
Instance-level recognition

1) Local invariant features

2) Matching and recognition with local features

3) Efficient visual search

4) Very large scale indexing

Matching of descriptors

Matching and 3D reconstruction

• Establish correspondence between two (or more) images

[Schaffalitzky and Zisserman ECCV 2002]

Matching and 3D reconstruction

• Establish correspondence between two (or more) images

[Schaffalitzky and Zisserman ECCV 2002]

Building Rome in a Day
57,845 downloaded images, 11,868 registered images

[Agarwal, Snavely, Simon, Seitz, Szeliski, ICCV’09]

Object recognition

• Establish correspondence between the target image and
(multiple) images in the model database.

[D. Lowe, 1999]
Target
image

Model
database

Visual search

• Establish correspondence between the query image and
all images from the database depicting the same object or
scene

Query image

Database image(s)

Matching of descriptors
• Find the nearest neighbor in the second image for each

descriptor, for example SIFT

Matching of descriptors
• Pruning strategies

– Ratio with respect to the second best match (d1/d2 << 1) [Lowe, ’04]

Matching of descriptors

• Pruning strategies
– Ratio with respect to the second best match (d1/d2 << 1)
– Local neighborhood constraints (semi-local constraints)

Neighbors of the point have to match and angles have to correspond.
Note that in practice not all neighbors have to be matched correctly.

Matching of descriptors

• Pruning strategies
– Ratio with respect to the second best match (d1/d2 << 1)
– Local neighborhood constraints (semi-local constraints)
– Backwards matching (matches are NN in both directions)

Matching of descriptors

• Pruning strategies
– Ratio with respect to the second best match (d1/d2 << 1)
– Local neighborhood constraints (semi-local constraints)
– Backwards matching (matches are NN in both directions)

• Geometric verification with global constraint
– All matches must be consistent with a global geometric

transformation
– However, there are many incorrect matches
– Need to estimate simultaneously the geometric transformation and

the set of consistent matches

Geometric verification with global constraint

• Example of a geometric verification

Examples of global constraints

1 view and known 3D model.
• Consistency with a (known) 3D model.

2 views
• Epipolar constraint
• 2D transformations

• Similarity transformation
• Affine transformation
• Projective transformation

N-views
Are images consistent with a 3D model?

Matching of descriptors

• Geometric verification with global constraint
– All matches must be consistent with a global geometric

transformation
– However, there are many incorrect matches
– Need to estimate simultaneously the geometric transformation and

the set of consistent matches

• Robust estimation of global constraints
– RANSAC (RANdom Sampling Consensus) [Fishler&Bolles’81]
– Hough transform [Lowe’04]

RANSAC: Example of robust line estimation

Fit a line to 2D data containing outliers

There are two problems

1. a line fit which minimizes perpendicular distance

2. a classification into inliers (valid points) and outliers
Solution: use robust statistical estimation algorithm RANSAC

(RANdom Sample Consensus) [Fishler & Bolles, 1981]
Slide credit: A. Zisserman

Repeat
1. Select random sample of 2 points
2. Compute the line through these points
3. Measure support (number of points within threshold

distance of the line)

Choose the line with the largest number of inliers
• Compute least squares fit of line to inliers (regression)

RANSAC robust line estimation

Slide credit: A. Zisserman

Slide credit: O. Chum

Slide credit: O. Chum

Slide credit: O. Chum

Slide credit: O. Chum

Slide credit: O. Chum

Slide credit: O. Chum

Slide credit: O. Chum

Slide credit: O. Chum

Slide credit: O. Chum

Algorithm RANSAC

• Robust estimation with RANSAC of a homography
– Repeat

• Select 4 point matches
• Compute 3x3 homography
• Measure support (number of inliers within threshold, i.e.

