
Introduction to Neural Networks

Machine Learning and Object Recognition 2015-2016

Jakob Verbeek, December 18, 2015

Course website:

http://lear.inrialpes.fr/~verbeek/MLOR.15.16

Biological motivation

 Neuron is basic computational unit of the brain
► about 10^11 neurons in human brain

 Simplified neuron model
► Firing rate of electrical spikes is modeled as continuous quantity
► Multiplicative interaction of input and connection strength (weight)
► Multiple inputs accumulated in cell activation
► Output if threshold activation is exceeded

Rosenblatt's Perceptron

 One of the earliest works on artificial neural networks
► First implementations in 1957 at Cornell University
► Computational model of natural neural learning

Rosenblatt's Perceptron

 One of the earliest works on artificial neural networks
► First implementations in 1957 at Cornell University
► Computational model of natural neural learning

 Binary classification based on sign of generalized linear function

20x20 pixel sensor Random wiring on the computer

sign(f (x))=sign(wTϕ(x))

Rosenblatt's Perceptron

 Objective function linear in score over misclassified patterns

 Perceptron learning via stochastic gradient descent

► Eta is the learning rate

Potentiometers as weights, adjusted by motors during learning

E(w)=−∑t i≠sign(f (xi))
t i f (xi)=∑i

max (0,−t i f (x i))

w t+1=w t+η×t iϕ(x i)[t i f (x i)<0]

Limitations of the Perceptron

 Perceptron convergence theorem (Rosenblatt, 1962) states that
► If training data is linearly separable
► Then learning algorithm will find a solution in a finite number of iterations

 If training data is linearly separable then the found solution will depend on the
initialization and ordering of data in the updates

 If training data is not linearly separable, then the perceptron learning
algorithm will never converge

 No direct multi-class extension

 No probabilistic output or confidence on classification

Relation to SVM and logistic regression

 Perceptron similar to SVM without the notion of margin
► Cost function is not a bound on the zero-one loss

 All are either based on linear function or generalized linear function by relying
on pre-defined non-linear data transformation

f (x)=wTϕ(x)

Classification with kernels

 Representer theorem states that in all these cases optimal weight vector is
linear combination of training data

 Kernel trick allows us (sometimes) to efficiently compute dot-products
between high-dimensional transformations of the data

► Conversely, positive definite kernel functions compute dot-products
between between possibly infinite dimensional data transformations

 Classification function is linear in data transformation given by kernel
evaluations over the training data

f (x)=∑i
αi ⟨ϕ(x i) ,ϕ(x) ⟩

w=∑i
αiϕ(x i)

k (x i , x)=⟨ϕ(xi) ,ϕ(x) ⟩

f (x)=∑i
αik (x , x i)=αT k(x ,.)

Limitation of kernels

 Classification based on weighted similarity to training samples
► Design of kernel based on domain knowledge and experimentation

► Some kernels are data adaptive, for example the Fisher kernel

 Number of free variables grows linearly in the size of the training data

 Alternatively: fix the number of “basis functions” in advance
► Choose a family of non-linear basis functions
► Learn the parameters, together with those of linear function

f (x)=∑i
αik (x , x i)=αT k(x ,.)

f (x)=∑i
αiϕi(x ;θi)

Feed-forward neural networks

 Define outputs of one layer as scalar non-linearity of linear function of input

 Known as “multi-layer perceptron”
► Perceptron has a step non-linearity of linear function
► Other non-linearities used in practice

z j=h(x
Tw j

(1))

yk=σ(zT wk
(2))

Feed-forward neural networks

 If “hidden layer” activation function is taken to be linear than a single-layer
linear model is obtained

 Two-layer networks with linear outputs can uniformly approximate any
continuous function on a compact input domain to arbitrary accuracy provided
the network has a sufficiently large number of hidden units
► Holds for many non-linearities, but not for polynomials

 Architecture can be generalized
► More than two layers of computation
► Skip-connections from previous layers
► Directed acyclic graphs of connections

