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Image search system for large datasets 

Large image dataset
(one million images or more)

Image search 
system

ranked image listquery

• Issues for very large databases
• to reduce the query time
• to reduce the storage requirements



Two strategies

1. Efficient approximate nearest neighbour search on local 
feature descriptors.

2. Quantize descriptors into a “visual vocabulary” and use 
efficient techniques from text retrieval.
(Bag-of-words representation)(Bag-of-words representation)



Images

Local features
invariant 
descriptor 

vectors

Strategy 1: Efficient approximate NN search

invariant 
descriptor 

1. Compute local features in each image independently

2. Describe each feature by a descriptor vector

3. Find nearest neighbour vectors between query and database 

4. Rank matched images by number of (tentatively) corresponding regions 

5. Verify top ranked images based on spatial consistency

descriptor 
vectors



Finding nearest neighbour vectors

Establish correspondences between query image and images in the database by 
nearest neighbour matching on SIFT vectors

128D descriptor 
space

Model image Image database 

Solve following problem for all feature vectors,                     , in the query image:

where,                      ,  are features from all the database images.



Quick look at the complexity of the NN-search

N … images
M … regions per image (~1000)
D … dimension of the descriptor (~128)

Exhaustive linear search: O(M NMD)

Example: 
• Matching two images (N=1), each  having 1000 SIFT descriptors
Nearest neighbors search: 0.4 s (2 GHz CPU, implemenation in C) Nearest neighbors search: 0.4 s (2 GHz CPU, implemenation in C) 

• Memory footprint: 1000 * 128 = 128kB / image

N =   1,000 … ~7min            (~100MB)
N = 10,000 … ~1h7min        (~    1GB)
…
N = 107 ~115 days     (~    1TB)
…
All images on Facebook:
N = 1010        …   ~300 years  (~    1PB)

# of images CPU time Memory req.



Nearest-neighbor matching

Solve following problem for all feature vectors, xj, in the query image:

where xi are features in database images.

Nearest-neighbour matching is the major computational bottleneck

• Linear search performs dn operations for n features in the 
database and d dimensions

• No exact methods are faster than linear search for d>10

• Approximate methods can be much faster, but at the cost of 
missing some correct matches.  Failure rate gets worse for 
large datasets.



Approximate nearest neighbour search

• kd-trees (k dim. tree)
• Binary tree in which each node is a k-dimensional point
• Every split is associated with one dimension

kd-tree decomposition

kd-tree



K-d tree

• K-d tree is a binary tree data structure for organizing a set of points

• Each internal node is associated with an axis aligned hyper-plane 
splitting its associated points into two sub-trees.

• Dimensions with high variance are chosen first.

• Position of the splitting hyper-plane is chosen as the mean/median of 
the projected points – balanced tree.
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Large scale object/scene recognition

Image search 
system

ranked image list

Image dataset:
> 1 million images

query

• Each image described by approximately 2000 descriptors
– 2 * 109 descriptors to index for one million images! 

• Database representation in RAM: 
– Size of descriptors : 1 TB, search+memory intractable



Bag-of-features [Sivic&Zisserman’03]

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

sparse frequency vector

centroids
(visual words)

Set of SIFT
descriptors

Query
image

querying
Inverted

file

ranked image
short-list

Geometric
verification

Re-ranked 
list

• “visual words”: 
– 1 “word” (index) per local 

descriptor 
– only images ids in inverted file
=> 8 GB fits!

[Chum & al. 2007]



Indexing text with inverted files 

Document 
collection:

Need to map feature descriptors to “visual words” 

Inverted file: Term            List of hits (occurrences in documents)

People           [d1:hit hit hit], [d4:hit hit] …

Common       [d1:hit hit], [d3: hit], [d4: hit hit hit] …

Sculpture      [d2:hit], [d3: hit hit hit]  …







Visual words
•Example: each group 
of patches belongs to 
the same visual word

19
K. Grauman, B. Leibe

Figure from  Sivic & Zisserman, ICCV 2003



K-means clustering

• Minimizing sum of squared Euclidean distances 
between points xi and their nearest cluster centers

• Algorithm: 
– Randomly initialize K cluster centers– Randomly initialize K cluster centers
– Iterate until convergence:

• Assign each data point to the nearest center
• Recompute each cluster center as the mean of all points 

assigned to it

• Local minimum, solution dependent on initialization

• Initialization important, run several times, select best 



Inverted file index for images comprised of visual words

•
Word 

number

List of image 

numbers

Image credit: A. Zisserman K. Grauman, B. Leibe

• Score each image by the number of common visual words (tentative 
correspondences)

• Dot product between bag-of-features 

• Fast for sparse vectors ! 



