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Generative vs Discriminative Classification 
•  Training data consists of “inputs”, denoted x, and 

corresponding output “class labels”, denoted as y. 

•  Goal is to predict class label y for a given test data x. 

•  Generative probabilistic methods 
–  Model the density of inputs x from each class p(x|y) 
–  Estimate class prior probability p(y) 
–  Use Bayes’ rule to infer distribution over class given input 

•  Discriminative (probabilistic) methods 
–  Directly estimate class probability given input: p(y|x) 
–  Some methods do not have probabilistic interpretation, but 

fit a function f(x), and assign to classes based on sign(f(x)) 



1.  Choose class of decision functions in feature space. 
2.  Estimate the function parameters from the training set. 
3.  Classify a new pattern on the basis of this decision rule. 

Discriminant function 

kNN example from last week 
Needs to store all data 

Separation using smooth curve 
Only need to store curve parameters 



Linear classifiers 
•  Decision function is linear in the features: 

•  Classification based on the sign of f(x) 

•  Orientation is determined by w (surface 
normal) 

•  Offset from origin is determined by b 

•  Decision surface is (d-1) dimensional 
hyper-plane orthogonal to w, given by  
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Linear classifiers 
•  Decision function is linear in the features: 

•  Classification based on the sign of f(x) 

•  Orientation is determined by w (surface normal) 
•  Offset from origin is determined by b 

•  Decision surface is (d-1) dimensional hyper-
plane orthogonal to w, given by  

•  What happens in 3d with w=(1,0,0) and b = - 1 ? 
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Dealing with more than two classes 
•  First (bad) idea: construction from multiple binary classifiers 

–  Learn the 2-class “base” classifiers independently 
–  One vs rest classifiers: train 1 vs (2 & 3), and 2 vs (1 & 3),  and 3 vs (1 & 2) 
–  Problem: Region claimed by several classes 



Dealing with more than two classes 
•  First (bad) idea: construction from multiple binary classifiers 

–  Learn the 2-class “base” classifiers independently 
–  One vs One classifiers: train 1 vs 2, and 2 vs 3 and 1 vs 3 
–  Problem: conflicts in some regions 



Dealing with more than two classes 
•  Alternative: define a separate linear function for each class 

•  Assign sample to the class of the function with maximum value  

•  Decision regions are convex in this case 
–  If two points fall in the region, then also all points on connecting line  

•  What shape do the separation surfaces have ? 
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Logistic discriminant for two classes 
•  Map linear score function to class probabilities with sigmoid function 
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Logistic discriminant for two classes 
•  Map linear score function to class probabilities with sigmoid function 
•  The class boundary is obtained for p(y|x)=1/2, thus by setting linear  

 function in exponent to zero 
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Multi-class logistic discriminant 
•  Map K linear score functions (one for each class) to K class 

probabilities using the “soft-max” function 

•  The class probability estimates are non-negative, and sum to one. 
•  Probability for the most likely class increases quickly with the 

difference in the linear score functions 

•  For any given pair of classes we find that they are  
 equally likely on a hyperplane in the feature space 

€ 

fk (x) = bk +wk
Tx

p(y = i | x) =
exp( f i(x))

exp( fk (x))
k=1

K

∑



Parameter estimation for logistic discriminant 
•  Maximize the (log) likelihood of predicting the correct class label for 

training data, ie the sum log-likelihood of all training data 

•  Derivative of log-likelihood as intuitive interpretation 

•  No closed-form solution, use gradient-descent methods  
–  Note 1: log-likelihood is concave in parameters, hence no local optima 
–  Note 2: w is linear combination of data points 

Expected number of points 
from each class should 
equal the actual number. 

Expected value of each 
feature, weighting points 
by p(y|x), should equal 
empirical expectation. 
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Indicator function 
1 if yn=c, else 0 



Support Vector Machines 
•  Find linear function (hyperplane) to separate 

positive and negative examples 

Which hyperplane 
is best? 



Support vector machines 
•  Find hyperplane that maximizes the margin 

between the positive and negative examples 

Margin Support vectors 

Distance between point 
and hyperplane: 

For support vectors,  

Therefore, the margin is  2 / ||w||  



Finding the maximum margin hyperplane 
1.  Maximize margin 2/||w|| 
2.  Correctly classify all training data: 

•  Quadratic optimization problem: 

•    Minimize 

 Subject to  yi(w·xi+b) ≥ 1 



Finding the maximum margin hyperplane 
•  Solution: 

   

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998  

Support  
vector 

learned 
weight 



Finding the maximum margin hyperplane 
•  Solution: 

    b = yi – w·xi   for any support vector 

•  Classification function (decision boundary): 

•  Notice that it relies on an inner product between the test 
point x and the support vectors xi 

•  Solving the optimization problem also involves 
computing the inner products xi · xj between all pairs of 
training points 

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998  



Summary Linear discriminant analysis 
•  Two most widely used linear classifiers in practice: 

–  Logistic discriminant (supports more than 2 classes directly) 
–  Support vector machines (multi-class extensions recently developed)  

•  In both cases the weight vector w is a linear combination of the data points 

•  This means that we only need the inner-products between data points to 
calculate the linear functions 

–  The function k that computes the inner products is called a kernel function 
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Additional reading material 
•  Pattern Recognition and Machine Learning 

 Chris Bishop, 2006, Springer 

•  Chapter 4 
–  Section 4.1.1 & 4.1.2 
–  Section 4.2.1 & 4.2.2 
–  Section 4.3.2 & 4.3.4 

–  Section 7.1 start + 7.1.1 & 7.1.2 


