
Support Vector Machines & Fisher Vector image representation

Machine Learning and Category Representation 2012-2013

Jakob Verbeek, December 14, 2012

Course website:

http://lear.inrialpes.fr/~verbeek/MLCR.12.13

Discriminative vs generative methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

 Discriminative (probabilistic) methods
► Directly estimate class probability given input: p(y|x)
► Some methods do not have probabilistic interpretation,

 eg. they fit a function f(x), and assign to class 1 if f(x)>0,

and to class 2 if f(x)<0

p (y∣x)=
p (y) p(x∣y)

p (x)
p (x)=∑y

p (y) p (x∣y)

Support Vector Machines

 Find linear function (hyperplane) to separate positive and negative
examples

Which hyperplane
is best?

yi=+1 : wT x+b>0

yi=−1 : wT x+b<0

Support vector machines

 Find hyperplane that maximizes the margin between the positive and
negative examples

MarginSupport vectors

Distance between point
and hyperplane:

For support vectors

Therefore, the margin is
Exercise: show this

yi=+1 : wT x+b≥+1

yi=−1 : wT x+b≤−1

wT x+b=y i

∣wT x+b∣
∥w∥

2
∥w∥

Support vector machines

 Let's consider a support vector x from the positive class
 Let z be its projection on the decision plane

► Since w is normal vector to the decision plane, we have
► and since z is on the decision plane

 Solve for alpha

 Margin is twice distance from x to z

MarginSupport vectors

f (x)=wT x+b=1

z=x−αw

f (z)=wT
(x−αw)+b=0

∥x−z∥=∥x−(x−αw)∥

∥αw∥=α∥w∥
∥w∥

∥w∥
2 =

1
∥w∥

wT
(x−αw)+b=0

wT x+b−αwT w=0
1−αwT w=0

α=
1

wT w
=

1

∥w∥2

Finding the maximum margin hyperplane

1. Maximize margin 2/||w||

2. Correctly classify all training data:

Quadratic optimization problem:

Minimize

Subject to yi(w·xi+b) ≥ 1

1
2

wT w

yi=+1 : wT x+b≥+1

yi=−1 : wT x+b≤−1

Finding the maximum margin hyperplane

 Solution has properties
► w linear combination of data points

► For support vectors

 Classification function thus has form

► relies only on inner products between the test point x and data points
with non-zero alpha's

 Solving the optimization problem also requires evaluation of the inner
products xi · xj between all pairs of training points

w=∑n=1

N
αn yn xn

yn=wT xn+b

b= yn−wT xn

f (x)=wT x+b=∑n=1

N
αn yn xn

T x+b

Learned weights
Non-zero only for
Support vectors

Support vector machines

 For separable classes: Find hyperplane that maximizes the margin
between the positive and negative examples

MarginSupport vectors

For support vectors,

Maximize the margin,
thus minimize

(yi=+1): wT x i+b≥+1

(yi=−1): wT x i+b≤−1

Positive samples

Negative samples

wT xi+b=±1

wT w

Support vector machines

 For non-separable classes: pay a penalty for crossing the margin

– If on correct side of the margin: zero

– Otherwise, amount by which score violates the constraint of correct classification

ξi=max (0,1−y i f (xi))

y i f (xi)≥1

Finding the maximum margin hyperplane

● Minimize norm of w, plus penalties:

● Constraints to correctly classify training data, up to penalties :

● Optimization: still a quadratic-programming problem

– : “slack variables”, loosening the margin constraint
– C: trade-off between large margin & small penalties

• Typically set by cross-validation, i.e. learn with part of data set using
various C values, evaluate classification on held-out data. Repeat
for several train-validation splits to pick the optimal C value.

minw ,ξi

1
2

wT w+C∑i
ξi

y i f (xi)= yi(w
T xi+b)≥1−ξi

ξi

Relation SVM and logistic regression

 A classification error occurs when sign of the function does not match the
sign of the class label: the zero-one loss