– Choose (H with the largest number of inliers)
– Re-estimate H with all inliers

Matching of descriptors

• Geometric verification with global constraint
– All matches must be consistent with a global geometric

transformation
– However, there are many incorrect matches
– Need to estimate simultaneously the geometric transformation and

the set of consistent matches

• Robust estimation of global constraint
– RANSAC (RANdom Sampling Consensus) [Fishler&Bolles’81]
– Hough transform [Lowe’04]

Strategy 2: Hough transform

• General outline:
– Discretize parameter space into bins
– For each feature point in the image, put a vote in every bin in the

parameter space that could have generated this point
– Find bins that have the most votes

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int.
Conf. High Energy Accelerators and Instrumentation, 1959

Image space Hough parameter space

Hough transform for object recognition
Suppose our features are scale- and rotation-covariant

• Then a single feature match provides an alignment hypothesis
(translation, scale, orientation)

David G. Lowe. “Distinctive image features from scale-
invariant keypoints”, IJCV 60 (2), pp. 91-110, 2004.

model
Target image

Hough transform for object recognition
Suppose our features are scale- and rotation-covariant

• Then a single feature match provides an alignment hypothesis
(translation, scale, orientation)

• Of course, a hypothesis obtained from a single match is unreliable
• Solution: Coarsely quantize the transformation space. Let each

match vote for its hypothesis in the quantized space.

model

David G. Lowe. “Distinctive image features from scale-
invariant keypoints”, IJCV 60 (2), pp. 91-110, 2004.

Similarity transformation is specified by four parameters:
scale factor s, rotation θ, and translations tx and ty.

Recall, each SIFT detection has: position (xi, yi), scale si,
and orientation θi.

How many correspondences are needed to compute
similarity transformation?

Compute similarity transformation from a single
correspondence:

(xA, yA, sA,A) (xA, yA, sA,  A)

  A A

tx  xA  xA

ty  yA  yA

s  sA / sA

Keypoint descripto

Basic algorithm outline
1. Initialize accumulator H

to all zeros
2. For each tentative match

compute transformation
hypothesis: tx, ty, s, θ

H(tx,ty,s,θ) = H(tx,ty,s,θ) + 1
end

end
3. Find all bins (tx,ty,s,θ) where H(tx,ty,s,θ) has at least

three votes

• Correct matches will consistently vote for the same
transformation while mismatches will spread votes.

• Cost: Linear scan through the matches (step 2),
followed by a linear scan through the accumulator
(step 3).

tx

ty

H: 4D-accumulator array
(only 2-d shown here)

Fitting an affine transformation

Assume we know the correspondences, how do we get the
transformation?






































2

1

43

21

t
t

y
x

mm
mm

y
x

i

i

i

i












































































i

i

ii

ii

y
x

t
t
m
m
m
m

yx
yx

2

1

4

3

2

1

1000
0100

),(ii yx 
),(ii yx

Linear system with six unknowns

Fitting an affine transformation

Each match gives us two linearly independent
equations: need at least three to solve for the
transformation parameters



xi yi 0 0 1 0
0 0 xi yi 0 1





















m1

m2

m3

m4

t1
t2





























x i
y i





















Comparison
Hough Transform
•Advantages

– Can handle high percentage of
outliers (>95%)

– Extracts groupings from clutter in
linear time

•Disadvantages
– Quantization issues
– Only practical for small number of

dimensions (up to 4)

•Improvements available
– Probabilistic Extensions
– Continuous Voting Space
– Can be generalized to arbitrary

shapes and objects

RANSAC
•Advantages

– General method suited to large range
of problems

– Easy to implement
– “Independent” of number of dimensions

•Disadvantages
– Basic version only handles moderate

number of outliers (<50%)

•Many variants available, e.g.
– PROSAC: Progressive RANSAC

[Chum05]
– Preemptive RANSAC [Nister05]

Summary

Finding correspondences in images is useful for
• Image matching, panorama stitching
• Object recognition
• Large scale image search: next part of the lecture

Beyond local point matching
• Semi-local relations
• Global geometric relations:

• Epipolar constraint
• 3D constraint (when 3D model is available)
• 2D tnfs: Similarity / Affine / Homography

• Algorithms:
• RANSAC
• Hough transform

Instance-level recognition

1) Local invariant features

2) Matching and recognition with local features

3) Efficient visual search

4) Very large scale indexing

Visual search

…

Image search system for large datasets

Image search
system

ranked image list

Large image dataset
(one million images or more)

query

• Issues for very large databases
• to reduce the query time
• to reduce the storage requirements
• with minimal loss in retrieval accuracy

