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A brief recap on kernel methods

 A way to achieve non-linear classification by using a kernel that computes 
inner products of data after non-linear transformation.
► Given the transformation, we can derive the kernel function.

 Conversely, if a kernel is positive definite, it is known to compute a dot-
product in a (not necessarily finite dimensional) feature space. 
► Given the kernel, we can determine the feature mapping function.

Φ:  x → φ(x)

k (x1, x2)=〈ϕ(x1),ϕ(x2)〉



A brief recap on kernel methods

 So far, we considered starting with data in a vector space, and mapping it into 
another vector space to facilitate linear classification.

 Kernels can also be used to represent non-vectorial data, and to make them 
amenable to linear classification (or other linear data analysis) techniques.

 For example, suppose we want to classify sets of points in a vector space, 
where the size of each set may vary

 We can define a representation of sets by concatenating the mean and 
variance of the set in each dimension

► Fixed size representation of sets in 2d dimensions
► Use kernel to compare different sets:

k (X 1, X2)=〈ϕ(X 1),ϕ(X 2)〉

X={x1, x2, ... , xN } with xi∈Rd

ϕ(X )=(mean (X )
var (X ) )



Fisher kernels

 Motivated by the need to represent variably sized objects in a vector space, 
such as sequences, sets, trees, graphs, etc., such that they become 
amenable to be used with linear classifiers, and other data analysis tools 

 A generic method to define kernels over arbitrary data types based on 
statistical model of the items we want to represent

 Parameters and/or structure of the model p(x) estimated from data
► Typically in unsupervised manner

 Automatic data-driven configuration of kernel instead of manual design
► Kernel typically used for supervised task 

[Jaakkola & Haussler, “Exploiting generative models in discriminative 
classifiers”,In Advances in Neural Information Processing Systems 11, 1998.]

p( x ;θ) , x∈X , θ∈RD



Fisher kernels

 Given a generative data model 

 Represent data x with the gradient of the data log-likelihood, or “Fisher score”:

 Define a kernel over X by taking the scaled inner product between the Fisher 
score vectors: 

 Where F is the Fisher information matrix F:

 F is positive definite since

g ( x)=∇θ ln p( x) ,

g (x)∈RD

p( x ;θ) , x∈X , θ∈RD

k (x , y)=g(x)
T F−1 g( y)

F=Ep (x ) [g(x)g(x)T ]

αT F α=Ep (x) [(g(x)T α)2 ]>0



Fisher kernels

 Since F is positive definite we can decompose its inverse as 

 Therefore, we can write the kernel as 

► Where phi is known as the Fisher vector

 It follows that the Fisher kernel is a positive-semidefinite 

► where

F−1
=LT L

ϕ(xi)=L g(xi)

k (xi , x j)=g(xi)
T F−1 g(x j)=ϕ(xi)

T
ϕ(x j)

α
T K α=∥∑i

αiϕ(xi)∥2
2
=∥L∑i

αi g(xi)∥2
2
≥0

[K ]ij=k (xi , x j)



Normalization with inverse Fisher information matrix

 Gradient of log-likelihood w.r.t. parameters

 Fisher information matrix 

 Normalized Fisher kernel 
► Renders Fisher kernel invariant for parametrization 

 Consider different parametrization given by some invertible function 

 Jacobian matrix relating the parametrizations

 Gradient of log-likelihood w.r.t. new parameters, via chainrule

 Fisher information matrix 

 Normalized Fisher kernel 

Fθ=∫ g(x)g(x)
T p(x)dx

λ= f (θ)

g(x)=∇ θ ln p(x)

k (x1, x2)=g(x1)
T Fθ

−1 g(x2)

[J ]ij=
∂θ j

∂ λi

h(x)=∇ λ ln p(x)=J ∇θ ln p(x)=J g(x)

h(x1)
T Fλ

−1h(x2)=g(x1)
T JT

(JFθ J
T
)
−1 J g(x2)

Fλ=∫ h(x)h(x)
T p(x)dx=J F θJ

T

=g(x1)
T J T J−T F θ

−1 J−1 J g(x2)

=g(x1)
T F θ

−1 g(x2)



Fisher kernels – relation to generative classification

 Suppose we make use of generative model for classification via Bayes' rule
► Where x is the data to be classified, and y is the discrete class label

and

 Classification with the Fisher kernel obtained using the marginal distribution 
p(x) is at least as powerful as classification with Bayes' rule

