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Image search system for large datasetsImage search system for large datasets 

Large image dataset
(one million images or more)(one million images or more)

Image search

ranked image listquery

Image search 
system

• Issues for very large databases
• to reduce the query timeq y
• to reduce the storage requirements



Two strategiesg

1. Efficient approximate nearest neighbour search on local 
feature descriptorsfeature descriptors.

2 Quantize descriptors into a “visual vocabulary” and use2. Quantize descriptors into a “visual vocabulary” and use 
efficient techniques from text retrieval.
(Bag of words representation)(Bag-of-words representation)



Strategy 1: Efficient approximate NN search

Local features invariant 
descriptordescriptor 

vectors

Images
invariant 
d i tdescriptor 

vectors

1. Compute local features in each image independently
2. Describe each feature by a descriptor vector
3. Find nearest neighbour vectors between query and database g q y
4. Rank matched images by number of (tentatively) corresponding regions 
5. Verify top ranked images based on spatial consistency



Finding nearest neighbour vectors

Establish correspondences between query image and images in the database by 
nearest neighbour matching on SIFT vectors

128D descriptor 
space

Model image Image database 

S l f ll i bl f ll f t t i th iSolve following problem for all feature vectors,                     , in the query image:

where,                      ,  are features from all the database images.



Quick look at the complexity of the NN-search

N … images
M … regions per image (~1000)
D … dimension of the descriptor (~128)

Exhaustive linear search: O(M NMD)

Example: 
• Matching two images (N=1), each  having 1000 SIFT descriptors
Nearest neighbors search: 0 4 s (2 GHz CPU implemenation in C)Nearest neighbors search: 0.4 s (2 GHz CPU, implemenation in C) 

• Memory footprint: 1000 * 128 = 128kB / image

# of images CPU time Memory req.

N =   1,000 … ~7min            (~100MB)
N = 10,000 … ~1h7min        (~    1GB)

g y q

…
N = 107 ~115 days     (~    1TB)
…
All images on Facebook:All images on Facebook:
N = 1010        …   ~300 years  (~    1PB)



Nearest-neighbor matchingea est e g bo atc g

S l f ll i bl f ll f t t i th iSolve following problem for all feature vectors, xj, in the query image:

where xi are features in database images.

Nearest-neighbour matching is the major computational bottleneck
• Linear search performs dn operations for n features in the 

d t b d d di idatabase and d dimensions
• No exact methods are faster than linear search for d>10

A i t th d b h f t b t t th t f• Approximate methods can be much faster, but at the cost of 
missing some correct matches.  Failure rate gets worse for 
large datasets.g



K-d treed t ee
• K-d tree is a binary tree data structure for organizing a set of points

E h i t l d i i t d ith i li d h l• Each internal node is associated with an axis aligned hyper-plane 
splitting its associated points into two sub-trees.

• Dimensions with high variance are chosen first• Dimensions with high variance are chosen first.

• Position of the splitting hyper-plane is chosen as the mean/median of 
the projected points – balanced tree.
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Large scale object/scene recognitionLarge scale object/scene recognition
Image dataset:

k d i li t

> 1 million images

query

Image search 
system

ranked image list
q y

• Each image described by approximately 2000 descriptors
2 * 109 descriptors to index for one million images!– 2  109 descriptors to index for one million images! 

• Database representation in RAM:Database representation in RAM: 
– Size of descriptors : 1 TB, search+memory intractable



Bag-of-features [Sivic&Zisserman’03]Bag of features [Sivic&Zisserman 03]

sparse freq enc ector

centroids
(visual words)

Set of SIFT
descriptors

Query
image

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

sparse frequency vector

+tf idf weighting

queryingInverted• “visual words”: queryingfile• visual words : 
– 1 “word” (index) per local 

descriptor 

ranked imageGeometricRe-ranked 

p
– only images ids in inverted file
=> 8 GB fits!

g
short-listverificationlist

[Chum & al. 2007]



Indexing text with inverted filesIndexing text with inverted files 

Document 
collection:

Inverted file: Term List of hits (occurrences in documents)Inverted file: Term            List of hits (occurrences in documents)

People           [d1:hit hit hit], [d4:hit hit] …

Common [d1:hit hit] [d3: hit] [d4: hit hit hit]Common       [d1:hit hit], [d3: hit], [d4: hit hit hit] …

Sculpture      [d2:hit], [d3: hit hit hit]  …

Need to map feature descriptors to “visual words” 







Visual wordsVisual words
•Example: each group 
f t h b l tof patches belongs to 

the same visual word

16
K. Grauman, B. Leibe

Figure from  Sivic & Zisserman, ICCV 2003



Inverted file index for images comprised of visual words

Word List of image 
• number numbers

• Score each image by the number of common visual words (tentative• Score each image by the number of common visual words (tentative 
correspondences)

• Dot product between bag-of-features

Image credit: A. Zisserman K. Grauman, B. Leibe

Dot product between bag of features 

• Fast for sparse vectors ! 