 Consider error minimized when training classifier:
– Non-separable SVM, hinge loss:
– Logistic loss:

z= yi f (xi)≤0

ξi=max (0,1− y i f (x i))=max (0,1−z)

−log p (yi∣xi)=−log σ(yi f (x i))=log(1+exp(−z))

 Both hinge & logistic loss are convex
bounds on zero-one loss which is
non-convex and discontinuous

 Both lead to efficient optimization
► Hinge-loss is piece-wise linear:

quadratic programming
► Logistic loss is smooth: gradient

descent methods

Loss

z

Summary of discriminative linear classification

 Two most widely used linear classifiers in practice:
► Logistic discriminant (supports more than 2 classes directly)
► Support vector machines (multi-class extensions recently developed)

 In both cases
► Criterion that is minimized is a convex bound on zero-one loss
► weight vector w is a linear combination of the data points

 This means that we only need the inner-products between data points to
calculate the linear functions

► The “kernel” function k(,) computes the inner products

w=∑n=1

N
αn xn

f (x)=wT x+b

=∑n=1

N
αn xn

T x+b

=∑n=1

N
αn k (xn , x)+b

• 1 dimensional data that is linearly separable

• But what if the data is not linearly seperable?

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear Classification

Slide credit: Andrew Moore

Φ: x → φ(x)

Kernels for non-linear classification

 General idea: map the original input space to some higher-dimensional
feature space where the training set is separable

 Exercise: find features that could separate this data linearly

Slide credit: Andrew Moore

Nonlinear SVMs

 The kernel trick: instead of explicitly computing the feature transformation
φ(x), define a kernel function K such that

 K(xi , xj) = φ(xi) · φ(xj)

 If a kernel satisfies Mercer’s condition then it computes an inner product in
some feature space (possibly infinite nr of dimensions!)

► Mercer's Condition: The square N x N matrix with kernel evaluations for
any arbitrary N data points should always be a positive definite matrix.

 This gives a nonlinear decision boundary in the original space:

f (x) = b+wT
ϕ(x)

= b+∑i
αi ϕ(xi)

T ϕ(x)

= b+∑i
αi k (xi , x)

Kernels for non-linear classification

 What is the kernel function that corresponds to this feature mapping ?

Φ: x → φ(x)

ϕ(x)=(
x1

2

x2
2

√2 x1 x2
)

k (x , y)=ϕ(x)
T
ϕ(y)=?

=x1
2 y1

2
+x2

2 y2
2
+2x1 x2 y1 y2

=(x1 y1+x2 y2)
2

=(xT y)
2

Kernels for non-linear classification

 Suppose we also want to keep the original features to be able to still
implement linear functions

Φ: x → φ(x)

ϕ(x)=(
1

√2 x1

√2 x2

x1
2

x2
2

√2 x1 x2

)
k (x , y)=ϕ(x)

T
ϕ(y)=?

=1+2xT y+(xT y)
2

=(xT y+1)
2

Kernels for non-linear classification

 What happens if we use the same kernel for higher dimensional data
vectors? Which feature vector corresponds to it ?

► First term, encodes an additional 1 in each feature vector
► Second term, encodes scaling of the original features by sqrt(2)
► Let's consider the third term

► In total we have 1 + 2D + D(D+1)/2 features !
► But the inner product did not get any harder to compute

(xT y)
2
=(x1 y1+...+xD yD)

2

k (x , y)=(xT y+1)
2
=1+2xT y+(xT y)

2

=∑d=1

D
(xd yd)

2
+2∑d=1

D

∑i=d+1

D
(xd yd)(xi yi)

=∑d=1

D
xd

2 yd
2
+2∑d=1

D

∑i=d+1

D
(xd xi)(yd yi)

ϕ(x)=(1 ,√2 x1 ,√2 x2, ... ,√2 xD , x1
2 , x2

2 , ... , xD
2 ,√2 x1 x2 , ... ,√2 x1 xD , ... ,√2 xD−1 xD)

T

Original features Squares Products of two distinct elements

ϕ(x)

Popular kernels for bags of features

 Hellinger kernel:

 Histogram intersection kernel:

► Exercise: find the feature transformation ?

