
Efficient visual search of local features

Cordelia Schmid

Visual search

……

change in viewing angle

Matches

22 correct matches

Image search system for large datasets

Large image dataset
(one million images or more)

Image search
system

ranked image listquery

• Issues for very large databases
• to reduce the query time
• to reduce the storage requirements

Two strategies

1. Efficient approximate nearest neighbour search on local
feature descriptors.

2. Quantize descriptors into a “visual vocabulary” and use
efficient techniques from text retrieval.
(Bag-of-words representation)(Bag-of-words representation)

Images

Local features
invariant
descriptor

vectors

Strategy 1: Efficient approximate NN search

invariant
descriptor

1. Compute local features in each image independently

2. Describe each feature by a descriptor vector

3. Find nearest neighbour vectors between query and database

4. Rank matched images by number of (tentatively) corresponding regions

5. Verify top ranked images based on spatial consistency

descriptor
vectors

Finding nearest neighbour vectors

Establish correspondences between query image and images in the database by
nearest neighbour matching on SIFT vectors

128D descriptor
space

Model image Image database

Solve following problem for all feature vectors, , in the query image:

where, , are features from all the database images.

Quick look at the complexity of the NN-search

N … images
M … regions per image (~1000)
D … dimension of the descriptor (~128)

Exhaustive linear search: O(M NMD)

Example:
• Matching two images (N=1), each having 1000 SIFT descriptors
Nearest neighbors search: 0.4 s (2 GHz CPU, implemenation in C) Nearest neighbors search: 0.4 s (2 GHz CPU, implemenation in C)

• Memory footprint: 1000 * 128 = 128kB / image

N = 1,000 … ~7min (~100MB)
N = 10,000 … ~1h7min (~ 1GB)
…
N = 107 ~115 days (~ 1TB)
…
All images on Facebook:
N = 1010 … ~300 years (~ 1PB)

of images CPU time Memory req.

Nearest-neighbor matching

Solve following problem for all feature vectors, xj, in the query image:

where xi are features in database images.

Nearest-neighbour matching is the major computational bottleneck

• Linear search performs dn operations for n features in the
database and d dimensions

• No exact methods are faster than linear search for d>10

• Approximate methods can be much faster, but at the cost of
missing some correct matches. Failure rate gets worse for
large datasets.

Approximate nearest neighbour search

• kd-trees (k dim. tree)
• Binary tree in which each node is a k-dimensional point
• Every split is associated with one dimension

kd-tree decomposition

kd-tree

K-d tree

• K-d tree is a binary tree data structure for organizing a set of points

• Each internal node is associated with an axis aligned hyper-plane
splitting its associated points into two sub-trees.

• Dimensions with high variance are chosen first.

• Position of the splitting hyper-plane is chosen as the mean/median of
the projected points – balanced tree.

l1

l8

1

l2 l3

l4 l5 l7 l6

l9l10

3

2 5 4 11

9 10

8

6 7

4
7

6

5

1

3

2

9

8

10

11

l1

l2

the projected points – balanced tree.

4
7

6

5

9

8

l5

l1 l9

l6

l3l2

l1

l2 l3

K-d tree construction

Simple 2D example

1

3

2

9 10

11

l10 l7

l4

l8

l8

1

l4 l5 l7 l6

l9l10

3

2 5 4 11

9 10

8

6 7

4
7

6

5

3
9

8

10

l5

l1 l9

l6

l3

l10 l7l8

l2

l1

l2 l3

l4 l5 l7 l6

q

K-d tree query

1 2
11

l7

l4

l8

l8

1

l4 l5 l7 l6

l9l10

3

2 5 4 11

9 10

8

6 7

Large scale object/scene recognition

Image search
system

ranked image list

Image dataset:
> 1 million images

query

• Each image described by approximately 2000 descriptors
– 2 * 109 descriptors to index for one million images!