Inverted file index for images comprised of visual words

Weighting with tf idf score: weight visual words based on their frequency• Weighting with tf-idf score: weight visual words based on their frequency

Tf li d t ( d) ti f i d t dj•Tf: normalized term (word) ti frequency in a document dj

 kjijij nntf /

•Idf: inverse document frequency total number of documents divided by


k

kjijijf

•Idf: inverse document frequency, total number of documents divided by 
number of documents containing the term ti

 dtd
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

:
log

Image credit: A. Zisserman K. Grauman, B. Leibe

Tf-Idf: iijij idftfidftf 



Visual wordsVisual words 

Map descriptors to words by quantizing the feature space• Map descriptors to words by quantizing the feature space
– Quantize via k-means clustering to obtain visual words
– Assign descriptor to closest visual wordAssign descriptor to closest visual word

• Bag-of-features as approximate nearest neighbor search g pp g

Bag-of-features matching function

where q(x) is a quantizer, i.e., assignment to visual word and
δa b is the Kronecker operator (δa b=1 iff a=b)a,b p ( a,b )



Approximate nearest neighbor search evaluationApproximate nearest neighbor search evaluation
•ANN algorithms usually returns a short-list of nearest neighbors

this short list is supposed to contain the NN with high probability– this short-list is supposed to contain the NN with high probability
– exact search may be performed to re-order this short-list

•Proposed quality evaluation of ANN search: trade-off between
– Accuracy: NN recall = probability that the NN is in this list

againstagainst
– Ambiguity removal = proportion of vectors in the short-list

- the lower this proportion, the more information we have about the 
tvector 

- the lower this proportion, the lower the complexity if we perform exact 
search on the short-list

•ANN search algorithms usually have some parameters to handle this trade-off



ANN evaluation of bag-of-featuresANN evaluation of bag of features
•ANN algorithms 
returns a list of0 7 returns a list of 
potential neighbors
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Vocabulary sizeVocabulary size

The intrinsic matching scheme performed by BOF is weak• The intrinsic matching scheme performed by BOF is weak
– for a “small” visual dictionary: too many false matches 
– for a “large” visual dictionary: complexity true matches are missedfor a large  visual dictionary: complexity, true matches are missed

• No good trade-off between “small” and “large” !No good trade off between small  and large  !
– either the Voronoi cells are too big
– or these cells can’t absorb the descriptor noise
 intrinsic approximate nearest neighbor search of BOF is not 

sufficient



20K visual word: false matches



200K visual word: good matches missed



Hamming Embedding [Jegou et al ECCV’08]Hamming Embedding [Jegou et al. ECCV 08]

Representation of a descriptor x
– Vector-quantized to q(x) as in standard BOF
+ short binary vector b(x) for an additional localization in the Voronoi cell

Two descriptors x and y match iif

where h(a,b)  Hamming distance



Hamming EmbeddingHamming Embedding

•Nearest neighbors for Hamming distance  those for Euclidean distance
 a metric in the embedded space reduces dimensionality curse effects a metric in the embedded space reduces dimensionality curse effects

Effi i•Efficiency
– Hamming distance = very few operations
– Fewer random memory accesses: 3 x faster that BOF with same dictionary 

i !size!



Hamming EmbeddingHamming Embedding

•Off-line (given a quantizer)
draw an orthogonal projection matrix P of size d × d– draw an orthogonal projection matrix P of size db × d

 this defines db random projection directions
– for each Voronoi cell and projection direction, compute the median p j , p

value for a learning set

•On-line: compute the binary signature b(x) of a given 
descriptor

project x onto the projection directions as z(x) = (z z )– project x onto the projection directions as z(x) = (z1,…zdb) 
– bi(x) = 1 if zi(x) is above the learned median value, otherwise 0



ANN evaluation of Hamming EmbeddingANN evaluation of Hamming Embedding
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Matching points - 20k word vocabularyMatching points 20k word vocabulary

201 matches 240 matches

Many matches with the non-corresponding image!



Matching points - 200k word vocabularyMatching points 200k word vocabulary
69 matches 35 matches

Still many matches with the non-corresponding one



Matching points - 20k word vocabulary + HEMatching points 20k word vocabulary + HE

83 matches 8 matches

10x more matches with the corresponding image!



Bag-of-features [Sivic&Zisserman’03]Bag of features [Sivic&Zisserman 03]

sparse freq enc ector

centroids
(visual words)

Set of SIFT
descriptors

Query
image

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

sparse frequency vector

queryingInverted• “visual words”: queryingfile• visual words : 
– 1 “word” (index) per local 

descriptor 

ranked imageGeometricRe-ranked 

– only images ids in inverted file
=> 8 GB fits!

g
short-listverificationlist

[Chum & al. 2007]



Geometric verification

Use the position and shape of the underlying features 
t i t i l litto improve retrieval quality

Both images have many matches – which is correct?g y



Geometric verification

We can measure spatial consistency between the query 
d h l i i l liand each result to improve retrieval quality

