points)



MatchingIllustration – Matching

Interest points matched based on cross-correlation (188 pairs)



Global constraints

Global constraint - Robust estimation of the fundamental matrix

Illustration – Matching

99 inliers 89 outliers



Application: Panorama stitching

Images courtesy of A. Zisserman. 



Application: Instance-level recognition

Search for particular objects and scenes in large databases

…



• Image content is transformed into local features invariant to       
geometric and photometric transformations
• Matching local invariant descriptors 

Instance-level recognition: Approach
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K. Grauman, B. Leibe

Local Features, 

e.g. SIFT

Slide credit: David Lowe



Finding the object despite possibly large changes in
scale, viewpoint, lighting and partial occlusion

���� requires invariant description

Difficulties

ViewpointScale

Lighting Occlusion



Difficulties

• Very large images collection � need for efficient indexing

– Flickr has 2 billion photographs, more than 1 million added daily

– Facebook has 15 billion images (~27 million added daily)– Facebook has 15 billion images (~27 million added daily)

– Large personal collections

– Video collections, i.e., YouTube



Applications

• Take a picture of a product or advertisement 
� find relevant information on the web

[Pixee – Milpix]



Applications

• Copy detection for images and videos

Search in 200h of videoQuery video



• Sony Aibo – Robotics
– Recognize  docking station
– Place recognition
– Loop closure in SLAM

Applications
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K. Grauman, B. Leibe Slide credit: David Lowe



Local features - history

• Line segments [Lowe’87, Ayache’90] 

• Interest points & cross correlation [Z. Zhang et al. 95]

• Rotation invariance with differential invariants [Schmid&Mohr’96]

• Scale & affine invariant detectors [Lindeberg’98, Lowe’99, 
Tuytelaars&VanGool’00, Mikolajczyk&Schmid’02, Matas et al.’02]

• Dense detectors and descriptors [Leung&Malik’99, Fei-Fei& 
Perona’05, Lazebnik et al.’06]

• Contour and region (segmentation) descriptors [Shotton et al.’05, 
Opelt et al.’06, Ferrari et al.’06, Leordeanu et al.’07]



Local features

1) Extraction of local features
– Contours/segments
– Interest points & regions
– Regions by segmentation
– Dense features, points on a regular grid

2) Description of local features
– Dependant on the feature type
– Contours/segments � angles, length ratios
– Interest points � greylevels, gradient histograms
– Regions (segmentation) � texture + color distributions



Line matching

• Extraction de contours
– Zero crossing of Laplacian
– Local maxima of gradients

• Chain contour points (hysteresis) • Chain contour points (hysteresis) 

• Extraction of line segments

• Description of segments
– Mi-point, length, orientation, angle between pairs etc. 



Experimental results – line segments

images 600 x 600



Experimental results – line segments

248 / 212 line segments extracted



Experimental results – line segments

89 matched line segments - 100% correct



Experimental results – line segments

3D reconstruction



Problems of line segments

• Often only partial extraction
– Line segments broken into parts
– Missing parts 

• Information not very discriminative• Information not very discriminative
– 1D information
– Similar for many segments

• Potential solutions
– Pairs and triplets of segments
– Interest points 



Overview

• Introduction to local features

• Harris interest points + SSD, ZNCC, SIFT

• Scale & affine invariant interest point detectors• Scale & affine invariant interest point detectors

• Evaluation and comparison of different detectors

• Region descriptors and their performance 



Harris detector [Harris & Stephens’88]

Based on the idea of auto-correlation

Important difference in all directions => interest point



Harris detector
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Harris detector
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Harris detector



Harris detector

Discret shifts are avoided based on the auto-correlation matrix 
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Harris detector
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Harris detector

• Auto-correlation matrix 












⊗= 2

2

),(
yyx

yxx

III

III
GyxA

– captures the structure of the local neighborhood
– measure based on eigenvalues of this matrix

• 2 strong eigenvalues
• 1 strong eigenvalue
• 0 eigenvalue               

=> interest point
=> contour

=> uniform region



Interpreting the eigenvalues

λ2

“Corner”
λ1 and λ2 are large,

λ ~ λ ;

“Edge” 
λ2 >> λ1

Classification of image points using eigenvalues of autocorrelation matrix:

λ1

λ1 ~ λ2;

\

λ1 and λ2 are small; “Edge” 
λ1 >> λ2

“Flat” 
region



Corner response function

“Corner”
R > 0

“Edge” 
R < 0

2
2121

2 )()(trace)det( λλαλλα +−=−= AAR
α: constant (0.04 to 0.06)