Two strategies

1. Efficient approximate nearest neighbor search on local
feature descriptors

2. Quantize descriptors into a “visual vocabulary” and use
efficient techniques from text retrieval
(Bag-of-words representation)

Images

Local features invariant
descriptor

vectors

1. Compute local features in each image independently
2. Describe each feature by a descriptor vector
3. Find nearest neighbour vectors between query and database
4. Rank matched images by number of (tentatively) corresponding regions
5. Verify top ranked images based on spatial consistency

Strategy 1: Efficient approximate NN search

invariant
descriptor

vectors

Voting algorithm

local characteristics
vector of

()
1I 1I nI2I2I

Voting algorithm

1I 1I nI2I2I

1 1 02 1 1

I is the corresponding model image1

2 1 1

Finding nearest neighbour vectors

Establish correspondences between query image and images in the database by
nearest neighbour matching on SIFT vectors

128D descriptor
space

Model image Image database

Solve following problem for all feature vectors, , in the query image:

where, , are features from all the database images.

Quick look at the complexity of the NN-search

N … images
M … regions per image (~1000)
D … dimension of the descriptor (~128)

Exhaustive linear search: O(M NMD)

Example:
• Matching two images (N=1), each having 1000 SIFT descriptors

Nearest neighbors search: 0.4 s (2 GHz CPU, implemenation in C)
• Memory footprint: 1000 * 128 = 128kB / image

N = 1,000 … ~7min (~100MB)
N = 10,000 … ~1h7min (~ 1GB)
…
N = 107 ~115 days (~ 1TB)
…
All images on Facebook:
N = 1010 … ~300 years (~ 1PB)

of images CPU time Memory req.

Nearest-neighbor matching

Solve following problem for all feature vectors, xj, in the query image:

where xi are features in database images.

Nearest-neighbour matching is the major computational bottleneck
• Linear search performs dn operations for n features in the

database and d dimensions
• No exact methods are faster than linear search for d>10
• Approximate methods can be much faster, but at the cost of

missing some correct matches

l1

l8

1

l2 l3

l4 l5 l7 l6

l9l10

3

2 5 4 11

9 10

8

6 7

4
7

6

5

1

3

2

9

8

10

11

l1

l2

K-d tree
• K-d tree is a binary tree data structure for organizing a set of points

• Each internal node is associated with an axis aligned hyper-plane
splitting its associated points into two sub-trees

• Dimensions with high variance are chosen first

• Position of the splitting hyper-plane is chosen as the mean/median of
the projected points – balanced tree

Large scale object/scene recognition

• Each image described by approximately 1000 descriptors
– 109 descriptors to index for one million images!

• Database representation in RAM:
– Size of descriptors : 1 TB, search+memory intractable

Image search
system

ranked image list

Image dataset:
> 1 million images

query

Bag-of-features [Sivic&Zisserman’03]

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

querying

sparse frequency vector

centroids
(visual words)

Inverted
file

ranked image
short-list

Set of SIFT
descriptors

Query
image

Geometric
verification

Re-ranked
list

• “visual words”:
– 1 “word” (index) per local

descriptor
– only images ids in inverted file
 8 GB fits!

[Chum & al. 2007]

Indexing text with inverted files

Need to map feature descriptors to “visual words”

Inverted file: Term List of hits (occurrences in documents)

People [d1:hit hit hit], [d4:hit hit] …

Common [d1:hit hit], [d3: hit], [d4: hit hit hit] …

Sculpture [d2:hit], [d3: hit hit hit] …

Document
collection:

[Sivic and Zisserman, ICCV 2003]

Vector quantize descriptors
- Compute SIFT features from a subset of images
- K-means clustering (need to choose K)

Build a visual vocabulary

128D descriptor space 128D descriptor space

Visual words

Example: each group
of patches belongs to
the same visual word

54

Figure from Sivic & Zisserman, ICCV 2003

128D descriptor space

Samples of visual words (clusters on SIFT descriptors):

Samples of visual words (clusters on SIFT descriptors):