Many spatially consistent 
matches – correct result

Few spatially consistent 
matches – incorrectmatches – correct result matches – incorrect 

result



Geometric verification

Gives localization of the object



Geometric verificationGeometric verification

Remove outliers matches contain a high number of• Remove outliers, matches contain a high number of 
incorrect ones  

• Estimate geometric transformation

• Robust strategies
RANSAC– RANSAC 

– Hough transform



Example: estimating 2D affine transformation

• Simple fitting procedure (linear least squares)
A i t i i t h f hl l• Approximates viewpoint changes for roughly planar 
objects and roughly orthographic cameras
Can be used to initialize fitting for more complex models• Can be used to initialize fitting for more complex models

Matches consistent with an affine transformation



Fitting an affine transformation

Assume we know the correspondences, how do we get the 
transformation?transformation?
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Fitting an affine transformation
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Linear system with six unknowns
Each match gives us two linearly independentEach match gives us two linearly independent 

equations: need at least three to solve for the 
transformation parameters



Comparison

Hough Transform
Ad t

RANSAC
Ad tAdvantages

• Can handle high percentage of 
outliers (>95%)
E t t i f l tt i

Advantages
• General method suited to large range 

of problems
E t i l t• Extracts groupings from clutter in 

linear time

Disadvantages

• Easy to implement
• “Independent” of number of dimensions

Disadvantagesg
• Quantization issues
• Only practical for small number of 

dimensions (up to 4)

• Basic version only handles moderate 
number of outliers (<50%)

( p )

Improvements available
• Probabilistic Extensions

Many variants available, e.g.
• PROSAC: Progressive RANSAC Probabilistic Extensions

• Continuous Voting Space
• Can be generalized to arbitrary 

shapes and objects

[Chum05]

• Preemptive RANSAC [Nister05][Leibe08]
s apes a d objects



Geometric verification – example 

1. Query 2. Initial retrieval set (bag of words model)

…

3. Spatial verification (re-rank on # of inliers)



Evaluation dataset: Oxford buildings

All Soul's

Ashmolean

Bridge of 
Sighs

Balliol

Keble

Magdalen

Bodleian

Th

University 
Museum

Thom 
Tower

Cornmarket

Radcliffe 
Camera

 Ground truth obtained for 11 landmarks Ground truth obtained for 11 landmarks
 Evaluate performance by mean Average Precision



Measuring retrieval performance: Precision - Recall

• Precision: % of returned images that g
are relevant

• Recall: % of relevant images that are 
returned
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Average Precision

1
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n • A good AP score requires both high 
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P f d b A P i i ( AP)Performance measured by mean Average Precision (mAP) 
over 55 queries on 100K or 1.1M image datasets





INRIA holidays datasetINRIA holidays dataset

Evaluation for the INRIA holidays dataset 1491 images• Evaluation for the INRIA holidays dataset, 1491 images
– 500 query images + 991 annotated true positives
– Most images are holiday photos of friends and familyMost images are holiday photos of friends and family 

• 1 million & 10 million distractor images from Flickr
• Vocabulary construction on a different Flickr setVocabulary construction on a different Flickr set 

• Evaluation metric: mean average precision (in [0,1], 
bigger = better)bigger  better)
– Average over precision/recall curve 



Holiday dataset – example queriesHoliday dataset example queries 



Dataset : Venice ChannelDataset : Venice Channel

Query Base 2Base 1

Base 4Base 3



Dataset : San Marco squareDataset : San Marco square

Query Base 1 Base 3Base 2Query Base 1 Base 3Base 2

Base 4 Base 5 Base 7Base 6

Base 9Base 8



Example distractors - FlickrExample distractors Flickr



Experimental evaluation

• Evaluation on our holidays dataset, 500 query images, 1 million distracter 
imagesg

• Metric: mean average precision (in [0,1], bigger = better)
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Results – Venice Channel

Base 1 Flickr

Query

Flickr Base 4

Query

Demo at http://bigimbaz inrialpes frDemo at http://bigimbaz.inrialpes.fr 



Towards larger databases?

 BOF can handle up to ~10 M d’images
► with a limited number of descriptors per image
► 40 GB of RAM  
► search = 2 s

 Web-scale = billions of images Web-scale  billions of images
► With 100 M per machine 

→ search = 20 s, RAM = 400 GB
bl !→ not tractable!



Recent approaches for very large scale indexing  

centroids
(visual words)Set of SIFT

descriptors
Query
image

Hessian-Affine
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

sparse frequency vector

g g

Vector 
compression

Vector 
search

ranked imageG t iRe ranked ranked image
short-list

Geometric
verification

Re-ranked 
list



Related work on very large scale image search

 GIST descriptors with Spectral Hashing [Torralba et al. ‘08]

 Compressing the BoF representation (miniBof) [Jegou et al. ‘09]

A ti l l d i t t i t ti [J t l ‘10] Aggregating local desc into a compact image representation [Jegou et al. ‘10]

 Efficient object category recognition using classemes [Torresani et al.’10]