• Database representation in RAM:
– Size of descriptors : 1 TB, search+memory intractable

Bag-of-features [Sivic&Zisserman’03]

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

sparse frequency vector

centroids
(visual words)

Set of SIFT
descriptors

Query
image

querying
Inverted

file

ranked image
short-list

Geometric
verification

Re-ranked
list

• “visual words”:
– 1 “word” (index) per local

descriptor
– only images ids in inverted file
=> 8 GB fits!

[Chum & al. 2007]

Indexing text with inverted files

Document
collection:

Need to map feature descriptors to “visual words”

Inverted file: Term List of hits (occurrences in documents)

People [d1:hit hit hit], [d4:hit hit] …

Common [d1:hit hit], [d3: hit], [d4: hit hit hit] …

Sculpture [d2:hit], [d3: hit hit hit] …

Visual words
•Example: each group
of patches belongs to
the same visual word

19
K. Grauman, B. Leibe

Figure from Sivic & Zisserman, ICCV 2003

K-means clustering

• Minimizing sum of squared Euclidean distances
between points xi and their nearest cluster centers

• Algorithm:
– Randomly initialize K cluster centers– Randomly initialize K cluster centers
– Iterate until convergence:

• Assign each data point to the nearest center
• Recompute each cluster center as the mean of all points

assigned to it

• Local minimum, solution dependent on initialization

• Initialization important, run several times, select best

Inverted file index for images comprised of visual words

•
Word

number

List of image

numbers

Image credit: A. Zisserman K. Grauman, B. Leibe

• Score each image by the number of common visual words (tentative
correspondences)

• Dot product between bag-of-features

• Fast for sparse vectors !

Inverted file index for images comprised of visual words

• Weighting with tf-idf score: weight visual words based on their frequency

•Tf: normalized term (word) ti frequency in a document dj

∑= kjijij nntf /

Image credit: A. Zisserman K. Grauman, B. Leibe

•Idf: inverse document frequency, total number of documents divided by
number of documents containing the term ti

Tf-Idf:

∑=
k

kjijij nntf /

{ }dtd

D
idf

i
i ∈

=
:

log

iijij idftfidftf ⋅=−

Visual words

• Map descriptors to words by quantizing the feature space
– Quantize via k-means clustering to obtain visual words
– Assign descriptor to closest visual word

• Bag-of-features as approximate nearest neighbor search • Bag-of-features as approximate nearest neighbor search

Bag-of-features matching function

where q(x) is a quantizer, i.e., assignment to visual word and
δa,b is the Kronecker operator (δa,b=1 iff a=b)

Approximate nearest neighbor search evaluation
•ANN algorithms usually returns a short-list of nearest neighbors

– this short-list is supposed to contain the NN with high probability
– exact search may be performed to re-order this short-list

•Proposed quality evaluation of ANN search: trade-off between
– Accuracy: NN recall = probability that the NN is in this list

againstagainst
– Ambiguity removal = proportion of vectors in the short-list

- the lower this proportion, the more information we have about the
vector

- the lower this proportion, the lower the complexity if we perform exact
search on the short-list

•ANN search algorithms usually have some parameters to handle this trade-off

ANN evaluation of bag-of-features
•ANN algorithms
returns a list of
potential neighbors

•Accuracy: NN recall
= probability that the
NN is in this list

N
N

 r
ec

al
l

0.4

0.5

0.6

0.7

k=100

200

500

1000

2000
NN is in this list

•Ambiguity removal:
= proportion of vectors
in the short-list

•In BOF, this trade-off
is managed by the
number of clusters k

N
N

 r
ec

al
l

0

0.1

0.2

0.3

0.4

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1
rate of points retrieved

2000

5000

10000
20000

30000
50000

BOW

Vocabulary size

• The intrinsic matching scheme performed by BOF is weak
– for a “small” visual dictionary: too many false matches
– for a “large” visual dictionary: complexity, true matches are missed