Inverted file index for images comprised of visual words

• Weighting with tf-idf score: weight visual words based on their frequency

•Tf: normalized term (word) ti frequency in a document dj

∑= kjijij nntf /

Image credit: A. Zisserman K. Grauman, B. Leibe

•Idf: inverse document frequency, total number of documents divided by 
number of documents containing the term ti

Tf-Idf: 
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Visual words 

• Map descriptors to words by quantizing the feature space
– Quantize via k-means clustering to obtain visual words
– Assign descriptor to closest visual word

• Bag-of-features as approximate nearest neighbor search • Bag-of-features as approximate nearest neighbor search 

Bag-of-features matching function

where q(x) is a quantizer, i.e., assignment to visual word and
δa,b is the Kronecker operator (δa,b=1 iff a=b)



Approximate nearest neighbor search evaluation
•ANN algorithms usually returns a short-list of nearest neighbors

– this short-list is supposed to contain the NN with high probability
– exact search may be performed to re-order this short-list

•Proposed quality evaluation of ANN search: trade-off between
– Accuracy: NN recall = probability that the NN is in this list

againstagainst
– Ambiguity removal = proportion of vectors in the short-list

- the lower this proportion, the more information we have about the 
vector 

- the lower this proportion, the lower the complexity if we perform exact 
search on the short-list

•ANN search algorithms usually have some parameters to handle this trade-off



ANN evaluation of bag-of-features
•ANN algorithms 
returns a list of 
potential neighbors

•Accuracy: NN recall
= probability that the
NN is in this list
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•In BOF, this trade-off 
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Vocabulary size

• The intrinsic matching scheme performed by BOF is weak
– for a “small” visual dictionary: too many false matches 
– for a “large” visual dictionary: complexity, true matches are missed

• No good trade-off between “small” and “large” !• No good trade-off between “small” and “large” !
– either the Voronoi cells are too big
– or these cells can’t absorb the descriptor noise
→ intrinsic approximate nearest neighbor search of BOF is not 

sufficient



20K visual word: false matches



200K visual word: good matches missed



Hamming Embedding [Jegou et al. ECCV’08]

Representation of a descriptor x
– Vector-quantized to q(x) as in standard BOF
+ short binary vector b(x) for an additional localization in the Voronoi cell

Two descriptors x and y match iif

where h(a,b)  Hamming distance



Hamming Embedding

•Nearest neighbors for Hamming distance ≈ those for Euclidean distance
→ a metric in the embedded space reduces dimensionality curse effects

•Efficiency•Efficiency
– Hamming distance = very few operations
– Fewer random memory accesses: 3 x faster that BOF with same dictionary 

size!



Hamming Embedding

•Off-line (given a quantizer)
– draw an orthogonal projection matrix P of size db × d

→ this defines db random projection directions
– for each Voronoi cell and projection direction, compute the median – for each Voronoi cell and projection direction, compute the median 

value for a learning set

•On-line: compute the binary signature b(x) of a given 
descriptor

– project x onto the projection directions as z(x) = (z1,…zdb) 
– bi(x) = 1 if zi(x) is above the learned median value, otherwise 0



ANN evaluation of Hamming Embedding
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Matching points - 20k word vocabulary

201 matches 240 matches

Many matches with the non-corresponding image!



Matching points - 200k word vocabulary

69 matches 35 matches

Still many matches with the non-corresponding one



Matching points - 20k word vocabulary + HE

83 matches 8 matches

10x more matches with the corresponding image!



Bag-of-features [Sivic&Zisserman’03]

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

sparse frequency vector

centroids
(visual words)

Set of SIFT
descriptors

Query
image

querying
Inverted

file

ranked image
short-list

Geometric
verification

Re-ranked 
list

• “visual words”: 
– 1 “word” (index) per local 

descriptor 
– only images ids in inverted file
=> 8 GB fits!

[Chum & al. 2007]



Geometric verification

Use the position and shape of the underlying features 
to improve retrieval quality

Both images have many matches – which is correct?



Geometric verification

We can measure spatial consistency between the query 
and each result to improve retrieval quality

Many spatially consistent 
matches –correct result

Few spatially consistent 
matches –incorrect 

result



Geometric verification

Gives localization of the object



Geometric verification

• Remove outliers, matches contain a high number of 
incorrect ones  

• Estimate geometric transformation

• Robust strategies
– RANSAC 
– Hough transform



Example: estimating 2D affine transformation

• Simple fitting procedure (linear least squares)
• Approximates viewpoint changes for roughly planar 

objects and roughly orthographic cameras
• Can be used to initialize fitting for more complex models

Matches consistent with an affine transformation



Fitting an affine transformation

Assume we know the correspondences, how do we get the 
transformation?
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Fitting an affine transformation
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Linear system with six unknowns
Each match gives us two linearly independent 

equations: need at least three to solve for the 
transformation parameters
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