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A brief recap on kernel methods

A way to achieve non-linear classification by using a kernel that computes
inner products of data after non-linear transformation.

» Given the transformation, we can derive the kernel function.

® (Conversely, if a kernel is positive definite, it is known to compute a dot-
product in a (not necessarily finite dimensional) feature space.
» Given the kernel, we can determine the feature mapping function.
k(x1,X2):<(P(X1),(P<X2>>
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A brief recap on kernel methods

So far, we considered starting with data in a vector space, and mapping it into
another vector space to facilitate linear classification.

Kernels can also be used to represent non-vectorial data, and to make them
amenable to linear classification (or other linear data analysis) techniques.

For example, suppose we want to classify sets of points in a vector space,
where the size of the set can be arbitrarily large.

X=(X, X,...,xy] with x,€R

We can define a kernel function that computes the dot-product between
representations of sets that are given by the mean and variance of the set of
points in each dimension.

x )= |mean (X)
@ (X) var(X )
» Fixed size representation of sets in 2d dimensions
» Use kernel to compare different sets:
k(X1,X2):<(P(X1):CP(X2)> 1
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Fisher kernels

e Proposed by Jaakkola & Haussler, “Exploiting generative models in
discriminative classifiers”,In Advances in Neural Information Processing
Systems 11, 1998.

® Motivated by the need to represent variably sized objects in a vector space,
such as sequences, sets, trees, graphs, etc., such that they become
amenable to be used with linear classifiers, and other data analysis tools

® A generic method to define kernels over arbitrary data types based on
generative statistical models.

» Assume we can define a probability distribution over the items we want to
represent

p(x;0), xeX, 6eR”
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V4

Fisher kernels

Given a generative data model  p(x;0), x€X, 6€R”

Represent data x in X by means of the gradient of the data log-likelihood, or

Fisher score”: g(x)=V,ln p(x),
g(x)ER”
Define a kernel over X by taking the scaled inner product between the Fisher
score vectors: k(x,y)zg(x)TF_lg(y)
Where F is the Fisher information matrix F:
F=E (X)Q(X)T]

Note: the Fisher kernel is a positive definite kernel since
_ T _
k(xi’xj):(F 1/29(Xi)) (F 1/2g(xj))

» And therefore
a Ka=(Ga) Ga=0

where K,=k(x,,x;) and the i-th column of G contains F~"*g/(x,)
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Fisher kernels - relation to generative classification

® Suppose we make use of generative model for classification via Bayes' rule
»  Where x is the data to be classified, and y is the discrete class label

p(yIX)f(p(XIy)p(y)/p(X),
p(x)=2. _ ply=k)p(x|ly=k)
and
p(xly)=p(x;0,),
exp(“k)

T K
Zk’:l exp (o ')

e (Classification with the Fisher kernel obtained using the marginal distribution
p(X) is at least as powerful as classification with Bayes' rule.

® This becomes useful when the class conditional models are poorly estimated,
either due to bias or variance type of errors.

® |n practice often used without class-conditional models, but direct generative
-~ model for the marginal distribution on X. Grenoble IND \
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Fisher kernels - relation to generative classification

® Consider the Fisher score vector with respect to the marginal distribution on X

V@lnp Vezk , P X Y= k
:p(lx)Z;ilp<x,y=k)Velnp(x,y=k>

=3" ply=k|x)|V,In p(y=k)+V,In p(x|y=k)|

® |n particular for the alpha that model the class prior probabilities we have

oln p(x)

o, = Ply=klx)-
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Fisher kernels - relation to generative classification

oln p(x)
o0a,

=ply=k|x)-

9 e

. . alnp(x) 8lnp(x)
g(x)—velnp<x)— 80(1 geesy aaK
Consider discriminative multi-class classifier.

Let the weight vector for the k-th class to be zero, except for the position that
corresponds to the alpha of the k-th class where it is one. And let the bias
term for the k-th class be equal to the prior probability of that class,

Then  f,(x)=w, g(x)+b,=p(y=klx)
and thus argmax, f,(x)=argmax, p(y=k|x)

Thus the Fisher kernel based classifier can implement classification via
Bayes' rule, and generalizes it to other classification functions.
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Local descriptor based image representations

® Patch extraction and description stage
» For example: SIFT, HOG, LBP, color, ...
» Dense multi-scale grid, or interest points

X={X .., Xy]

® (Coding stage: embed local descriptors, typically in higher dimensional space
» For example: assignment to cluster indices

CP(Xi)