 Generalized Gaussian kernel:

► d can be Euclidean distance, χ2 distance, Earth Mover’s Distance, etc.

See also:
J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid,
Local features and kernels for classification of texture and object categories: a
comprehensive study. Int. Journal of Computer Vision, 2007

k (h1 ,h2)=∑d
min(h1(d) ,h2(d))

k (h1 ,h2)=exp(− 1
A

d (h1(i) ,h2(i)))

k (h1 ,h2)=∑d √h1(i)×√h2(i)

Summary linear classification & kernels

 Linear classifiers learned by minimizing convex cost functions
– Logistic discriminant: smooth objective, minimized using gradient descend
– Support vector machines: piecewise linear objective, quadratic programming
– Both require only computing inner product between data points

 Non-linear classification can be done with linear classifiers over new
features that are non-linear functions of the original features
► Kernel functions efficiently compute inner products in (very) high-dimensional

spaces, can even be infinite dimensional in some cases.

 Using kernel functions non-linear classification has drawbacks
– Requires storing the support vectors, may cost lots of memory in practice
– Computing kernel between new data point and support vectors may be

computationally expensive (at least more expensive than linear classifier)

 Kernel functions also work for other linear data analysis techniques
– Principle component analysis, k-means clustering, ….

Fisher vector image representation

• An alternative to bag-of-words image representation introduced in
Fisher kernels on visual vocabularies for image categorization

F. Perronnin and C. Dance, CVPR 2007.

• FV in comparison to the BoW representation

– Both FV and BoW are based on a visual vocabulary, with assignment of patches
to visual words

– FV based on Mixture of Gaussian clustering of patches, BoW based on k-means
clustering

– FV Extracts a larger image signature than the BoW representation for a given
number of visual words

– Leads to good classification results using linear classifiers, where BoW
representations require non-linear classifiers.

 20

 3
5

 8

10

Fisher vector representation: Motivation 1

• Suppose we use a bag-of-words image representation
– Visual vocabulary trained offline

• Feature vector quantization is computationally expensive in
practice

• To extract visual word histogram for a new image
– Compute distance of each local descriptor to each k-means center
– run-time O(NKD) : linear in

• N: nr. of feature vectors ~ 104 per image
• K: nr. of clusters ~ 103 for recognition
• D: nr. of dimensions ~ 102 (SIFT)

• So in total in the order of 109 multiplications

per image to obtain a histogram of size 1000

• Can this be done more efficiently ?!
– Yes, extract more than just a visual word histogram !

 18

 3

5

 8

10

Fisher vector representation: Motivation 2

• Suppose we want to refine a given visual vocabulary

• Bag-of-word histogram stores # patches assigned to each word
– Need more words to refine the representation
– But this directly increases the computational cost
– And leads to many empty bins: redundancy

0
0

2

0

0

 20

 3

5

 8

10

Fisher vector representation in a nutshell

• Instead, the Fisher Vector also records the mean and variance
of the points per dimension in each cell

– More information for same # visual words
– Does not increase computational time significantly
– Leads to high-dimensional feature vectors

 Even when the counts are the same the position and variance
of the points in the cell can vary

Image representation using Fisher kernels

 General idea of Fischer vector representation
► Fit probabilistic model to data
► Represent data with derivative of data log-likelihood

“How does the data want that the model changes?”

Jaakkola & Haussler. “Exploiting generative models in discriminative classifiers”,
in Advances in Neural Information Processing Systems 11, 1999.

