Generative and discriminative classification techniques

Machine Learning and Category Representation 2014-2015
Jakob Verbeek, November 28, 2014

Course website:

http://lear.inrialpes.fr/~verbeek/MLCR.14.15
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Classification

® Given training data labeled for two or more classes
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Classification

® Given training data labeled for two or more classes

® Determine a surface that separates those classes
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Classification

® Given training data labeled for two or more classes

® Determine a surface that separates those classes

® Use that surface to predict the class membership of new data
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Classification examples in category-level recognition

® |mage classification: for each of a set of labels, predict if it is relevant or not
for a given image.

® For example: Person = yes, TV = yes, car = no, ...
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Classification examples in category-level recognition

Category localization: predict bounding box coordinates.
Classify each possible bounding box as containing the category or not.
® Report most confidently classified box.
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Classification examples in category-level recognition

Semantic segmentation: classify pixels to categories (multi-class)
® |Impose spatial smoothness by Markov random field models.




Classification examples in category-level recognition

® Event recognition: classify video as belonging to a certain category or not.
® Example of “cliff diving” category video recognized by our system.
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Classification examples in category-level recognition

Temporal action localization: find all instances in a movie.
® Enables “fast-forward” to actions of interest, here “drinking”
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Classification

Goal is to predict for a test data input the corresponding class label.
— Data input x, eg. image but could be anything, format may be vector or other
— Class label y, can take one out of at least 2 discrete values, can be more

In binary classification we often refer to one class as “positive”, and the
other as “negative”

Classifier: function f(x) that assigns a class to x, or probabilities over the
classes.

Training data: pairs (x,y) of inputs x, and corresponding class label y.

Learning a classifier: determine function f(x) from some family of functions
based on the available training data.

Classifier partitions the input space into regions where data is assigned to a
given class

— Specific form of these boundaries will depend on the family of classifiers used
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Generative classification: principle

p(x|Cz2)

class densities

p(z|Cy)

1.2

Model the class conditional distribution over data x for each class y: p(x|y)
> Data of the class can be sampled (generated) from this distribution
Estimate the a-priori probability that a class will appear p(y)

Infer the probability over classes using Bayes' rule of conditional probability

_pr(y)pxly)

Unconditional distribution on x is obtained by marginalizing over the class y

p(Cilz)

p(Calz)




Generative classification: practice

® |n order to apply Bayes' rule, we need to estimate two distributions.

® A-priori class distribution
> In some cases the class prior probabilities are known in advance.

> If the frequencies in the training data set are representative for the true
class probabilities, then estimate the prior by these frequencies.

» More elaborate methods exist, but not discussed here.

® (Class conditional data distributions
» Select a class of density models
Parametric model, e.g. Gaussian, Bernoulli, ...
Semi-parametric models: mixtures of Gaussian, Bernoulli, ...
Non-parametric models: histograms, nearest-neighbor method, ...
Or more structured models taking problem knowledge into account.

> Estimate the parameters of the model using the data in the training set

associated with that class. 1
4 Grenoble INF\

informatics g”mathematics EN 5] mA g l
2L — I



V4

&zi

Estimation of the class conditional model

Given a set of n samples from a certain class, and a family of distributions.
X={x....x,] P={p,(x);0€0}

Question how do we quantify the fit of a certain model to the data, and how
do we find the best model defined in this sense?

Maximum a-posteriori (MAP) estimation: use Bayes' rule again as follows:

> Assume a prior distribution over the parameters of the model p(0)

> Then the posterior likelihood of the model given the data is
p(01X)=p(x]0)p(6)/p(X)

> Find the most likely model given the observed data

~

O=argmax , p(0|X)=argmax ,{In p(0)+In p(X]0)}

Maximum likelihood parameter estimation: assume prior over parameters is
uniform (for bounded parameter spaces), or “near uniform” so that its effect
is negligible for the posterior on the parameters.

> In this case the MAP estimator is given by 6=argmax, p(X|0)
> Fori.id. samples:

)

Grenoble INP

wformatics #mathematics 6= argmax H; plx | 0)=argmax Z Inp(x |6) EnsimAg
2l — J)!

1

I



® (Generative probabilistic methods use Bayes’ rule for prediction

> Problem is reformulated as one of parameter/densﬂy estimation
p(y)p(x|y)

p(x)

® Adding new classes to the model is easy:

p(ylx)=

Generative classification methods

Z p(y)p(xly)

» Existing class conditional models stay as they are

» Estimate p(x|new class) from training examples of new class
> Re-estimate class prior probabilities

class densities

p(z|Cy)

p(x|Cz2)

1.2

p(Cilz)

p(Calz)




Example of generative classification

® Three-class example in 2D with parametric model
— Single Gaussian model per class, uniform class prior

— Exercise 1: how is this model related to the Gaussian mixture model we
looked at last week for clustering ?

— Exercise 2: characterize surface of equal class probability when the
covariance matrices are the same for all classes
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Density estimation, e.g. for class-conditional models

®* Any type of data distribution may be used, preferably one that is modeling
the data well, so that we can hope for accurate classification results.

