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Discriminative vs generative methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

 Discriminative (probabilistic) methods
► Directly estimate class probability given input: p(y|x)
► Some methods do not have probabilistic interpretation, 

 eg. they fit a function f(x), and assign to class 1 if f(x)>0,

and to class 2 if f(x)<0

p ( y∣x)=
p ( y) p(x∣y)

p (x)
p (x)=∑y

p ( y) p (x∣y)



Support Vector Machines

 Find linear function (hyperplane) to separate positive and negative 
examples

Which hyperplane
is best?

yi=+1 : wT x+b>0

yi=−1 : wT x+b<0



Support vector machines

 Find hyperplane that maximizes the margin between the positive and 
negative examples

MarginSupport vectors

Distance between point 
and hyperplane:

For support vectors 

Therefore, the margin is  
Exercise: show this

yi=+1 : wT x+b≥+1

yi=−1 : wT x+b≤−1

wT x+b=y i

∣wT x+b∣
∥w∥

2
∥w∥



Support vector machines

 Let's consider a support vector x from the positive class
 Let z be its projection on the decision plane

► Since w is normal vector to the decision plane, we have
► and since z is on the decision plane

 Solve for alpha

 Margin is twice distance from x to z

MarginSupport vectors

f ( x)=wT x+b=1

z=x−αw

f (z)=wT
(x−αw )+b=0

∥x−z∥=∥x−( x−αw)∥

∥αw∥=α∥w∥
∥w∥

∥w∥
2 =

1
∥w∥

wT
(x−αw)+b=0

wT x+b−αwT w=0
1−αwT w=0

α=
1

wT w
=

1

∥w∥2



Finding the maximum margin hyperplane

1. Maximize margin 2/||w||

2. Correctly classify all training data:

Quadratic optimization problem:

Minimize

Subject to  yi(w·xi+b) ≥ 1

1
2

wT w

yi=+1 : wT x+b≥+1

yi=−1 : wT x+b≤−1



Finding the maximum margin hyperplane

 Solution has properties
► w linear combination of data points 

► For support vectors 

 Classification function thus has form

► relies only on inner products between the test point x and data points 
with non-zero alpha's

 Solving the optimization problem also requires evaluation of the inner 
products xi · xj between all pairs of training points

w=∑n=1

N
αn yn xn

yn=wT xn+b

b= yn−wT xn

f ( x)=wT x+b=∑n=1

N
αn yn xn

T x+b

Learned weights
Non-zero only for
Support vectors



Support vector machines

 For separable classes: Find hyperplane that maximizes the margin 
between the positive and negative examples

MarginSupport vectors

For support vectors, 

Maximize the margin, 
thus minimize

( yi=+1): wT x i+b≥+1

( yi=−1): wT x i+b≤−1

Positive samples

Negative samples

wT xi+b=±1

wT w



Support vector machines

 For non-separable classes: pay a penalty for crossing the margin

– If on correct side of the margin: zero

– Otherwise, amount by which score violates the constraint of correct classification

ξi=max (0,1−y i f ( xi))

y i f ( xi)≥1



Finding the maximum margin hyperplane

● Minimize norm of w, plus penalties: 

● Constraints to correctly classify training data, up to penalties :

● Optimization: still a quadratic-programming problem

–     : “slack variables”, loosening the margin constraint
– C: trade-off between large margin & small penalties

• Typically set by cross-validation, i.e. learn with part of data set using 
various C values, evaluate classification on held-out data. Repeat 
for several train-validation splits to pick the optimal C value. 

minw ,ξi

1
2

wT w+C∑i
ξi

y i f ( xi)= yi(w
T xi+b)≥1−ξi

ξi



Relation SVM and logistic regression

 A classification error occurs when sign of the function does not match the 
sign of the class label: the zero-one loss

 Consider error minimized when training classifier:
– Non-separable SVM, hinge loss:
– Logistic  loss:

z= yi f (xi)≤0

ξi=max (0,1− y i f (x i))=max (0,1−z)

−log p ( yi∣xi)=−log σ( yi f (x i))=log(1+exp(−z))

 Both hinge & logistic loss are convex 
bounds on zero-one loss which is 
non-convex and discontinuous

 Both lead to efficient optimization
► Hinge-loss is piece-wise linear: 

quadratic programming
► Logistic loss is smooth: gradient 

descent methods

Loss

z



Summary of discriminative linear classification

 Two most widely used linear classifiers in practice:
► Logistic discriminant (supports more than 2 classes directly)
► Support vector machines (multi-class extensions recently developed) 

 In both cases 
► Criterion that is minimized is a convex bound on zero-one loss
► weight vector w is a linear combination of the data points

 This means that we only need the inner-products between data points to 
calculate the linear functions

► The “kernel” function k( , ) computes the inner products 

w=∑n=1

N
αn xn

f ( x)=wT x+b

=∑n=1

N
αn xn

T x+b

=∑n=1

N
αn k (xn , x)+b



• 1 dimensional data that is linearly separable 

• But what if the data is not linearly seperable? 