Sivic and Zisserman, ICCV 2003
Visual words: quantize descriptor space

Nearest neighbour matching

128D descriptor
space

Image 1 Image 2

• expensive to
do for all frames

Sivic and Zisserman, ICCV 2003

Nearest neighbour matching

128D descriptor
space

Image 1 Image 2

Vector quantize descriptors

128D descriptor
space

Image 1 Image 2

42

5

425 5

42

• expensive to
do for all frames

Visual words: quantize descriptor space

Sivic and Zisserman, ICCV 2003

Nearest neighbour matching

128D descriptor
space

Image 1 Image 2

Vector quantize descriptors

128D descriptor
space

Image 1 Image 2

42

5

425 5

42

New image

• expensive to
do for all frames

Visual words: quantize descriptor space

Sivic and Zisserman, ICCV 2003

Nearest neighbour matching

128D descriptor
space

Image 1 Image 2

Vector quantize descriptors

128D descriptor
space

Image 1 Image 2

42

5

425 5

42

New image

42

• expensive to
do for all frames

Visual words: quantize descriptor space

Vector quantize the descriptor space (SIFT)

The same visual word

542

Image Collection of visual words

Representation: bag of (visual) words
Visual words are ‘iconic’ image patches or fragments
• represent their frequency of occurrence
• but not their position

Offline: Assign visual words and compute
histograms for each image

Normalize
patch

Detect patches

Compute SIFT
descriptor

542

Represent image as a
sparse histogram of visual
word occurrences

2
0
0
1
0
1
…

Find nearest
cluster center

Offline: create an index

Image credit: A. Zisserman K. Grauman, B. Leibe

Word
number

Posting
list

• For fast search, store a “posting list” for the dataset

• This maps visual word occurrences to the images they occur in

(i.e. like the “book index”)

At run time

Image credit: A. Zisserman K. Grauman, B. Leibe

Word
number

Posting
list

• User specifies a query region

• Generate a short-list of images using visual words in the region

1. Accumulate all visual words within the query region

2. Use “book index” to find other images with these words

3. Compute similarity for images sharing at least one word

At run time

Image credit: A. Zisserman K. Grauman, B. Leibe

• Score each image by the (weighted) number of common
visual words (tentative correspondences)

• Worst case complexity is linear in the number of images N

• In practice, it is linear in the length of the lists (<< N)

Word
number

Posting
list

Another interpretation:
Bags of visual words

Summarize entire image based
on its distribution (histogram)
of visual word occurrences

Slide: Grauman&Leibe, Image: L. Fei-Fei

Hofmann 2001

...1 00 2
t

d =

Analogous to bag of words
representation commonly used
for text documents

For a vocabulary of size K, each image is represented by a K-vector

where ti is the number of occurrences of visual word i

Images are ranked by the normalized scalar product between the query
vector vq and all vectors in the database vd:

Another interpretation: the bag-of-visual-words model

Scalar product can be computed efficiently using inverted file

Bag-of-features [Sivic&Zisserman’03]

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

querying

sparse frequency vector

centroids
(visual words)

Inverted
file

ranked image
short-list

Set of SIFT
descriptors

Query
image

Geometric
verification

Re-ranked
list

[Chum & al. 2007]

1

2

3

3

4

5

Results

Geometric verification

Use the position and shape of the underlying features
to improve retrieval quality

Both images have many matches – which is correct?

Geometric verification

• Remove outliers, many matches are incorrect

• Estimate geometric transformation

• Robust strategies
– RANSAC
– Hough transform

Geometric verification

We can measure spatial consistency between the query
and each result to improve retrieval quality, re-rank

Many spatially consistent
matches – correct result

Few spatially consistent
matches – incorrect

result

Geometric verification

Gives localization of the object

Geometric verification – example

1. Query

3. Spatial verification (re-rank on # of inliers)

…

2. Initial retrieval set (bag of words model)

Evaluation dataset: Oxford buildings

All Soul's

Ashmolean

Balliol

Bodleian

Thom
Tower

Cornmarket

Bridge of
Sighs

Keble

Magdalen

University
Museum

Radcliffe
Camera

 Ground truth obtained for 11 landmarks
 Evaluate performance by mean Average Precision

Measuring retrieval performance: Precision - Recall

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

all images

returned
images

relevant
images

• Precision: % of returned images that
are relevant

• Recall: % of relevant images that are
returned

Average Precision

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n • A good AP score requires both high
recall and high precision

• Application-independentAP

Performance measured by mean Average Precision (mAP)
over 55 queries on 100K or 1.1M image datasets

Query images Prec.