“Edge” 
R < 0

“Flat” 
region

|R| small



Harris detector

2
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2 )())(()det( λλλλ +−=−= kAtracekAf

Reduces the effect of a strong contour

• Cornerness function

Reduces the effect of a strong contour

• Interest point detection
– Treshold (absolut, relatif, number of corners)
– Local maxima 

),(),(8, yxfyxfoodneighbourhyxthreshf ′′≥−∈∀∧>



Harris Detector: Steps



Harris Detector: Steps
Compute corner response R



Harris Detector: Steps
Find points with large corner response: R>threshold



Harris Detector: Steps
Take only the points of local maxima of R



Harris Detector: Steps



Harris detector: Summary of steps

1. Compute Gaussian derivatives at each pixel
2. Compute second moment matrix A in a Gaussian 

window around each pixel 
3. Compute corner response function R
4. Threshold R4. Threshold R
5. Find local maxima of response function (non-maximum 

suppression)



Harris - invariance to transformations

• Geometric transformations
– translation

– rotation

– similitude (rotation + scale change)– similitude (rotation + scale change)

– affine (valide for local planar objects)

• Photometric transformations
– Affine intensity changes (I → a I + b)



Harris Detector: Invariance Properties
• Rotation

Ellipse rotates but its shape (i.e. eigenvalues) 
remains the same

Corner response R is invariant to image rotation



Harris Detector: Invariance Properties

• Affine intensity change

� Only derivatives are used => invariance 
to intensity shift I → I + b

� Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change, 
dependent on type of threshold



Harris Detector: Invariance Properties

• Scaling

All points will 
be classified as 

edges

Corner

Not invariant to scaling



Comparison of patches - SSD

),( 11 yx

Comparison of the intensities in the neighborhood of two interest points

),( 22 yx

image 1 image 2

SSD : sum of square difference
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Comparison of patches
2
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=> Normalizing with the mean of each patch 
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Cross-correlation ZNCC
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Local descriptors 

• Greyvalue derivatives

• Differential invariants [Koenderink’87]

• SIFT descriptor [Lowe’99]• SIFT descriptor [Lowe’99]



Greyvalue derivatives: Image gradient

• The gradient of an image: 

•

• The gradient points in the direction of most rapid increase in 
intensity

• The gradient direction is given by
– how does this relate to the direction of the edge?

• The edge strength is given by the gradient magnitude



Differentiation and convolution

• Recall, for 2D function, f(x,y):

• We could approximate this as

∂f
∂x

= lim
ε→0

f x + ε, y( )
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ε
 
  

 
  

∂f
∂x

≈
f xn+1,y( )− f xn, y( )

∆x
• We could approximate this as

∂x
≈

∆x

-1 1• Convolution with the filter



Finite difference filters

• Other approximations of derivative filters exist:



Effects of noise

• Consider a single row or column of the image
– Plotting intensity as a function of position gives a signal

• Where is the edge?



Solution: smooth first

f

g

• To find edges, look for peaks in )( gf
dx
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f * g
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• Differentiation is convolution, and convolution is 
associative:

• This saves us one operation:

g
dx

d
fgf
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Derivative theorem of convolution

g
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Local descriptors
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Local descriptors
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Local descriptors – rotation invariance

Invariance to image rotation : differential invariants [Koen87]
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Laplacian of Gaussian (LOG)

)()( σσ yyxx GGLOG +=



SIFT descriptor [Lowe’99]

• Approach
– 8 orientations of the gradient 
– 4x4 spatial grid
– Dimension 128
– soft-assignment to spatial bins
– normalization of the descriptor to norm one– normalization of the descriptor to norm one
– comparison with Euclidean distance

gradient 3D histogram

→ →

image patch

y

x



Local descriptors - rotation invariance

• Estimation of the dominant orientation
– extract gradient orientation
– histogram over gradient orientation
– peak in this histogram

0 2π

• Rotate patch in dominant direction



Local descriptors – illumination change

in case of an affine transformation baII += )()( 21 xx

• Robustness to illumination changes



Local descriptors – illumination change

in case of an affine transformation baII += )()( 21 xx

• Normalization of derivatives with gradient magnitude

• Robustness to illumination changes

• Normalization of derivatives with gradient magnitude

yyxxyyxx LLLLLL ++ )(



Local descriptors – illumination change

in case of an affine transformation baII += )()( 21 xx

• Normalization of derivatives with gradient magnitude

• Robustness to illumination changes

• Normalization of the image patch with mean and variance 

• Normalization of derivatives with gradient magnitude

yyxxyyxx LLLLLL ++ )(



Invariance to scale changes

• Scale change between two images

• Scale factor s can be eliminated 

• Support region for calculation!! 
– In case of a convolution with Gaussian derivatives defined by 
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Overview