 Mixture of Gaussians to model the local (SIFT) descriptors

► Define mixing weights using the soft-max function

ensures positiveness and sum to one constraint

L(X ,Θ)=∑n log p(xn)

p(xn)=∑k πk N (xn ;mk ,Ck)

πk=
expαk

∑k '
expαk '

X={xn}n=1
N

p(X ;Θ)

G(X ,Θ)=
∂ log p(x ;Θ)

∂Θ

Image representation using Fisher kernels

 Mixture of Gaussians to model the local (SIFT) descriptors

► The parameters of the model are
► where we use diagonal covariance matrices

 Concatenate derivatives to obtain data representation

L(Θ)=∑n
log p(xn)

p(xn)=∑k
πk N (xn ;mk ,Ck)

Θ={αk , mk ,C k}k=1
K

G (X ,Θ)=(∂ L
∂α1

, ... ,
∂ L
∂αK

,
∂ L
∂m1

, ... ,
∂ L
∂ mK

,
∂ L

∂C1
−1

, ... ,
∂ L

∂CK
−1)

T

Image representation using Fisher kernels

 Data representation

 In total K(1+2D) dimensional representation,

since for each visual word / Gaussian we have

∂L
∂αk

=∑n
(qnk−πk)

∂L
∂mk

=Ck
−1∑n

qnk (xn−mk)

∂L

∂C k
−1

=
1
2 ∑n

qnk (Ck−(xn−mk)
2)

Count (1 dim) :

Mean (D dims) :

Variance (D dims) :

G(X ,Θ)=(∂L
∂α1

, ... ,
∂ L
∂αK

,
∂ L
∂m1

, ... ,
∂ L
∂mK

,
∂L

∂C1
−1

, ... ,
∂ L

∂C K
−1)

T

qnk= p (k∣x n)=
πk p (xn∣k)

p (xn)
With the soft-assignments:

More/less patches assigned
to visual word than usual?

Center of assigned data
relative to cluster center

Variance of assigned data
relative to cluster variance

Bag-of-words vs. Fisher vector image representation

 Bag-of-words image representation
► Off-line: fit k-means clustering to local descriptors
► Represent image with histogram of visual word counts: K dimensions

 Fischer vector image representation
► Off-line: fit MoG model to local descriptors
► Represent image with gradient of log-likelihood: K(2D+1) dimensions

 Computational cost similar:
► Both compare N descriptors to K visual words (centers / Gaussians)

 Memory usage: higher for fisher vectors
► Fisher vector is a factor (2D+1) larger, e.g. a factor 257 for SIFTs !

 For 1000 visual words the FV has 257,000 dimensions
► However, because we store more information per visual word, we can

generally obtain same or better performance with far less visual words

Images from categorization task PASCAL VOC
 Yearly evaluation from 2005 to 2012 for image classification

Fisher vectors: classification performance VOC'07

• Fisher vector representation yields much better performance for
a given number of Gaussians / visual words than Bag-of-words.

• For a fixed dimensionality Fisher vectors
– perform better
– Are much cheaper to compute

Reading material

 A good book that covers all machine learning aspects of the course is
► Pattern recognition & machine learning

Chris Bishop, Springer, 2006

Buy it if you are interested in machine learning!

 For clustering with k-means & mixture of Gaussians read
► Section 2.3.9
► Chapter 9, except 9.3.4
► Optionally, Section 1.6 on information theory

 For classification read
► Section 2.5, except 2.5.1
► Section 4.1.1 & 4.1.2
► Section 4.2.1 & 4.2.2
► Section 4.3.2 & 4.3.4
► Section 6.2
► Section 7.1 start + 7.1.1 & 7.1.2

Fisher vector image representation

“Fisher Kernels on Visual Vocabularies for
Image Categorization”

F. Perronnin and C. Dance, in CVPR '07

	Slide 1
	Slide 2
	Support Vector Machines
	Support vector machines
	Slide 5
	Finding the maximum margin hyperplane
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Summary Linear discriminant analysis
	Nonlinear SVMs
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Kernels for bags of features
	SVMs vs Logisitic discriminants
	Fisher vector representation: motivation
	Slide 22
	Fisher vector image representation
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Images from categorization task PASCAL VOC
	Slide 30
	Slide 31