Rec.

• high precision at low recall (like google)

• variation in performance over queries

• does not retrieve all instances

Obtaining visual words is like a sensor measuring the image

“noise” in the measurement process means that some visual
words are missing or incorrect, e.g. due to
• Missed detections
• Changes beyond built in invariance
• Quantization effects

Consequence: Visual word in query is missing

Why aren’t all objects retrieved?

Clustered and Clustered and
quantized to
visual words

sparse frequency vector

Set of SIFT
descriptorsquery image

[Lowe04, Mikolajczyk07] [Sivic03, Philbin07]

descriptors

Hessian-Affine
regions + SIFT

descriptors

Better quantization

Quantization errors

Typically, quantization has a significant impact on the final
performance of the system [Sivic03,Nister06,Philbin07]

Quantization errors split features that should be grouped
together and confuse features that should be separated

Voronoi
cells

ANN evaluation of bag-of-features
•ANN algorithms
returns a list of
potential neighbors

•NN recall
= probability that the
NN is in this list

•NN precision:
= proportion of vectors
in the short-list

•In BOF, this trade-off
is managed by the
number of clusters k

N
N

 r
ec

al
l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1
rate of points retrieved

k=100

200

500

1000

2000

5000
10000

20000
30000

50000

BOW

20K visual word: false matches

200K visual word: good matches missed

Problem with bag-of-features

• The matching performed by BOF is weak
– for a “small” visual dictionary: too many false matches
– for a “large” visual dictionary: many true matches are missed

• No good trade-off between “small” and “large” !
– either the Voronoi cells are too big
– or these cells can’t absorb the descriptor noise
 intrinsic approximate nearest neighbor search of BOF is not

sufficient
– possible solutions
 soft assignment [Philbin et al. CVPR’08]
 additional short codes [Jegou et al. ECCV’08]

Beyond bags-of-visual-words

• Soft-assign each descriptor to multiple cluster centers
[Philbin et al. 2008, Van Gemert et al. 2008]

A: 0.1
B: 0.5
C: 0.4

B: 1.0 Hard Assignment

Soft Assignment

Beyond bag-of-visual-words

Hamming embedding [Jegou et al. 2008]

• Standard quantization using bag-of-visual-words
• Additional localization in the Voronoi cell by a binary

signature

Hamming Embedding

Representation of a descriptor x
– Vector-quantized to q(x) as in standard BOF
+ short binary vector b(x) for an additional localization in the Voronoi cell

Two descriptors x and y match iif

where h(a,b) Hamming distance

Hamming Embedding

•Nearest neighbors for Hamming distance  those for Euclidean distance
 a metric in the embedded space reduces dimensionality curse effects

•Efficiency
– Hamming distance = very few operations
– Fewer random memory accesses: 3 x faster that BOF with same

dictionary size!

Hamming Embedding

•Off-line (given a quantizer)
– draw an orthogonal projection matrix P of size db × d

 this defines db random projection directions
– for each Voronoi cell and projection direction, compute the median

value for a training set

•On-line: compute the binary signature b(x) of a given
descriptor

– project x onto the projection directions as z(x) = (z1,…zdb)
– bi(x) = 1 if zi(x) is above the learned median value, otherwise 0

[H. Jegou et al., Improving bag of features for large scale image search, ECCV’08, ICJV’10]

Hamming neighborhood

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ra
te

 o
f N

N
 re

tri
ev

ed
 (r

ec
al

l)

rate of cell points retrieved

8 bits
16 bits
32 bits
64 bits

128 bits

Trade-off between memory
usage and accuracy

More bits yield higher
accuracy

In practice, 64 bits (8 byte)

ANN evaluation of Hamming Embedding
0.7

N
N

 r
ec

al
l

0

0.1

0.2

0.3

0.4

0.5

0.6

1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

rate of points retrieved

k=100

200

500

1000

2000

5000
10000

20000
30000

50000

ht=16

18

20

22

HE+BOW
BOW

32 28
24 compared to BOW: at least

10 times less points in the
short-list for the same level

of NN recall

Hamming Embedding
provides a much better

trade-off between recall and
ambiguity removal

Matching points - 20k word vocabulary

201 matches 240 matches

Many matches with the non-corresponding image!