• Introduction to local features

• Harris interest points + SSD, ZNCC, SIFT

• Scale & affine invariant interest point detectors• Scale & affine invariant interest point detectors

• Evaluation and comparison of different detectors

• Region descriptors and their performance 



Scale invariance - motivation

• Description regions have to be adapted to scale changes

• Interest points have to be repeatable for scale changes



Harris detector + scale changes
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Scale adaptation
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Scale adaptation
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Scale adaptation

)(σiLwhere            are the derivatives with Gaussian convolution
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Scale adaptation

)(σiLwhere            are the derivatives with Gaussian convolution
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Harris detector – adaptation to scale
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Multi-scale matching algorithm

1=s

3=s

5=s



Multi-scale matching algorithm

1=s

8 matches



Multi-scale matching algorithm

1=s

3 matches

Robust estimation of a global 
affine transformation



Multi-scale matching algorithm

1=s

3 matches

3=s

4 matches



Multi-scale matching algorithm

1=s

3 matches

3=s

5=s

4 matches

16 matches
correct scale

highest number of matches



Matching results

Scale change of  5.7



Matching results

100% correct matches (13 matches) 



Scale selection
• We want to find the characteristic scale of the blob by 

convolving it with Laplacians at several scales and 
looking for the maximum response

• However, Laplacian response decays as scale 
increases:

Why does this happen?

increasing σoriginal signal
(radius=8)



Scale normalization

• The response of a derivative of Gaussian filter to a perfect 
step edge decreases as σ increases

1

πσ 2

1



Scale normalization

• The response of a derivative of Gaussian filter to a perfect 
step edge decreases as σ increases

• To keep response the same (scale-invariant), must 
multiply Gaussian derivative by σ

• Laplacian is the second Gaussian derivative, so it must be • Laplacian is the second Gaussian derivative, so it must be 
multiplied by σ2



Effect of scale normalization
Unnormalized Laplacian responseOriginal signal

Scale-normalized Laplacian response

maximum



Blob detection in 2D

• Laplacian of Gaussian: Circularly symmetric operator for 
blob detection in 2D
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Blob detection in 2D

• Laplacian of Gaussian: Circularly symmetric operator for 
blob detection in 2D
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Scale selection

• The 2D Laplacian is given by 

• For a binary circle of radius r, the Laplacian achieves a 

222 2/)(222 )2( σσ yxeyx +−−+ (up to scale)

• For a binary circle of radius r, the Laplacian achieves a 
maximum at 2/r=σ
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Characteristic scale

• We define the characteristic scale as the scale that 
produces peak of Laplacian response

characteristic scale

T. Lindeberg (1998). Feature detection with automatic scale selection. 
International Journal of Computer Vision 30 (2): pp 77--116. 



Scale selection

• For a point compute a value (gradient, Laplacian etc.) at 
several scales

• Normalization of the values with the scale factor

e.g. Laplacian |)(| 2

yyxx LLs +

• Select scale    at the maximum  → characteristic scale

• Exp. results show that the Laplacian gives best results 
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Scale selection

• Scale invariance of the characteristic scale 
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Scale selection

• Scale invariance of the characteristic scale 
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Scale-invariant detectors

• Harris-Laplace (Mikolajczyk & Schmid’01) 

• Laplacian detector (Lindeberg’98)

• Difference of Gaussian (Lowe’99)

Harris-Laplace Laplacian



Harris-Laplace

multi-scale Harris points

invariant points + associated regions [Mikolajczyk & Schmid’01]

selection of points at 

maximum of Laplacian 



Matching results

213 / 190 detected interest points 



Matching results

58 points are initially matched



Matching results

32 points are matched after verification – all correct



LOG detector

Convolve image with scale-
normalized Laplacian at 
several scales

))()((2 σσ yyxx GGsLOG +=

Detection of maxima and minima 
of Laplacian in scale space



Hessian detector
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Efficient implementation

• Difference of Gaussian (DOG) approximates the 
Laplacian )()( σσ GkGDOG −=

• Error due to the approximation



DOG detector

• Fast computation, scale space processed one octave at  a 
time

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”IJCV 60 (2).