• No good trade-off between “small” and “large” !• No good trade-off between “small” and “large” !
– either the Voronoi cells are too big
– or these cells can’t absorb the descriptor noise
→ intrinsic approximate nearest neighbor search of BOF is not

sufficient

20K visual word: false matches

200K visual word: good matches missed

Hamming Embedding [Jegou et al. ECCV’08]

Representation of a descriptor x
– Vector-quantized to q(x) as in standard BOF
+ short binary vector b(x) for an additional localization in the Voronoi cell

Two descriptors x and y match iif

where h(a,b) Hamming distance

Hamming Embedding

•Nearest neighbors for Hamming distance ≈ those for Euclidean distance
→ a metric in the embedded space reduces dimensionality curse effects

•Efficiency•Efficiency
– Hamming distance = very few operations
– Fewer random memory accesses: 3 x faster that BOF with same dictionary

size!

Hamming Embedding

•Off-line (given a quantizer)
– draw an orthogonal projection matrix P of size db × d

→ this defines db random projection directions
– for each Voronoi cell and projection direction, compute the median – for each Voronoi cell and projection direction, compute the median

value for a learning set

•On-line: compute the binary signature b(x) of a given
descriptor

– project x onto the projection directions as z(x) = (z1,…zdb)
– bi(x) = 1 if zi(x) is above the learned median value, otherwise 0

ANN evaluation of Hamming Embedding
0.7

0.4

0.5

0.6
k=100

200

500

1000

2000

18

20

22

32 28
24 compared to BOW: at least

10 times less points in the
short-list for the same level

of accuracy

N
N

 r
ec

al
l

0

0.1

0.2

0.3

0.4

1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

rate of points retrieved

2000

5000

10000
20000

30000
50000

ht=16

HE+BOW
BOW

Hamming Embedding
provides a much better

trade-off between recall and
ambiguity removal

Matching points - 20k word vocabulary

201 matches 240 matches

Many matches with the non-corresponding image!

Matching points - 200k word vocabulary

69 matches 35 matches

Still many matches with the non-corresponding one

Matching points - 20k word vocabulary + HE

83 matches 8 matches

10x more matches with the corresponding image!

Bag-of-features [Sivic&Zisserman’03]

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

sparse frequency vector

centroids
(visual words)

Set of SIFT
descriptors

Query
image

querying
Inverted

file

ranked image
short-list

Geometric
verification

Re-ranked
list

• “visual words”:
– 1 “word” (index) per local

descriptor
– only images ids in inverted file
=> 8 GB fits!

[Chum & al. 2007]

Geometric verification

Use the position and shape of the underlying features
to improve retrieval quality

Both images have many matches – which is correct?

Geometric verification

We can measure spatial consistency between the query
and each result to improve retrieval quality

Many spatially consistent
matches –correct result

Few spatially consistent
matches –incorrect

result

Geometric verification

Gives localization of the object

Geometric verification

• Remove outliers, matches contain a high number of
incorrect ones

• Estimate geometric transformation

• Robust strategies
– RANSAC
– Hough transform

Example: estimating 2D affine transformation

• Simple fitting procedure (linear least squares)
• Approximates viewpoint changes for roughly planar

objects and roughly orthographic cameras
• Can be used to initialize fitting for more complex models

Matches consistent with an affine transformation

Fitting an affine transformation

Assume we know the correspondences, how do we get the
transformation?

),(ii yx ′′
),(ii yx









+















=









′
′

2

1

43

21

t

t

y

x

mm

mm

y

x

i

i

i

i



















′
′

=













































L

L

L

L

i

i

ii

ii

y

x

t

t

m

m

m

m

yx

yx

2

1

4

3

2

1

1000

0100

Fitting an affine transformation

L

x i y i 0 0 1 0

0 0 x i y i 0 1

L



















m1

m2

m3

m4

t1



















=

L

′ x i
′ y i

L



















Linear system with six unknowns
Each match gives us two linearly independent

equations: need at least three to solve for the
transformation parameters

1

t2   