Matching points - 200k word vocabulary
69 matches 35 matches

Still many matches with the non-corresponding one

Matching points - 20k word vocabulary + HE

83 matches 8 matches

10x more matches with the corresponding image!

• Re-ranking with geometric verification works very well
• but performed on a short-list only (typically, 1000 images)

 for very large datasets, the number of distracting images is so high
that relevant images are not even short-listed!

 weak geometry in the image index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000 1000000dataset size

ra
te

 o
f r

el
ev

an
t i

m
ag

es
 sh

or
t-l

ist
ed

20 images
100 images
1000 images

short-list size:

Indexing geometry of local features

Weak geometry consistency

• Weak geometric information used for all images (not only the short-list)

• Each invariant interest region detection has a scale and rotation angle
associated, here characteristic scale and dominant gradient orientation

Scale change 2
Rotation angle ca. 20 degrees

• Each matching pair results in a scale and angle difference

• For the global image scale and rotation changes are roughly consistent

Max = rotation angle between images

WGC: orientation consistency

WGC: scale consistency

Weak geometry consistency

• Integration of the geometric verification into the BOF
– votes for an image in two quantized subspaces, i.e. for angle & scale
– these subspace are shown to be roughly independent
– final score: filtering for each parameter (angle and scale)

• Only matches that do agree with the main difference of
orientation and scale will be taken into account in the final
score

• Re-ranking using full geometric transformation still adds
information in a final stage

INRIA holidays dataset

• Evaluation for the INRIA holidays dataset, 1491 images
– 500 query images + 991 annotated true positives
– Most images are holiday photos of friends and family

• 1 million & 10 million distractor images from Flickr
• Vocabulary construction on a different Flickr set

• Evaluation metric: mean average precision (in [0,1],
bigger = better)
– Average over precision/recall curve

Holiday dataset – example queries

Dataset : Venice Channel

Query

Base 4Base 3

Base 2Base 1

Dataset : San Marco square

Query Base 1 Base 3Base 2

Base 9Base 8

Base 4 Base 5 Base 7Base 6

Example distractors - Flickr

Experimental evaluation
• Evaluation on our holidays dataset, 500 query images, 1 million distracter

images
• Metric: mean average precision (in [0,1], bigger = better)

Average query time (4 CPU cores)

Compute descriptors 880 ms

Quantization 600 ms

Search – baseline 620 ms

Search – WGC 2110 ms

Search – HE 200 ms

Search – HE+WGC 650 ms
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000000100000100001000

m
A

P

database size

baseline
WGC

HE
WGC+HE

+re-ranking

Results – Venice Channel

Base 1 Flickr

Flickr Base 4

Query

Towards large-scale image search

• BOF+inverted file can handle up to ~10 millions images
– with a limited number of descriptors per image  RAM: 40GB
– search: 2 seconds

• Web-scale = billions of images
– with 100 M per machine  search: 20 seconds, RAM: 400 GB
– not tractable

• Solution: represent each image by one compressed vector

Images

Local features invariant
descriptor

vectors

Strategy I: Efficient approximate NN search

invariant
descriptor

vectors

frames

regions invariant
descriptor

vectors

Strategy II: Match histograms of visual words

Quantize Single vector
(histogram)

frames

regions invariant
descriptor

vectors

Strategy II+: Match compressed vectors
Aggregate

into a single
vector

Compress

Very large scale image search

Hessian-Affine
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

description vector

centroids
(visual words)

[Mikolajezyk & Schmid 04]
[Lowe 04]

ranked image
short-list

Set of SIFT
descriptors

Query
image

Geometric
verification

Re-ranked
list

[Lowe 04, Chum & al 2007]

Vector
compression

Vector
search

• Each image is represented by one vector
(Bag-of-features, VLAD, Fisher, GIST)

•Vector compression to reduce storage
requirements and search time

Global image descriptor with encoding

 GIST descriptors with Spectral Hashing [Weiss et al.’08]

 The “gist” of a scene: Oliva & Torralba (2001)

 5 frequency bands and 6 orientations for each image location
 Tiling of the image to describe the image