® |f we do not have a clear understanding of the data generating process, we
can use a generic approach,

> Gaussian distribution, or other reasonable parametric model
Estimation in closed form, otherwise often relatively simple estimation

> Mixtures of XX
Estimation using EM algorithm, not more complicated than single XX

> Non-parametric models can adapt to any data distribution given enough
data for estimation. Examples: (multi-dimensional) histograms, and
nearest neighbors.

Estimation often trivial, given a single smoothing parameter.
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Histogram density estimation

® Suppose we have N data points use a histogram with C cells
® (Consider maximum likelihood estimator

A n C
0=argmax, Zizl pe(x,)=argmax, Zc:1 n.no,
® Take into account constraint that density should integrate to one

Cc-1
0c:=1—(2. _ v6,

® Exercise: derive maximum likelihood estimator

5 :
® Some observations: A =0.04
» Discontinuous density estimate 0

v,

» Cell size determines smoothness 5O 0.5 1
> Number of cells scales exponentially A =0.08 |
with the dimension of the data
0
5 .




The Naive Bayes model

® Histogram estimation, and other methods, scale poorly with data dimension
Fine division of each dimension: many empty bins
Rough division of each dimension: poor density model
Even for one cut per dimension: 2° cells

® The number of parameters can be made linear in the data dimensionality by
assuming independence between the dimensions

p(x)=IT,_ p(x(d))

® For example, for histogram model: we estimate a histogram per dimension
Still C® cells, but only D x C parameters to estimate, instead of C°

® Independence assumption can be (very) unrealistic for high dimensional data
But classification performance may still be good using the derived p(y|x)
Partial independence, e.g. using graphical models, relaxes this problem.

®* Principle can be applied to estimation with any type of density estimate \
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Example of a naive Bayes model

® Hand-written digit classification

Iniut blnari 28x28 scanned let |maies collect in 784 Iong bit strlni

— Desired output: class label of image

e Generative model over 28 x 28 pixel images: 2"* possible images
— Independent Bernoulli model for each class p(x|y=c) H plx |y c)
— Probability per pixel per class
— Maximum likelihood estimator is average value
per pixel/bit per class

plxly)
p(x) .
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p(x‘=1ly=c)=0
p(x"=0ly=c)=1-0,

e Classify using Bayes' rule:  p(ylx)=2
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k-nearest-neighbor density estimation: principle

Instead of having fixed cells as in histogram method,
> Center cell on the test sample for which we evaluate the density.
> Fix number of samples in the cell, find the corresponding cell size.

Probability to find a point in a sphere A centered on x, with volume v is

P(XEA)ZIA p(x)dx
A smooth density is approximately constant in small region, and thus

P(xeA)=[ p(x)dx~ [, p(x,)dx=p(x,)v,

Alternatively: estimate P from the fraction of training data in A: P(XEA)N%
— Total N data points, k in the sphere A

k
Combine the above to obtain estimate P (X,)~ Nv
A

Note: density estimates not guaranteed to integrate to one!
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k-nearest-neighbor density estimation: practice

® Procedure in practice:
» Choose k

> For given x, compute the volume v which contain k samples.

> Estimate density with p(X)NNL
%

® \olume of a sphere with radius r in d dimensions is

® What effect does k have?
» Data sampled from mixture
of Gaussians plotted in green
» Larger k, larger region,
smoother estimate
» Similar role as cell size for
histogram estimation

0
5 I
K — 30 /\
1
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K=1
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d di/2
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K-nearest-neighbors for classification

® Use Bayes' rule with kNN density estimation for p(x|y)

> Find sphere volume v to capture k data points for estimate p(x):NL
v
. k.
» Use the same sphere for each class for estimates p(x|y=c): N v
NC
» Estimate class prior probabilities p(y=c)= N

» Calculate class posterior distribution as fraction of k neighbors in class ¢

ply=c)p(xly=c)

ply=clx)= o2
* e p(x) ..
° .II .0.\: B 1 kc . y . °
Lol p(x) Ny S
° . o. ¢ '. _kc o - s\ ° ¢
° . o _? o o.




Smoothing effects for large values of k: data set




Smoothing effects for large values of k, k=1




Smoothing effects for large values of k, k=5




Smoothing effects for large values of k, k=10
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Summary generative classification methods

® (Semi-) Parametric models, e.g. p(x|y) is Gaussian, or mixture of ...
> Pros: no need to store training data, just the class conditional models

» Cons: may fit the data poorly, and might therefore lead to poor
classification result

® Non-parametric models:
> Pros: flexibility, no assumptions distribution shape, “learning” is trivial.
KNN can be used for anything that comes with a distance.
» Cons of histograms:

* Only practical in low dimensional data (<5 or so), application in high
dimensional data leads to exponentially many and mostly empty cells

* Naive Bayes modeling in higher dimensional cases
— Cons of k-nearest neighbors

* Need to store all training data (memory cost)

* Computing nearest neighbors (computational cost)
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