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Biological motivation

 Neuron is basic computational unit of the brain
► about 10^11 neurons in human brain 

 Simplified neuron model
► Firing rate of electrical spikes is modeled as continuous quantity 
► Multiplicative interaction of input and connection strength (weight)
► Multiple inputs accumulated in cell activation 
► Output if threshold activation is exceeded



Rosenblatt's Perceptron

 One of the earliest works on artificial neural networks
► First implementations in 1957 at Cornell University 
► Computational model of natural neural learning



Rosenblatt's Perceptron

 One of the earliest works on artificial neural networks
► First implementations in 1957 at Cornell University 
► Computational model of natural neural learning

 Binary classification based on sign of generalized linear function 

20x20 pixel sensor Random wiring on the computer

sign(f (x))=sign(wTϕ(x))



Rosenblatt's Perceptron

 Objective function linear in score over misclassified patterns

 Perceptron learning via stochastic gradient descent

► Eta is the learning rate

Potentiometers as weights, adjusted by motors during learning

E(w)=−∑t i≠sign(f (xi))
t i f (xi)=∑i

max (0,−t i f (x i))

w t+1=w t+η×t iϕ(x i)[t i f (x i)<0]



Limitations of the Perceptron

 Perceptron convergence theorem (Rosenblatt, 1962) states that
► If training data is linearly separable
► Then learning algorithm will find a solution in a finite number of iterations

 If training data is linearly separable then the found solution will depend on the 
initialization and ordering of data in the updates

 If training data is not linearly separable, then the perceptron learning 
algorithm will never converge

 No direct multi-class extension

 No probabilistic output or confidence on classification



Relation to SVM and logistic regression

 Perceptron similar to SVM without the notion of margin
► Cost function is not a bound on the zero-one loss

 All are either based on linear function or generalized linear function by relying 
on pre-defined non-linear data transformation

f (x)=wTϕ(x)



Classification with kernels

 Representer theorem states that in all these cases optimal weight vector is 
linear combination of training data

 Kernel trick allows us (sometimes) to efficiently compute dot-products 
between high-dimensional transformations of the data 

► Conversely, positive definite kernel functions compute dot-products 
between between possibly infinite dimensional data transformations

 Classification function is linear in data transformation given by kernel 
evaluations over the training data 

f (x)=∑i
αi ⟨ϕ(x i) ,ϕ(x) ⟩

w=∑i
αiϕ(x i)

k (x i , x)=⟨ϕ(xi) ,ϕ(x) ⟩

f (x)=∑i
αik (x , x i)=αT k(x ,.)



Limitation of kernels

 Classification based on weighted similarity to training samples
► Design of kernel based on domain knowledge and experimentation

► Some kernels are data adaptive, for example the Fisher kernel

 Number of free variables grows linearly in the size of the training data 

 Alternatively: fix the number of “basis functions” in advance
► Choose a family of non-linear basis functions
► Learn the parameters, together with those of linear function 

f (x)=∑i
αik (x , x i)=αT k(x ,.)

f (x)=∑i
αiϕi(x ;θi)



Feed-forward neural networks

 Define outputs of one layer as scalar non-linearity of linear function of input

 Known as “multi-layer perceptron”
► Perceptron has a step non-linearity of linear function
► Other non-linearities used in practice

z j=h(x
Tw j

(1))

yk=σ( zT wk
(2))



Feed-forward neural networks

 If “hidden layer” activation function is taken to be linear than a single-layer 
linear model is obtained

 Two-layer networks with linear outputs can uniformly approximate any 
continuous function on a compact input domain to arbitrary accuracy provided 
the network has a sufficiently large number of hidden units
► Holds for many non-linearities, but not for polynomials

 Architecture can be generalized 
► More than two layers of computation
► Skip-connections from previous layers
► Directed acyclic graphs of connections

 Key difficulties
► How design the network architecture

 Nr nodes, layers, non-linearities, 
► Learn the optimal parameters

 Non-convex optimization



Multi-class classifiction

 One output score for each target class 

 Multi-class logistic regression loss
► Define probability of classes by softmax over scores
► Maximize log-probability of correct class

 Precisely as before, only difference is that we are now learning the data 
transformation concurrently with the classifier

p( y=c∣x)=
exp yc

∑k
exp y k

 Representation learning in 
discriminative and coherent manner

 Fisher kernel also data adaptive but 
not discriminative and task dependent

 More generally, we can choose a loss 
function for the problem of interest and 
optimize all network parameters w.r.t. 
this objective (regression, metric 
learning, ...)