GIST descriptor + spectral hashing

 The position of the descriptor in the image is encoded in the representation
► very limited invariance to scale/rotation/crop

Torralba et al. (2003)

Gist

 Spectral hashing produces binary codes similar to spectral clusters

Aggregating local descriptors

• Set of n local descriptors  1 vector

• Popular approach: bag of features, often with SIFT features

• Recently improved aggregation schemes
– Fisher vector [Perronnin & Dance ‘07]

– VLAD descriptor [Jegou, Douze, Schmid, Perez ‘10]

– Supervector [Zhou et al. ‘10]

– Sparse coding [Wang et al. ’10, Boureau et al.’10]

• Used in very large-scale retrieval and classification

Aggregating local descriptors

 Most popular approach: BoF representation [Sivic & Zisserman 03]

► sparse vector
► highly dimensional

→ significant dimensionality reduction introduces loss

 Vector of locally aggregated descriptors (VLAD) [Jegou et al. 10]

► non sparse vector
► fast to compute
► excellent results with a small vector dimensionality

 Fisher vector [Perronnin & Dance 07]

► probabilistic version of VLAD
► initially used for image classification
► comparable performance to VLAD for image retrieval

VLAD : vector of locally aggregated descriptors

 Determine a vector quantifier (k-means)
► output: k centroids (visual words): c1,…,ci,…ck

► centroid ci has dimension d

 For a given image
► assign each descriptor to closest center ci

► accumulate (sum) descriptors per cell
vi := vi + (x - ci)

 VLAD (dimension D = k x d)

 The vector is square-root + L2-normalized

 Alternative: Fisher vector

ci

x

[Jegou, Douze, Schmid, Perez, CVPR’10]

VLADs for corresponding images

SIFT-like representation per centroid (+ components: blue, - components: red)

 good coincidence of energy & orientations

v1 v2 v3 ...

Translated cluster →
large derivative on for this

component

Fisher vector

 Use a Gaussian Mixture Model as vocabulary
 Statistical measure of the descriptors of the image w.r.t the GMM
 Derivative of likelihood w.r.t. GMM parameters

GMM parameters:

weight

mean

variance (diagonal)

[Perronnin & Dance CVPR’07]

Fisher vector

For image retrieval in our experiments:
- only deviation wrt mean, dim: K*D [K number of Gaussians, D dim of descriptor]

- variance does not improve for comparable vector length

VLAD/Fisher/BOF performance and dimensionality reduction

 We compare Fisher, VLAD and BoF on INRIA Holidays Dataset (mAP %)
 Dimension is reduced to D’ dimensions with PCA

 Observations:
► Fisher, VLAD better than BoF for a given descriptor size
► Choose a small D if output dimension D’ is small
► Performance of GIST not competitive

[Jegou, Perronnin, Douze, Sanchez, Perez, Schmid, PAMI’12]

GIST 960 36.5

Compact image representation

 Aim: improving the tradeoff between
► search speed
► memory usage
► search quality

 Approach: joint optimization of three stages
► local descriptor aggregation
► dimension reduction
► indexing algorithm

Image representation
VLAD / Fisher

PCA +
PQ codes

(Non) – exhaustive
search

 Vector split into m subvectors:

 Subvectors are quantized separately by quantizers
where each is learned by k-means with a limited number of centroids

 Example: y = 128-dim vector split in 8 subvectors of dimension 16
► each subvector is quantized with 256 centroids -> 8 bit
► very large codebook 256^8 ~ 1.8x10^19

Product quantization for nearest neighbor search

8 bits

16 components

⇒ 8 subvectors x 8 bits = 64-bit quantization index

y1 y2 y3 y4 y5 y6 y7 y8

q1 q2 q3 q4 q5 q6 q7 q8

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8)

256
centroids

[Jegou, Douze, Schmid, PAMI’11]

Conclusion

 Excellent search accuracy and speed in 10 million of images and more

 Each image is represented by very few bytes (20 – 40 bytes)

 Tested on up to 220 million video frames
► extrapolation for 1 billion images: 20GB RAM, query time < 1s on 8 cores

 On-line available: Matlab source code for product quantizer

 Extension to video & more “semantic” search

