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Classification

 Given training data labeled for two or more classes

 Determine a surface that separates those classes

 Use that surface to predict the class membership of new data



Classification examples in category-level recognition

 Image classification: for each of a set of labels, predict if it is relevant or not 
for a given image.

 For example: Person = yes, TV = yes, car = no, ...



Classification examples in category-level recognition

 Category localization: predict bounding box coordinates. 
 Classify each possible bounding box as containing the category or not.
 Report most confidently classified box.



Classification examples in category-level recognition

 Semantic segmentation: classify pixels to categories (multi-class)
 Impose spatial smoothness by Markov random field models.



Classification examples in category-level recognition

 Event recognition: classify video as belonging to a certain category or not.
 Example of “cliff diving” category video recognized by our system.



Classification examples in category-level recognition

 Temporal action localization: find all instances in a movie.
 Enables “fast-forward” to actions of interest, here “drinking”



Classification

 Goal is to predict for a test data input the corresponding class label.
– Data input x, eg. image but could be anything, format may be vector or other
– Class label y, can take one out of at least 2 discrete values, can be more

► In binary classification we often refer to one class as “positive”, and the 
other as “negative”

 Classifier: function f(x) that assigns a class to x, or probabilities over the 
classes.

 Training data: pairs (x,y) of inputs x, and corresponding class label y.

 Learning a classifier: determine function f(x) from some family of functions 
based on the available training data.

 Classifier partitions the input space into regions where data is assigned to a 
given class

– Specific form of these boundaries will depend on the family of classifiers used



Generative classification: principle

 Model the class conditional distribution over data x for each class y:
► Data of the class can be sampled (generated) from this distribution 

 Estimate the a-priori probability that a class will appear

 Infer the probability over classes using Bayes' rule of conditional probability

 Unconditional distribution on x is obtained by marginalizing over the class y

p ( y∣x)=
p ( y) p(x∣y)
p (x)

p(x)=∑y
p( y) p(x∣y)

p(x∣y)

p( y)



Generative classification: practice

 In order to apply Bayes' rule, we need to estimate two distributions.

 A-priori class distribution
► In some cases the class prior probabilities are known in advance.
► If the frequencies in the training data set are representative for the true 

class probabilities, then estimate the prior by these frequencies.
► More elaborate methods exist, but not discussed here.

 Class conditional data distributions
► Select a class of density models

 Parametric model, e.g. Gaussian, Bernoulli, …
 Semi-parametric models: mixtures of Gaussian, Bernoulli, ...
 Non-parametric models: histograms, nearest-neighbor method, …
 Or more structured models taking problem knowledge into account.

► Estimate the parameters of the model using the data in the training set 
associated with that class.



Estimation of the class conditional model

 Given a set of n samples from a certain class, and a family of distributions.

 Question how do we quantify the fit of a certain model to the data, and how 
do we find the best model defined in this sense?

 Maximum a-posteriori (MAP) estimation: use Bayes' rule again as follows:
► Assume a prior distribution over the parameters of the model
► Then the posterior likelihood of the model given the data is 

► Find the most likely model given the observed data

 Maximum likelihood parameter estimation: assume prior over parameters is 
uniform (for bounded parameter spaces), or “near uniform” so that its effect 
is negligible for the posterior on the parameters.
► In this case the MAP estimator is given by 
► For i.id. samples: 

p(θ)

X={x1, ... , xn} P={pθ(x);θ∈Θ}

p(θ∣X)=p(x∣θ) p(θ)/ p(X)

θ̂=argmax θ p(θ∣X )=argmax θ{ln p(θ)+ ln p(X∣θ)}

θ̂=argmax θ∏i=1

n
p(x i∣θ)=argmax θ∑i=1

n
ln p(xi∣θ)

θ̂=argmax θ p(X∣θ)



Generative classification methods

 Generative probabilistic methods use Bayes’ rule for prediction
► Problem is reformulated as one of parameter/density estimation

 Adding new classes to the model is easy:
► Existing class conditional models stay as they are
► Estimate p(x|new class) from training examples of new class
► Re-estimate class prior probabilities

p ( y∣x)=
p ( y) p(x∣y)
p (x)

p (x)=∑y
p ( y) p (x∣y)



Example of generative classification

 Three-class example in 2D with parametric model
– Single Gaussian model per class, uniform class prior
– Exercise 1: how is this model related to the Gaussian mixture model we 

looked at last week for clustering ? 
– Exercise 2: characterize surface of equal class probability when the 

covariance matrices are the same for all classes

p ( y∣x)=
p ( y) p(x∣y)
p (x)p(x∣y)



Density estimation, e.g. for class-conditional models

 Any type of data distribution may be used, preferably one that is modeling 
the data well, so that we can hope for accurate classification results.

 If we do not have a clear understanding of the data generating process, we 
can use a generic approach,

► Gaussian distribution, or other reasonable parametric model
 Estimation in closed form, otherwise often relatively simple estimation

► Mixtures of XX
 Estimation using EM algorithm, not more complicated than single XX

► Non-parametric models can adapt to any data distribution given enough 
data for estimation. Examples: (multi-dimensional) histograms, and 
nearest neighbors.
 Estimation often trivial, given a single smoothing parameter. 