® Pooling stage: aggregate per-patch embeddings
» For example: sum pooling

®(X)=Y,  olx)
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Bag-of-word image representation

e Extract local image descriptors, e.g. SIFT
» Dense on multi-scale grid, or on interest points

e Off-line: cluster local descriptors with k-means
» Using random subset of patches from training images

® To represent training or test image
~  Assign SIFTSs to cluster indices / visual words ¢ (x;)=[0,...,0,1,0,...,0]

» Histogram of cluster counts aggregates all local feature information
[Sivic & Zisserman, ICCV'03], [Csurka et al., ECCV'04] h= Z o(x,)
1
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Application of FV for bag-of-words image-representation

e Bag of word (BoW) representation
~ Map every descriptor to a cluster / visual word index w,€{1,...,K|

exp o,

® Model visual word indices with i.i.d. multinomial p( =TT,
Z exp O
N
> Likelihood of N i.i.d. indices: p(w,.y)= lelp(w,-)
> Fisher vector given by gradient ~ d1n p(w,. ) v Olnp(w,)
l.e. BOW histogram + constant 5ak Zizl 50‘1( _hk_N Ty

-
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Fisher vector GMM representation: Motivation

 Suppose we want to refine a given visual vocabulary to obtain a
richer image representation

 Bag-of-word histogram stores # patches assigned to each word
— Need more words to refine the representation
— But this directly increases the computational cost
— And leads to many empty bins: redundancy

1
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Fisher vector GMM representation: Motivation

 Feature vector quantization is computationally expensive

 To extract visual word histogram for a new image
— Compute distance of each local descriptor to each k-means center
— run-time O(NKD) : linear in
 N: nr. of feature vectors ~ 10* per image

« K: nr. of clusters ~ 10° for recognition i
* D: nr. of dimensions ~ 102 (SIFT) I

* So in total in the order of 10° multiplications .
per image to obtain a histogram of size 1000 *

=

E1s

* Can this be done more efficiently ?!

— Yes, extract more than just a visual word histogram from a given
clustering
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Fisher vector representation in a nutshell

* Instead, the Fisher Vector for GMM also records the mean and
variance of the points per dimension in each cell

— More information for same # visual words
— Does not increase computational time significantly
— Leads to high-dimensional feature vectors

® Even when the counts are the same,

the position and varlance of the pomts in the ceII can vary

|
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Application of FV for Gaussian mixture model of local features

® Gaussian mixture models for local image descriptors
[Perronnin & Dance, CVPR 2007]
» State-of-the-art feature pooling for image/video classification/retrieval

e Offline: Train k-component GMM on collection of local features
p(x)=2,_ N (x;w,,0,)

e Each mixture component corresponds to a visual word
» Parameters of each component: mean, variance, mixing weight

» We use diagonal covariance matrix for simplicity
Coordinates assumed independent, per Gaussian
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Application of FV for Gaussian mixture model of local features

® Gaussian mixture models for local image descriptors
[Perronnin & Dance, CVPR 2007]

» State-of-the-art feature pooling for image/video classification/retrieval

® Representation: gradient of log-likelihood
» For the means and variances we have;

. 1 <V (x,—w,)
F 1/2VMk1np(X1:N): \/Tk n=1 p(k|xn) Ok .
~1/2 1 (Xn_Mk)2
F Vo 1np(xl N)_ﬁzn_l p(k|xn) Gz _1
k k

» Soft-assignments given by component posteriors

T, N (x,;u,,0
p(k|x,)=— 12 0)
p(x,)
|

4 GrenoblelNP\

informaties SFmathematic ENSiMAQ I
(i IEAR )

I



Application of FV for Gaussian mixture model of local features

® Fisher vector components give the difference between the data mean
predicted by the model and observed in the data, and similar for variance.

® [or the gradient w.r.t. the mean

. 1 <~ (x,~w)_ n .
F UZVWIHP(XLN)ZWI{ nz1p(k|x) O, : Ok\;{_k( Wy

N N

> Wwhere n= nzlp(klxn) (,=n, ,,zlp(k|xn)xn

e Similar for the gradientwrt the variance 2
Mk

k

F_1/2V0k1np<X1N \/72,, 1p k|x,)

»  where —nk Z P k|X )(X —Mk>

7 Grenoble INP\
En51mF|g }

informatics g”mathematics
2507 IEAR l



Image representation using Fisher kernels

® Data representation

T

_ oL oL
G(X,0)=F"" o o > Yul, o VoL, VoL, .., VL
1 K

®* |n total K(1+2D) dimensional representation, since for each visual
word / Gaussian we have

»  Mixing weight (1 scalar)
> Mean (D dimensions)
> Variances (D dimensions, since single variance per dimension)

® Gradient with respect to mixing weights often dropped in practice
since it adds little discriminative information for classification.

