Bag-of-features
for category classification

Cordelia Schmid

EAR



10)
1N\

Car: present

Cow: present
Bike: not present
Horse: not present
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Car: present

Cow: present
Bike: not present
Horse: not present

* Object localization: define the location and the category

Location

Category
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« Robust image description
— Appropriate descriptors for categories

« Statistical modeling and machine learning for vision
— Use and validation of appropriate techniques
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« Early approaches: simple features + handcrafted models
« Can handle only few images, simples tasks

L. G. Roberts, Machine Perception of Three Dimensional Solids,
Ph.D. thesis, MIT Department of Electrical Engineering, 1963.
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« Early approaches: manual programming of rules
» Tedious, limited and does not take into accout the data

scena

object

BUILDING Ao
sub-region
patch
(pixzel)
(a) Bottom-up process (b) Top-down process (c) Result

Figure 3. A system developed in 1978 by Ohta. Kanade and Sakai [33, 32] for knowledge-based interpretation of outdoor natural scenes.
The system is able to label an image (c) into semantic classes: S-sky, T-tree, R-road, B-building, U-unknown.

Y. Ohta, T. Kanade, and T. Sakai, ““An Analysis System for Scenes Containing objects with Substructures,” International Joint Conference on Pattern Recognition, 1978.
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«

Internet images,

Movies, news, Sports
personal photo albums P

 Instead of trying to encode rules directly, learn them
from examples of inputs and desired outputs
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Supervised
— Classification
— Regression

Unsupervised
Semi-supervised
Active learning



Supervised learning
J

« Given training examples of inputs and corresponding
outputs, produce the “correct” outputs for new inputs

« TwoO main scenarios:

— Classification: outputs are discrete variables (category labels).
Learn a decision boundary that separates one class from the other.

— Regression: also known as “curve fitting” or “function
approximation.” Learn a continuous input-output mapping from
examples (possibly noisy).
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* Given only unlabeled data as input, learn some sort of
structure.

« The objective is often more vague or subjective than in
supervised learning. This is more an exploratory/descriptive
data analysis.



Unsupervised Learning
« Clustering
— Discover groups of “similar” data points
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* Quantization
— Map a continuous input to a discrete (more compact) output
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Dimensionality reduction, manifold learning
— Discover a lower-dimensional surface on which the data lives
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« Semi-supervised learning: lots of data is available, but
only small portion is labeled (e.g. since labeling is
expensive)
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« Semi-supervised learning: lots of data is available, but
only small portion is labeled (e.g. since labeling is
expensive)

— Why is learning from labeled and unlabeled data better than
learning from labeled data alone?
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« Active learning: the learning algorithm can choose its
own training examples, or ask a “teacher” for an answer
on selected inputs

Annotators
Current P ”
»| category ssue request:
models “Get a full
§egmentation on

Partially and weakly Labeled data
labeled data |

Unlabeled data




Car: present

Cow: present
Bike: not present
Horse: not present

e Supervised scenario: given a set of training images



* Given
Positive training images containing an object class

« Classify

A test image as to whether it contains the object class or not




 QOrigin: texture recognition

« Texture is characterized by the repetition of basic elements or
textons

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003
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Texture recognition
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* Orderless document representation: frequencies of words
from a dictionary

« Classification to determine document categories

Bag-of-words

Common
People
Sculpture

dl d2 d3 d4
common
common people sculpture common
sculpture
sculpture common
people people

common sculpture people
people common

2 0 1 3

3 0 0 2

0 1 3 0



Raa-of-featiirec for imaae clas<ificatio
qu A\ 4 | INVUGARGUTL I TV ||||uvv NWIGAWIIILIITINVGUGARNINVDL ]
oo o] . 2298333 ] ’
y il o
Y Yalelelele) i 9
‘5’*‘ = 0000000 = D DD >
@, 0y ST IY Y Tote slelelor Yo
Imagen o S,
5% o 55558t o Tl
St Ny Il
o 'Y oY oL 16
' MK = 0000000 = il R
“ ol oQ" 0008®CO slelelol Yol |
Extract regions Compute Find clusters Compute distance  Classification
descriptors and frequencies matrix

[Csurka et al. WS’2004], [Nowak et al. ECCV’06], [Zhang et al. [JCV’07]
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Find clusters
and frequencies