Histogram density estimation

 Suppose we have N data points use a histogram with C cells
 Consider maximum likelihood estimator

 Take into account constraint that density should integrate to one

 Exercise: derive maximum likelihood estimator 

 Some observations:
► Discontinuous density estimate
► Cell size determines smoothness
► Number of cells scales exponentially 

with the dimension of the data

θ̂=argmaxθ∑i=1

n
pθ(x i)=argmaxθ∑c=1

C
nc lnθc

θC :=1−(∑k=1

C−1
vkθk )/vC



The Naive Bayes model

 Histogram estimation, and other methods, scale poorly with data dimension
► Fine division of each dimension: many empty bins
► Rough division of each dimension: poor density model

 Even for one cut per dimension: 2D cells 

 The number of parameters can be made linear in the data dimensionality by 
assuming independence between the dimensions 

 For example, for histogram model: we estimate a histogram per dimension
► Still CD cells, but only D x C parameters to estimate, instead of CD

 Independence assumption can be (very) unrealistic for high dimensional data
► But classification performance may still be good using the derived p(y|x)
► Partial independence, e.g. using graphical models, relaxes this problem.

 Principle can be applied to estimation with any type of density estimate

p(x)=∏d=1

D
p(x (d))



Example of a naïve Bayes model

 Hand-written digit classification
– Input: binary 28x28 scanned digit images, collect in 784 long bit string

– Desired output: class label of image

 Generative model over 28 x 28 pixel images: 2784 possible images
– Independent Bernoulli model for each class
– Probability per pixel per class
– Maximum likelihood estimator is average value

per pixel/bit per class

 Classify using Bayes’ rule: p ( y∣x)=
p ( y) p(x∣y)
p (x)

p (x∣y=c)=∏d
p (xd∣y=c)

p (xd=1∣y=c)=θcd
p (xd=0∣y=c)=1−θcd



k-nearest-neighbor density estimation: principle

 Instead of having fixed cells as in histogram method, 
► Center cell on the test sample for which we evaluate the density.
► Fix number of samples in the cell, find the corresponding cell size.

 Probability to find a point in a sphere A centered on x
0
 with volume v is

 A smooth density is approximately constant in small region, and thus

 Alternatively: estimate P from the fraction of training data in A:
– Total N data points, k in the sphere A

 Combine the above to obtain estimate

 Note: density estimates not guaranteed to integrate to one!

P(x∈A )=∫A
p( x)dx

P(x∈A )=∫A
p(x)dx≈∫A

p(x0)dx=p(x0)v A

P(x∈A )≈ k
N

p(x0)≈
k
NvA



k-nearest-neighbor density estimation: practice

 Procedure in practice: 
► Choose  k 
► For given x, compute the volume v which contain k samples.
► Estimate density with 

 Volume of a sphere with radius r in d dimensions is 

 What effect does k have?
► Data sampled from mixture 

of Gaussians plotted in green
► Larger k, larger region, 

smoother estimate
► Similar role as cell size for

histogram estimation

p( x)≈ k
Nv

v (r , d)= 2rdπd /2

Γ(d /2+ 1)



K-nearest-neighbors for classification 

 Use Bayes' rule with kNN density estimation for p(x|y)

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates

► Estimate class prior probabilities 

► Calculate class posterior distribution as fraction of k neighbors in class c

p(x∣y=c)=
k c
N c v

p( y=c)=
N c

N

p( y=c∣x)=
p( y=c) p(x∣y=c)

p(x)

= 1
p (x)

k c
Nv

=
k c
k

p(x)= k
N v



Smoothing effects for large values of k: data set

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c
N c v

p(x)= k
N v



Smoothing effects for large values of k, k=1

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c
N c v

p(x)= k
N v



Smoothing effects for large values of k, k=5

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c
N c v

p(x)= k
N v



Smoothing effects for large values of k, k=10

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c
N c v

p(x)= k
N v



Smoothing effects for large values of k, k=100

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c
N c v

p(x)= k
N v



Summary generative classification methods

 (Semi-) Parametric models, e.g. p(x|y) is Gaussian, or mixture of …
► Pros: no need to store training data, just the class conditional models
► Cons: may fit the data poorly, and might therefore lead to poor 

classification result 

 Non-parametric models: 
► Pros: flexibility, no assumptions distribution shape, “learning” is trivial. 

KNN can be used for anything that comes with a distance.
► Cons of histograms:

• Only practical in low dimensional data (<5 or so), application in high 
dimensional data leads to exponentially many and mostly empty cells

• Naïve Bayes modeling in higher dimensional cases
– Cons of k-nearest neighbors

• Need to store all training data (memory cost)
• Computing nearest neighbors (computational cost)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Classification
	Discriminative vs generative methods
	Generative classification methods
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Histogram methods
	The ‘curse of dimensionality’
	Example of a naïve Bayes model
	Slide 20
	Slide 21
	k-nearest-neighbor classification rule
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Summary generative classification methods