» Results in 2KD dimensional image descriptor
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lllustration of gradient w.r.t. means of Gaussians

New Data Points N\
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BoW and FV from a function approximation viewpoint

e | et us consider uni-dimensional descriptors: vocabulary
quantizes real line

e For both BoW and FV the representation of an image is
obtained by sum-pooling the representations of descriptors.
>~ Ensemble of descriptors sampled in an image X={x, ...,xy|
» Representation of single descriptor

One-of-k encoding for Bow  ¢(x;)=[0....,0,1,0,...,0]
For FV concatenate per-visual word gradients of form

o (%)= plil)|t o) Xm0

1
O 2
k o

g e

e Linear function of sum-pooled descriptor encodings is a sum
of linear functions of individual descriptor encodings:

®(X)=Y  olx)

WT(D<X): l-zle(P(Xi) \
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From a function approximation viewpoint

e Consider the score of a single descriptor for Bow
~ If assigned to k-th visual word then w' ¢(x,)=w,
» Thus: constant score for all descriptors assigned to a visual word

1 1
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N

Each cell corresponds to a visual word
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From a function approximation viewpoint

e Consider the same for FV, and assume soft-assignment is “hard”

> Thus: assume for one value of k we have p(k|x,)~1
» If assigned to the k-th visual word:

(Xi_Mk) (Xi_uk)2_(ji
O, o2

w (P<Xi):Wk 1

Note that w, is no longer a scalar but a vector

» Thus: score is a second-order polynomial of the descriptor x, for
descriptors assigned to a given visual word.

2— ! ! ! ] 1 ! I
1 I
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From a function approximation viewpoint

e Consider that we want to approximate a
based on either BoW (blue) or FV (red) representation

»  Weights for BoW and FV representation fitted by least squares to
optimally match the target function

e Better approximation with FV

» Local second order approximation, instead of local zero-order
»  Smooth transition from one visual word to the next
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Mean AP (in %)

Fisher vectors: classification performance VOC'07

* Fisher vector representation yields better performance for a
given number of Gaussians / visual words than Bag-of-words.

 For a fixed dimensionality Fisher vectors perform better, and are
more efficient to compute
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Normalization of the Fisher vector

V4
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Inverse Fisher information matrix F F=E[g(x)g(x)"]
» Renders FV invariant for re-parametrization f(x)=F " g(x)

» Linear projection, analytical approximation for MoG gives diagonal matrix
[Jaakkola, Haussler, NIPS 1999], [Sanchez, Perronnin, Mensink, Verbeek 1JCV'13]

Power-normalization f(x)€sign(f(x))|f(x)f

» Renders Fisher vector less sparse 0<p<1
[Perronnin, Sanchez, Mensink, ECCV'10]

» Corrects for poor independence assumption on local descriptors
[Cinbis, Verbeek, Schmid, CVPR'12]

L2-normalization f(x

)
N . . f(x)(—
Makes representation invariant to number of local features W( X)Tf(x)

» Among other Lp norms the most effective with linear classifier
[Sanchez, Perronnin, Mensink, Verbeek IJCV'13]
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Normalization with inverse Fisher information matrix

e Gradient of log-likelihood w.r.t. parameters  g(x)=V,ln p(x)
e Fisher information matrix ~ F,=[ g(x)g(x)" p(x)dx

e Normalized Fisher kernel  k(x, x,)=g(x,) Fy g(x,)

e Consider different parametrization given by some invertible function A=f(0)
: : : L 0,
® Jacobian matrix relating the parametrizations [J]U:%

® Gradient of log-likelihood w.r.t. new parameters
h(x)=V,Inp(x)=JV,Inp(x)=Jg(x)

1
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Effect of power and L2 normalization in practice

® (lassification results on the PASCAL VOC 2007 benchmark dataset.