 Key difficulties
► How design the network architecture

 Nr nodes, layers, non-linearities,
► Learn the optimal parameters

 Non-convex optimization

Multi-class classifiction

 One output score for each target class

 Multi-class logistic regression loss
► Define probability of classes by softmax over scores
► Maximize log-probability of correct class

 Precisely as before, only difference is that we are now learning the data
transformation concurrently with the classifier

p(y=c∣x)=
exp yc

∑k
exp y k

 Representation learning in
discriminative and coherent manner

 Fisher kernel also data adaptive but
not discriminative and task dependent

 More generally, we can choose a loss
function for the problem of interest and
optimize all network parameters w.r.t.
this objective (regression, metric
learning, ...)

Activation functions

 Unit step function, used in original Perceptron
► Discontinuous, not possible to propagate error

 Sigmoid function: Smooth step function
► Gradients saturate except in transition regime
► Hyperbolic tangent: same but zero-centered instead

 Rectified linear unit (ReLU): Clips negative values to zero
► One-sided saturation only, very cheap to compute

 Max-out: max of two linear functions
► Similar as ReLU
► No constant regimes at all

Training the network: forward and backward propagation

 Forward propagation from input nodes to output nodes
► Accumulate inputs into weighted sum
► Apply scalar non-linear activation function f

 Use Pre(j) to denote all nodes feeding into j

a j=∑i∈Pre (j)
wij x i

x j=f (a j)

Training the network: forward and backward propagation

 Backward propagation of loss gradient from output nodes to input nodes
► Application of chainrule of derivatives
► Accumulate gradients from downstream nodes
► Multiply with derivative of local activation

 Use Post(i) to denote all nodes that i feeds into

 Gradient of weights between two layers given by outer-product of x and g

gi=f ' (ai)∑ j∈Post (i)
wij g j

gi=
∂ L
∂ai

∂ L
∂w ij

=x i g j

Convolutional neural networks

 Local connections: motivation from findings in early vision
► Simple cells detect local features
► Complex cells pool simple cells in retinotopic region

 Convolutions: motivated by translation invariance
► Same processing should be useful in different image regions

Convolutional neural networks

 Multiple convolutions per layer
► Different features
► Same level of abstraction and scale

Relation to “fully connected” neural networks

 Hidden units
► Spatially organized: output of convolution filter at certain position
► Local connectivity: depend only on small fraction of input units

 Connection weights
► Same filter weights for an output map
► Massive weight sharing: nr. of parameters does not grow in output size

Convolutional neural network architectures

 Convolutional layers: local features along scale and abstraction hierarchy
► Convolution
► Nonlinearity
► Pooling, eg. max response in small region

 Fully connected layers: assemble local features into global interpretation
► Multi-layer perceptron

Handwritten digit recognition.

LeCun, Bottou, Bengio, Haffner, Proceedings IEEE, 1998

Convolutional neural network architectures

 Similar architectures for general object recognition a decade later

 Deeper: e.g. 19 layers in Simonyan & Zisserman, ICLR 2015

 Wider: More filters per layer: hundreds instead of tens

 Wider: thousands of nodes in fully connect layers

 ReLU activations instead of hyperbolic tangent

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge

Convolutional neural network architectures

 Similar architectures for general object recognition a decade later

 More training data
► 1.2 millions of 1000 classes for ImageNet challenge
► 200 million faces in Schroff et al, CVPR 2015

 GPU-based implementations
► Massively parallel computation of convolutions
► Krizhevsky & Hinton, 2012: six days of training on two GPUs

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge

Understanding convolutional neural network activations

 Architecture consists of
► 5 convolutional layers
► 2 fully connected layers

 Visualization of patches that yield maximum response for certain units
► We will look at each of the 5 convolutional layers

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge

Understanding convolutional neural network activations

 Layer 1: simple edges and color detectors

 Layer 2: corners, center-surround, ...

Understanding convolutional neural network activations

 Layer 3: textures, object parts

Understanding convolutional neural network activations

 Layer 4: complex textures and object parts

Understanding convolutional neural network activations

 Layer 5: complex textures and object parts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29