Step 2

Compute distance
matrix

Step 3

Classification



Step 1: feature extraction
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Scale-invariant image regions + SIFT (see lecture 2)
— Affine invariant regions give “too” much invariance

— Rotation invariance for many realistic collections “too” much
Invariance

Dense descriptors
— Improve results in the context of categories (for most categories)
— Interest points do not necessarily capture “all” features

Color-based descriptors

Shape-based descriptors



Dense features
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- Multi-scale dense grid: extraction of small overlapping patches at multiple scales
- Computation of the SIFT descriptor for each grid cells
- Exp.: Horizontal/vertical step size 3-6 pixel, scaling factor of 1.2 per level
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Step 2:Quantization

Clustering



Step 2: Quantization

|| Visual vocabulary

Clustering




Examples for visual words

Airplanes

Motorbikes |8

Faces

Wild Cats

Leaves

People

Bikes
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« K-means - hard assignment
— Assign to the closest cluster center
— Count number of descriptors assigned to a center

« (Gaussian mixture model = soft assignment
— Estimate distance to all centers
— Sum over number of descriptors

* Represent image by a frequency histogram



Image representation

frequency
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codewords
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» each image is represented by a vector

» typically 1000-4000 dimension

« fine grained — represent model instances
 coarse grained — represent object categories
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Step 3: Classification

« Learn a decision rule (classifier) assigning bag-of-
features representations of images to different classes
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Vectors are histograms, one from each training image

positive
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Train classifier,e.g.SVM



Nearest Neighbor Classifier

 Assign label of nearest training data point to each
test data point

Voronoi partitioning of feature space
for 2-category 2-D and 3-D data



Nearest Neighbor Classifier

* For each test data point : assign label of nearest
training data point

« K-nearest neighbors: labels of the k nearest points
vote to classify

* Works well provided there is lots of data and the
distance function is good
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* Find linear function (hyperplane) to separate positive and
negative examples

@
° X; positive: X, w+b=>0
® o X; negative: X, -w+b<0

@
@
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Which hyperplane
O is best?
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« (Generalization is not
good in this case:

« Better if a margin
IS introduced:

=> Support vector machines (SVM) % (roundness)
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* General idea: the original input space can always be
mapped to some higher-dimensional feature space
where the training set is separable:
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Nonlinear SVMs

* The kernel trick: instead of explicitly computing the lifting
transformation ¢(x), define a kernel function K such that

K(xi, X5) = 0(x;) - 9(X;)

* This gives a nonlinear decision boundary in the original
feature space:

ZaiyiK(xi,x) +b



Kernels
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Hellinger kernel K(h,,h,) = ZN:\/hl(i)hz(i)

N
Histogram intersection kernel 1(h,,h,) = Zmin(hl(i), h,(1))

)

=1
Generalized Gaussian kernel K(h,h,) = exp(

D can be Euclidean distance, y? distance etc.

(h()—h, ()’
P (oh) = ; (i) + (1)

|
_K D(hphz)



Combining features

*SVM with multi-channel chi-square kernel

K(Hi, Hj) = exp ( — Z Aic Dc(Hi, Hj))

ceC
Channel c is a combination of detector, descriptor
D.(H,H;) is the chi-square distance between histograms
D, (Hy, Hy) = 37y, = ho)? )
. A is the mean value of the distances between all training sample

Extension: learning of the weights, for example with Multiple
Kernel Learning (MKL)

J. Zhang, M. Marszalek, S. Lazebnik and C. Schmid. Local features and kernels for
classification of texture and object categories: a comprehensive study, I[JCV 2007.



Combining features
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 Forlinear SVMs

— Early fusion: concatenation the descriptors
— Late fusion: learning weights to combine the classification scores

* Theoretically no clear winner

 In practice late fusion give better results
— In particular if different modalities are combined



Aulti-class SVMs
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Various direct formulations exist, but they are not widely
used in practice. It is more common to obtain multi-class
SVMs by combining two-class SVMs in various ways.