® Regular dense sampling of local SIFT descriptors in the image
PCA projected to 64 dimensions

® Using mixture of 256 Gaussians over the SIFT descriptors

FV dimensionality: 2*64*256 = 32 * 1024

Power
Nomalization

No

Yes

No
Yes

informatics g”mathematics

2l —

L2 Performance
normalization (MAP)

No 51.5

NoO 59.8

Yes 57.3

Yes 61.8

IEAR

Improvement
over baseline

0
8.3
5.8
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PCA dimension reduction of local descriptors

® \We use diagonal covariance model Results on PASCAL VOC'07:
62
61
® Dimensions might be correlated -
= 59
e Apply PCA projection to o »
» De-correlate features g
. . . =
» Reduce dimension of final FV % , , , , |
55 . . . . . .
[ | —e—with PCA| - B
54 ________ ........ . ________ . n no PCA ...é ........ .--/. ......
e [V with 256 Gaussians over local Yo 16 a2 48 64 80 o6 117 128
Local feature dimensionality
SIFT descriptors of dimension 128
\
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Example applications: Fine-grained classification

e
Y

== = - -

aircraft (100) birds (83) cars (196) dogs (120) shoes (70)

®* Winning INRIA+Xerox system at FGComp’13:http://sites.google.com/site/fgcomp2013
» multiple low-level descriptors: SIFT, color, etc.

» Fisher Vector embedding

Gosselin, Murray, Jégou, Perronnin, “Revisiting the Fisher vector for fine-grained
classification”, PRL’14.

e Many other successful uses of FVs for fine-grained recognition

» Rodriguez and Larlus, “Predicting an object location using a global image representation”,
ICCV'13.

»  Gavves, Fernando, Snoek, Smeulders, Tuytelaars, “Fine-Grained Categorization by
Alignments”, ICCV’13

»  Chai, Lempitsky, Zisserman, “Symbiotic segmentation and part localization for fine-grained
categorization”, ICCV'13

> Murray, Perronnin, “Generalized Max Pooling”, CVPR’14. 1
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http://sites.google.com/site/fgcomp2013

Example applications: object detection

person

Iperson

flower pot et
" power drill _
motorcycle

® ImageNet’13 detection: http://www.image-net.org/challenges/LSVRC/2013/

®* Winning system by University of Amsterdam
> region proposals with selective search
» Fisher Vector embedding
» Fast Local Area Independent Representation (FLAIR)

Van de Sande, Snoek, Smeulders, “Fisher and VLAD with FLAIR”, CVPR’14.
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Example applications: face verification

V4

2

Face track description:
» track face

» extract SIFT descriptors
» encode using Fisher vectors
» pool at face track level

Parkhi, Simonyan, Veldaldi, Zisserman, “A compact and discriminative face track

descriptor”, CVPR’14.

New state-of-the-art results on the YouTube faces dataset

informatics g”mathematics

A —

Method Accuracy |AUC| EER
1 | MGBS & SVM- 7] 78.9+1.9| 869 | 21.2
2 |APEM FUSION [20] 0.1 +1.5| 866|214
3|STFRD & PMML [11] 705 +2.5| 886|199
4| VSOF & OSS (Adaboost) [ 2] 7TO.7T+=1.8| 89.4 | 20.0
5 [Our VF~ (restricted) 83523920 16.1
6 | Our VE? (restricted & Aip) 24.74+1.4(1093.0( 149
7 | Our VF- (unrestricted & Aip) #35+£21(940(13.0
8 | Our VF~ (unrestricted & jitt. pool.) [83.8 £ 1.6 | 95.0 | 12.3
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Example appllcatlons action recognition and localization

® THUMOS action recognition challenge 2013 & 2014
http://crcv.ucf.edu/ICCV13-Action-Workshop

® \Winning systems by INRIA-LEAR

» improved dense trajectory video features
» Fisher Vector embedding

_Wang and Schmid, “Action Recognition with Improved Trajectories”, ICCV’13. \
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Bag-of-words vs. Fisher vector image representation

GMM Fisher vector is an alternative to bag-of-words image
representation introduced in

» Fisher kernels on visual vocabularies for image categorization
F. Perronnin and C. Dance, CVPR 2007.

Both representations based on a visual vocabulary obtained
by means of clustering local descriptors

Bag-of-words image representation

» Off-line: fit k-means clustering to local descriptors

» Represent image with histogram of visual word counts: K
dimensions

Fisher vector image representation
»  Off-line: fit GMM model to local descriptors

» Represent image with gradient of log-likelihood: K(2D+1)
dimensions

1
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Summary of Fisher vector image representation

® Computational cost similar:
» Both compare N descriptors to K clusters (visual words)

® Memory usage:
> Fisher vector has size 2KD for K clusters and D dim. descriptors
» Bag-of-word has size K for K clusters

® For a given dimension of the representation
» FV needs less clusters, and is faster to compute

» FV gives better performance since it is a smoother function of
the local descriptors.

® A recent overview article on Fisher Vector representation

> Image Classification with the Fisher Vector: Theory and Practice
Jorge Sanchez; Florent Perronnin; Thomas Mensink; Jakob Verbeek
International Journal of Computer Vision, Springer, 2013 )
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