Activation functions

 Unit step function, used in original Perceptron
► Discontinuous, not possible to propagate error

 Sigmoid function: Smooth step function
► Gradients saturate except in transition regime
► Hyperbolic tangent: same but zero-centered instead

 Rectified linear unit (ReLU): Clips negative values to zero
► One-sided saturation only, very cheap to compute

 Max-out: max of two linear functions
► Similar as ReLU 
► No constant regimes at all



Training the network: forward and backward propagation

 Forward propagation from input nodes to output nodes
► Accumulate inputs into weighted sum
► Apply scalar non-linear activation function f 

 Use Pre(j) to denote all nodes feeding into j

a j=∑i∈Pre ( j)
wij x i

x j=f (a j)



Training the network: forward and backward propagation

 Backward propagation of loss gradient from output nodes to input nodes
► Application of chainrule of derivatives
► Accumulate gradients from downstream nodes
► Multiply with derivative of local activation

 Use Post(i) to denote all nodes that i feeds into

 Gradient of weights between two layers given by outer-product of x and g 

gi=f ' (ai)∑ j∈Post (i)
wij g j

gi=
∂ L
∂ai

∂ L
∂w ij

=x i g j



Convolutional neural networks

 Local connections: motivation from findings in early vision
► Simple cells detect local features
► Complex cells pool simple cells in retinotopic region

 Convolutions: motivated by translation invariance
► Same processing should be useful in different image regions



Convolutional neural networks

 Multiple convolutions per layer
► Different features 
► Same level of abstraction and scale



Relation to “fully connected” neural networks

 Hidden units 
► Spatially organized: output of convolution filter at certain position
► Local connectivity: depend only on small fraction of input units

 Connection weights
► Same filter weights for an output map
► Massive weight sharing: nr. of parameters does not grow in output size



Convolutional neural network architectures

 Convolutional layers: local features along scale and abstraction hierarchy
► Convolution
► Nonlinearity
► Pooling, eg. max response in small region

 Fully connected layers: assemble local features into global interpretation
► Multi-layer perceptron 

Handwritten digit recognition. 

LeCun, Bottou, Bengio, Haffner, Proceedings IEEE, 1998



Convolutional neural network architectures

 Similar architectures for general object recognition a decade later

 Deeper: e.g. 19 layers in Simonyan & Zisserman, ICLR 2015

 Wider: More filters per layer: hundreds instead of tens

 Wider: thousands of nodes in fully connect layers

 ReLU activations instead of hyperbolic tangent

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge



Convolutional neural network architectures

 Similar architectures for general object recognition a decade later

 More training data
► 1.2 millions of 1000 classes for ImageNet challenge
► 200 million faces in Schroff et al, CVPR 2015

 GPU-based implementations
► Massively parallel computation of convolutions
► Krizhevsky & Hinton, 2012: six days of training on two GPUs 

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge



Understanding convolutional neural network activations

 Architecture consists of 
► 5 convolutional layers
► 2 fully connected layers

 Visualization of patches that yield maximum response for certain units
► We will look at each of the 5 convolutional layers

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge



Understanding convolutional neural network activations

 Layer 1: simple edges and color detectors 

 Layer 2: corners, center-surround, ...



Understanding convolutional neural network activations

 Layer 3: textures, object parts



Understanding convolutional neural network activations

 Layer 4: complex textures and object parts



Understanding convolutional neural network activations

 Layer 5: complex textures and object parts
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