
Linear Classification with
discriminative models

Jakob Verbeek
December 9, 2011

Course website:
http://lear.inrialpes.fr/~verbeek/MLCR.11.12.php

Generative vs Discriminative Classification
•  Training data consists of “inputs”, denoted x, and

corresponding output “class labels”, denoted as y.

•  Goal is to predict class label y for a given test data x.

•  Generative probabilistic methods
–  Model the density of inputs x from each class p(x|y)
–  Estimate class prior probability p(y)
–  Use Bayes’ rule to infer distribution over class given input

•  Discriminative (probabilistic) methods
–  Directly estimate class probability given input: p(y|x)
–  Some methods do not have probabilistic interpretation, but

fit a function f(x), and assign to classes based on sign(f(x))

1.  Choose class of decision functions in feature space.
2.  Estimate the function parameters from the training set.
3.  Classify a new pattern on the basis of this decision rule.

Discriminant function

kNN example from last week
Needs to store all data

Separation using smooth curve
Only need to store curve parameters

Linear classifiers
•  Decision function is linear in the features:

•  Classification based on the sign of f(x)

•  Orientation is determined by w (surface
normal)

•  Offset from origin is determined by b

•  Decision surface is (d-1) dimensional
hyper-plane orthogonal to w, given by

€

f (x) = wT x + b = b + wixi
d =1

D

∑

w

€

f (x) = wT x + b = 0

f(x)=0

Linear classifiers
•  Decision function is linear in the features:

•  Classification based on the sign of f(x)

•  Orientation is determined by w (surface normal)
•  Offset from origin is determined by b

•  Decision surface is (d-1) dimensional hyper-
plane orthogonal to w, given by

•  What happens in 3d with w=(1,0,0) and b = - 1 ?

€

f (x) = wT x + b = b + wixi
d =1

D

∑

€

f (x) = wT x + b = 0

w

f(x)=0

Dealing with more than two classes
•  First (bad) idea: construction from multiple binary classifiers

–  Learn the 2-class “base” classifiers independently
–  One vs rest classifiers: train 1 vs (2 & 3), and 2 vs (1 & 3), and 3 vs (1 & 2)
–  Problem: Region claimed by several classes

Dealing with more than two classes
•  First (bad) idea: construction from multiple binary classifiers

–  Learn the 2-class “base” classifiers independently
–  One vs One classifiers: train 1 vs 2, and 2 vs 3 and 1 vs 3
–  Problem: conflicts in some regions

Dealing with more than two classes
•  Alternative: define a separate linear function for each class

•  Assign sample to the class of the function with maximum value

•  Decision regions are convex in this case
–  If two points fall in the region, then also all points on connecting line

•  What shape do the separation surfaces have ?

€

f k (x) = wk
Tx + bk

€

y = argmaxk f k (x)

Logistic discriminant for two classes
•  Map linear score function to class probabilities with sigmoid function

€

f (x) = b +wTx,
p y = +1 | x() =σ(f (x)),

σ(z) =
1

1+ exp −z()
,

p y = −1 | x() =1− p(y = +1 | x) =σ(− f (x))

Logistic discriminant for two classes
•  Map linear score function to class probabilities with sigmoid function
•  The class boundary is obtained for p(y|x)=1/2, thus by setting linear

 function in exponent to zero

w

p(y|x)=1/2

f(x)=-5

f(x)=+5

Multi-class logistic discriminant
•  Map K linear score functions (one for each class) to K class

probabilities using the “soft-max” function

•  The class probability estimates are non-negative, and sum to one.
•  Probability for the most likely class increases quickly with the

difference in the linear score functions

•  For any given pair of classes we find that they are
 equally likely on a hyperplane in the feature space

€

fk (x) = bk +wk
Tx

p(y = i | x) =
exp(f i(x))

exp(fk (x))
k=1

K

∑

Parameter estimation for logistic discriminant
•  Maximize the (log) likelihood of predicting the correct class label for

training data, ie the sum log-likelihood of all training data

•  Derivative of log-likelihood as intuitive interpretation

•  No closed-form solution, use gradient-descent methods
–  Note 1: log-likelihood is concave in parameters, hence no local optima
–  Note 2: w is linear combination of data points

Expected number of points
from each class should
equal the actual number.

Expected value of each
feature, weighting points
by p(y|x), should equal
empirical expectation.

€

∂L
∂bc

= [yn = c] − p(y = c | xn)()
n
∑

Indicator function
1 if yn=c, else 0

Support Vector Machines
•  Find linear function (hyperplane) to separate

positive and negative examples

Which hyperplane
is best?

Support vector machines
•  Find hyperplane that maximizes the margin

between the positive and negative examples

Margin Support vectors

Distance between point
and hyperplane:

For support vectors,

Therefore, the margin is 2 / ||w||

Finding the maximum margin hyperplane
1.  Maximize margin 2/||w||
2.  Correctly classify all training data:

•  Quadratic optimization problem:

•  Minimize

 Subject to yi(w·xi+b) ≥ 1

Finding the maximum margin hyperplane
•  Solution:

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998

Support
vector

learned
weight

Finding the maximum margin hyperplane
•  Solution:

 b = yi – w·xi for any support vector

•  Classification function (decision boundary):

•  Notice that it relies on an inner product between the test
point x and the support vectors xi

•  Solving the optimization problem also involves
computing the inner products xi · xj between all pairs of
training points

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998

Summary Linear discriminant analysis
•  Two most widely used linear classifiers in practice:

–  Logistic discriminant (supports more than 2 classes directly)
–  Support vector machines (multi-class extensions recently developed)

•  In both cases the weight vector w is a linear combination of the data points

•  This means that we only need the inner-products between data points to
calculate the linear functions

–  The function k that computes the inner products is called a kernel function

€

f (x) = wTx + b = b + αnxn
Tx

n=1

N

∑

= b + αnk(xn,x)
n=1

N

∑

Additional reading material
•  Pattern Recognition and Machine Learning

 Chris Bishop, 2006, Springer

•  Chapter 4
–  Section 4.1.1 & 4.1.2
–  Section 4.2.1 & 4.2.2
–  Section 4.3.2 & 4.3.4

–  Section 7.1 start + 7.1.1 & 7.1.2