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear Classification

Slide credit: Andrew Moore



Φ:  x → φ(x)

Kernels for non-linear classification

 General idea: map the original input space to some higher-dimensional 
feature space where the training set is separable

 Exercise: find features that could separate this data linearly 

Slide credit: Andrew Moore



Nonlinear SVMs

 The kernel trick: instead of explicitly computing the feature transformation 
φ(x), define a kernel function K such that

       K(xi , xj) = φ(xi ) · φ(xj)

 If a kernel satisfies Mercer’s condition then it computes an inner product in 
some feature space (possibly infinite nr of dimensions!)

► Mercer's Condition: The square N x N matrix with kernel evaluations for 
any arbitrary N data points should always be a positive definite matrix.

 This gives a nonlinear decision boundary in the original space:

f ( x) = b+wT
ϕ( x)

= b+∑i
αi ϕ( xi)

T ϕ( x)

= b+∑i
αi k (xi , x)



Kernels for non-linear classification

 What is the kernel function that corresponds to this feature mapping ?

Φ:  x → φ(x)

ϕ(x)=(
x1

2

x2
2

√2 x1 x2
)

k ( x , y)=ϕ( x)
T
ϕ( y )=?

=x1
2 y1

2
+x2

2 y2
2
+2x1 x2 y1 y2

=(x1 y1+x2 y2)
2

=( xT y )
2



Kernels for non-linear classification

 Suppose we also want to keep the original features to be able to still 
implement linear functions

Φ:  x → φ(x)

ϕ(x )=(
1

√2 x1

√2 x2

x1
2

x2
2

√2 x1 x2

)
k ( x , y)=ϕ( x)

T
ϕ( y )=?

=1+2xT y+( xT y )
2

=( xT y+1)
2



Kernels for non-linear classification

 What happens if we use the same kernel for higher dimensional data 
vectors? Which feature vector            corresponds to it ?

► First term, encodes an additional 1 in each feature vector
► Second term, encodes scaling of the original features by sqrt(2)
► Let's consider the third term

► In total we have 1 + 2D + D(D+1)/2 features ! 
► But the inner product did not get any harder to compute

( xT y )
2
=( x1 y1+...+xD yD)

2

k ( x , y)=( xT y+1 )
2
=1+2xT y+(xT y )

2

=∑d=1

D
( xd yd)

2
+2∑d=1

D

∑i=d+1

D
( xd yd)(xi yi)

=∑d=1

D
xd

2 yd
2
+2∑d=1

D

∑i=d+1

D
( xd xi)( yd yi)

ϕ(x )=(1 ,√2 x1 ,√2 x2, ... ,√2 xD , x1
2 , x2

2 , ... , xD
2 ,√2 x1 x2 , ... ,√2 x1 xD , ... ,√2 xD−1 xD )

T

Original features Squares Products of two distinct elements

ϕ(x )



Popular kernels for bags of features

 Hellinger kernel:

 Histogram intersection kernel:

► Exercise: find the feature transformation ?

 Generalized Gaussian kernel:

► d can be Euclidean distance, χ2 distance, Earth Mover’s Distance, etc.

See also:
J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid,
Local features and kernels for classification of texture and object categories: a 
comprehensive study. Int. Journal of Computer Vision, 2007

k (h1 ,h2)=∑d
min(h1(d ) ,h2(d ))

k (h1 ,h2)=exp(− 1
A

d (h1(i) ,h2(i)))

k (h1 ,h2)=∑d √h1(i)×√h2(i)



Summary linear classification & kernels

 Linear classifiers learned by minimizing convex cost functions
– Logistic discriminant: smooth objective, minimized using gradient descend
– Support vector machines: piecewise linear objective, quadratic programming
– Both require only computing inner product between data points

 Non-linear classification can be done with linear classifiers over new 
features that are non-linear functions of the original features
► Kernel functions efficiently compute inner products in (very) high-dimensional 

spaces, can even be infinite dimensional in some cases.

 Using kernel functions non-linear classification has drawbacks
– Requires storing the support vectors, may cost lots of memory in practice
– Computing kernel between new data point and support vectors may be 

computationally expensive (at least more expensive than linear classifier)

 Kernel functions also work for other linear data analysis techniques
– Principle component analysis, k-means clustering, ….



Fisher vector image representation

• An alternative to bag-of-words image representation introduced in 
Fisher kernels on visual vocabularies for image categorization

F. Perronnin and C. Dance, CVPR 2007.

 
• FV in comparison to the BoW representation

– Both FV and BoW are based on a visual vocabulary, with assignment of patches 
to visual words

– FV based on Mixture of Gaussian clustering of patches, BoW based on k-means 
clustering

– FV Extracts a larger image signature than the BoW representation for a given 
number of visual words 

– Leads to good classification results using linear classifiers, where BoW 
representations require non-linear classifiers.
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Fisher vector representation: Motivation 1

• Suppose we use a bag-of-words image representation
– Visual vocabulary trained offline

• Feature vector quantization is computationally expensive in 
practice

• To extract visual word histogram for a new image
– Compute distance of each local descriptor to each k-means center 
– run-time O(NKD) : linear in