One versus all:

— Training: learn an SVM for each class versus the others

— Testing: apply each SVM to test example and assign to it the
class of the SVM that returns the highest decision value

One versus one:
— Training: learn an SVM for each pair of classes

— Testing: each learned SVM “votes” for a class to assign to the test
example



Whv does SVM learning ork?
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® Learns foreground and background visual words

0~
i >~ foreground words — high weight
.E. \

:;: >~ background words — low weight



lllustration

Localization according to visual word probability

Correct — Ilmage: 35 Correct — Ilmage: 37

50 100 150 200 50 100 150 200

Correct — Image: 38 Correct — Image: 39

200 50 100 150 200

O foreground word more probable

O background word more probable



lllustration

A linear SVM trained from positive and negative window descriptors

—

A few of the highest weighed descriptor vector dimensions (= 'PAS + tile')
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+ lie on object boundary (= local shape structures common to many training exemplars)
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Cars- misclassified into uildings, phones, phones



Bag of visual words summary
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« Advantages:
— largely unaffected by position and orientation of object in image
— fixed length vector irrespective of number of detections

— very successful in classifying images according to the objects they
contain

« Disadvantages:

— no explicit use of configuration of visual word positions
— poor at localizing objects within an image
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« PASCAL VOC [05-10] datasets

« PASCAL VOC 2007

— Training and test dataset available

— Used to report state-of-the-art results

— Collected January 2007 from Flickr

— 500 000 images downloaded and random subset selected
— 20 classes

— Class labels per image + bounding boxes

— 5011 training images, 4952 test images

« Evaluation measure: average precision



PASCAL 2007 dataset

Aeroplane Bicycle i Bottle
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" Average Precision [TREC] averages precision over
the entire range of recall

Curve interpolated to reduce influence of “outliers”

A good score requires
both high recall and high
precision

Application-independent

precision

" Penalizes methods giving
high precision but low
recall

0 0.2 0.4 0.6 0.8 1
recall



Precision/Recall

* Ranked list for category A :

A, C,B,A B, C,C,A ; intotal four images with category A




Results
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Winner of PASCAL 2007 [Marszalek et al.] : mAP 59.4

— Combining several channels with non-linear SVM and Gaussian kernel

Multiple kernel learning [Yang et al. 2009] : MAP 62.2
— Combination of several features, Group-based MKL approach

ocalization & classification [Harzallah et al.’09] : MAP 63.5
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— Use detection resuits to i
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Adding objectness boxes [Sanchez at al.’12] : mAP 66.3

Convolutional Neural Networks [Oquab et al.’14] : mAP 77.7



vramid matc

1 T1TIGAWWII

ale
g~

« Add spatial information to the bag-of-features

* Perform matching in 2D image space

[Lazebnik, Schmid & Ponce, CVPR 2006]



Similar approaches:
Subblock description [Szummer & Picard, 1997]
SIFT [Lowe, 1999]
GIST [Torralba et al., 2003]

SIFT Gist
Color o Jé 1|é

‘T\ KK

Szummer & Picard (1997) Lowe (1999, 2004) Torralba et al. (2003)
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Locally orderless
representation at
several levels of
spatial resolution
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Locally orderless
representation at
several levels of
spatial resolution
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Locally orderless
representation at
several levels of
spatial resolution
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Student presentation 12/12/2015
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* Linear Spatial Pyramid Matching Using Sparse Coding for
Image Classification. J. Yang et al., CVPR’'09.

— Local coordinate coding, linear SVM, excellent results in 2009
PASCAL challenge

« Learning Mid-level features for recognition, Y. Boureau et al.,
CVPR’10.

— Use of sparse coding techniques and max pooling
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 Efficient Additive Kernels via Explicit Feature Maps, A.
Vedaldi and Zisserman, CVPR'10.

— approximation by linear kernels

« Improving the Fisher Kernel for Large-Scale Image
Classification, Perronnin et al., ECCV’10
— More discriminative descriptor, power normalization, linear SVM

 EXxcellent results of the Fisher vector in a recent
evaluation, Chatfield et al. BMVC 2011



Fisher vector image representation

 Mixture of Gaussian/ k-means stores nr of

points per cell

 Fisher vector adds 1st & 2nd order moments

— More precise description of regions
assigned to cluster

— Fewer clusters needed for same accuracy

— Per cluster store: mean and variance of
data in cell

— Representation 2D times larger, at same
computational cost

— High dimensional, robust representation
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The FV extends the BOV and includes higher-order statistics (up to 2™ order)

Results on VOC 2007: BOV =43.6% —FV=577% —>VFV=621%
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Car: present

Cow: present
Bike: not present
Horse: not present

« What makes it large-scale?
— number of images
— number of classes
— dimensionality of descriptor

IMAGENET has 14Mimages from 22k classes
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« Classification approach
— Linear classifier
— One-versus-rest classifiers
— Stochastic gradient descent (SGD)

— At each step choose a sample at random and update the
parameters using a sample-wise estimate of the regularized risk

« Data reweighting

— When some classes are significantly more populated than others,
rebalancing positive and negative examples

— Empirical risk with reweighting

l — ,f;
— Z LC}VR(X'I'-- Ui+ W Z J:'.C)‘H?EL XisYis }

T oicly icl_
p = lffZ‘ Natural rebalancing, same weight to positive and negatives
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 Datasets

— ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC)
* 1000 classes and 1.4M images

— ImageNet10K dataset
* 10184 classes and ~ 9 M images
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 Features: dense SIFT, reduced to 64 dim with PCA

» Fisher vectors
— 256 Gaussians, using mean and variance
— Spatial pyramid with 4 regions
— Approx. 130K dimensions (4x [2x64x256])
— Normalization: square-rooting and L2 norm

« BOF:dim 1024 + R=4
— 4960 dimensions
— Normalization: square-rooting and L2 norm



Plain lines correspond to w-OVR,
dashed one to u-OVR

£
< [ is number of negatives samples
L T k=== for each positive, =1 natural
= : | —e— BOV: N=1,024 + SP (D=4,096) .
ol | —e=FV:N=16 (D=2,048) rebalancing
; | =t F\- N=64 (D=8,192)
B remr ke e BV N=256 (D=32,768)
; | FV: N=256 + SP (D=131,072) .
0; ; y - — = = Results for ILSVRC 2010
Unbalance B

« Significant impact on accuracy
* For very high dimensions little impact
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256 Gaussian Fisher vector + SP with R=4 (dim 130k)

BOF dim=1024 + SP with R=4 (dim 4000)
Results for ILSVRC 2010

FV >> BOF
Ww-OVR
| BOV ] 264
1 FV 457
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* Fisher vector (no SP) for varying number of Gaussians +
different classification methods, ILSVRC 2010

Top—1 Accuracy (in %)

| | |
16 3z 64 128 256
Number of Gaussians N

« Performance improves for higher dimensional vectors
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u-OVR | w-OVR
BOV 4K-dim | 3. 75
FV 130K-dim | 167 19.1

 Significant gain by data re-weighting, even for high-
dimensional Fisher vectors
w-OVR > u-OVR
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lllustration of results obtained with w-OVR and 130K-dim
Fisher vectors, ImageNet10K top-1 accuracy
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(g) Paintbrush (4.68 %) (h) Mountain Tent (0.00%)
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« Stochastic training: learning with SGD is well-suited for
large-scale datasets

« One-versus-rest: a flexible option for large-scale image
classification

« Class imbalance: optimize the imbalance parameter in
one-versus-rest strategy is a must for competitive
performance



| arage alea imane clacceificatin
v GAINVG 111 1A 3 W 1 GA WITINJGUGALVINSL ]

Convolutional neural networks (CNN)

Large model (7 hidden layers, 650k unit, 60M parameters)
Requires large training set (ImageNet)

GPU implementation (50x speed up over CPU)
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A. Krizhevsky, |. Sutskever, and G. Hinton,
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012
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- Feed-forward feature extraction:
1. Convolve input with learned filters
2. Non-linearity
3. Spatial pooling

Y

Feature maps J

)

—

Normalization 1

4. Normalization

« Supervised training of convolutional (
filters by back-propagating .
classification error

N

Spatial pooling J

-

[ Non-linearity ]

Convolution
(Learned)
/|\.

[ Input Image J




1. Convol

<

Dependencies are local
Translation invariance
Few parameters (filter weights)

Stride can be greater than 1
(faster, less memory)

Feature Map
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Per-element (independent)
Options:

« Tanh

» Sigmoid: 1/(1+exp(-x))

* Redctified linear unit (RelLU)
— Simplifies backpropagation
— Makes learning faster

— Avoids saturation issues
- Preferred option
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* Sum or max
* Non-overlapping / overlapping regions

* Role of pooling:
* |nvariance to small transformations
« Larger receptive fields (see more of input)

Max

Sum




4. Normlization

« Within or across feature maps
- Before or after spatial pooling

Feature Maps
Feature Maps After Contrast Normalization
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« State-of-the-art performance on ImageNet
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A. Krizhevsky, |. Sutskever, and G. Hinton,
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012