• N: nr. of feature vectors ~ 104 per image
• K: nr. of clusters ~ 103 for recognition
• D: nr. of dimensions ~ 102 (SIFT)

• So in total in the order of 109 multiplications 

per image to obtain a histogram of size 1000

• Can this be done more efficiently ?!
– Yes, extract more than just a visual word histogram !
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Fisher vector representation: Motivation 2 

• Suppose we want to refine a given visual vocabulary

• Bag-of-word histogram stores # patches assigned to each word
– Need more words to refine the representation
– But this directly increases the computational cost
– And leads to many empty bins: redundancy

0
0

2

0

0



         20 

           3

5

 8

10

Fisher vector representation in a nutshell

• Instead, the Fisher Vector also records the mean and variance 
of the points per dimension in each cell

– More information for same # visual words 
– Does not increase computational time significantly 
– Leads to high-dimensional feature vectors

 Even when the counts are the same the position and variance 
of the points in the cell can vary



Image representation using Fisher kernels

 General idea of Fischer vector representation
► Fit probabilistic model to data
► Represent data with derivative of data log-likelihood

“How does the data want that the model changes?”

Jaakkola & Haussler. “Exploiting generative models in discriminative classifiers”, 
in Advances in Neural Information Processing Systems 11, 1999.

 Mixture of Gaussians to model the local (SIFT) descriptors

► Define mixing weights using the soft-max function

ensures positiveness and sum to one constraint 

L(X ,Θ)=∑n log p(xn)

p(xn)=∑k πk N (xn ;mk ,Ck)

πk=
expαk

∑k '
expαk '

X={xn}n=1
N

p(X ;Θ)

G(X ,Θ)=
∂ log p(x ;Θ)

∂Θ



Image representation using Fisher kernels

 Mixture of Gaussians to model the local (SIFT) descriptors

► The parameters of the model are 
► where we use diagonal covariance matrices

 Concatenate derivatives to obtain data representation

L(Θ)=∑n
log p(xn)

p(xn)=∑k
πk N (xn ;mk ,Ck)

Θ={αk , mk ,C k}k=1
K

G (X ,Θ)=( ∂ L
∂α1

, ... ,
∂ L
∂αK

,
∂ L
∂m1

, ... ,
∂ L
∂ mK

,
∂ L

∂C1
−1

, ... ,
∂ L

∂CK
−1 )

T



Image representation using Fisher kernels

 Data representation

 In total K(1+2D) dimensional representation,

since for each visual word / Gaussian we have

∂L
∂αk

=∑n
(qnk−πk )

∂L
∂mk

=Ck
−1∑n

qnk ( xn−mk )

∂L

∂C k
−1

=
1
2 ∑n

qnk (Ck−(xn−mk)
2)

Count (1 dim) :

Mean (D dims) :

Variance (D dims) :

G(X ,Θ)=( ∂L
∂α1

, ... ,
∂ L
∂αK

,
∂ L
∂m1

, ... ,
∂ L
∂mK

,
∂L

∂C1
−1

, ... ,
∂ L

∂C K
−1 )

T

qnk= p (k∣x n)=
πk p (xn∣k )

p (xn)
With the soft-assignments:

More/less patches assigned 
to visual word than usual?

Center of assigned data
relative to cluster center

Variance of assigned data
relative to cluster variance



Bag-of-words vs. Fisher vector image representation

 Bag-of-words image representation
► Off-line: fit k-means clustering to local descriptors
► Represent image with histogram of visual word counts: K dimensions

 Fischer vector image representation
► Off-line: fit MoG model to local descriptors 
► Represent image with gradient of log-likelihood: K(2D+1) dimensions

 Computational cost similar:
► Both compare N descriptors to K visual words (centers / Gaussians)

 Memory usage: higher for fisher vectors
► Fisher vector is a factor (2D+1) larger, e.g. a factor 257 for SIFTs !

 For 1000 visual words the FV has 257,000 dimensions
► However, because we store more information per visual word, we can 

generally obtain same or better performance with far less visual words



Images from categorization task PASCAL VOC
 Yearly evaluation from 2005 to 2012 for image classification 



Fisher vectors: classification performance VOC'07

• Fisher vector representation yields much better performance for 
a given number of Gaussians / visual words than Bag-of-words.

• For a fixed dimensionality Fisher vectors 
– perform better
– Are much cheaper to compute



Reading material

 A good book that covers all machine learning aspects of the course is 
► Pattern recognition & machine learning

Chris Bishop, Springer, 2006

Buy it if you are interested in machine learning!

 For clustering with k-means & mixture of Gaussians read
► Section 2.3.9
► Chapter 9, except 9.3.4 
► Optionally, Section 1.6 on information theory

 For classification read
► Section 2.5, except 2.5.1 
► Section 4.1.1 & 4.1.2
► Section 4.2.1 & 4.2.2
► Section 4.3.2 & 4.3.4
► Section 6.2
► Section 7.1 start + 7.1.1 & 7.1.2

Fisher vector image representation

“Fisher Kernels on Visual Vocabularies for 
Image Categorization” 

F. Perronnin and C. Dance, in CVPR '07
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