 This becomes useful when the class conditional models are poorly estimated, 
either due to bias or variance type of errors

 In practice often used without class-conditional models, but direct generative 
model for the marginal distribution on X

p( y∣x)= p( x∣y) p( y)/ p( x) ,

p( x)=∑k=1

K
p( y=k ) p(x∣y=k )

p( x∣y)= p(x ;θy) ,

p( y=k )=πk=
exp(αk )

∑k '=1

K
exp(αk ' )



Fisher kernels – relation to generative classification

 Consider the Fisher score vector with respect to the marginal distribution on X

 In particular for the alpha that model the class prior probabilities we have

∇θ ln p(x)=
1

p( x)
∇θ∑k=1

K
p(x , y=k )

=
1

p( x)
∑k=1

K
p( x , y=k )∇θ ln p(x , y=k )

=∑k=1

K
p( y=k∣x) [∇θ ln p( y=k )+∇θ ln p(x∣y=k ) ]

∂ ln p( x)
∂αk

= p( y=k∣x)−πk



Fisher kernels – relation to generative classification

 Consider discriminative multi-class classifier.

 Let the weight vector for the k-th class to be zero, except for the position that 
corresponds to  the alpha of the k-th class where it is one. And let the bias 
term for the k-th class be equal to the prior probability of that class

 Then

and thus

 Thus the Fisher kernel based classifier can implement classification via 
Bayes' rule, and generalizes it to other classification functions

∂ ln p( x)
∂αk

= p( y=k∣x)−πk

f k ( x)=wk
T g ( x)+bk= p( y=k∣x)

g(x)=∇ θ ln p(x)=(∂ ln p(x)
∂α1

, ... ,
∂ ln p(x)

∂αK
, ...)

argmaxk f k (x)=argmax k p( y=k∣x)



Fisher kernels: example with Gaussian data model

 Let lambda be the inverse variance, i.e. precision, parameter

 The partial derivatives and Fisher information matrix are found to be

 The Fisher vector is then 

p(x)=N (x ;μ ,λ)=√λ /(2π)exp [−1
2

λ(x−μ)2]

θ=(μ ,λ)
T

ln p(x)=
1
2

ln λ−
1
2

ln (2π)−
1
2

λ(x−μ)2

∂ ln p(x)
∂μ

=λ(x−μ)
∂ ln p (x)

∂λ
=

1
2

[λ−1
−(x−μ)

2 ]

F=(
λ 0

0
1
2

λ
−2)

ϕ(x)=( (x−μ)/σ

(σ2
−(x−μ)

2 )/ (σ2√2 ))



Fisher kernels: example with Gaussian data model

 Now suppose an i.i.d. data model over a set of data points

 Then the Fisher vector is given by the sum of Fisher vectors of the points
► Encodes the discrepancy in the first and second order moment of the data 

w.r.t. those of the model

► Where

p(x)=N (x ;μ ,λ)=√λ /(2π)exp [−1
2

λ(x−μ)2]
p(X)=p(x1,. .. , xN)=∏i=1

N
p(xi)

ϕ(X )=∑i=1

N
ϕ(xi)=N ( (μ̂−μ)/σ

(σ
2
−σ̂

2 )/ (σ2√2 ))

μ̂=
1
N ∑i=1

N
xi σ̂=

1
N ∑i=1

N
(xi−μ)2



Local descriptor based image representations

 Patch extraction and description stage
► For example: SIFT, HOG, LBP, color, ...
► Dense multi-scale grid, or interest points

 Coding stage: embed local descriptors, typically in higher dimensional space
► For example: assignment to cluster indices

 Pooling stage: aggregate per-patch embeddings
► For example: sum pooling

Φ(X )=∑i=1

N
ϕ(xi)

X={x1, ... , xN }

ϕ(xi)



Bag-of-word image representation

 Extract local image descriptors, e.g. SIFT
► Dense on multi-scale grid, or on interest points

 Off-line: cluster local descriptors with k-means
► Using random subset of patches from training images

 To represent training or test image
► Assign SIFTs to cluster indices / visual words
► Histogram of cluster counts aggregates all local feature information

[Sivic & Zisserman, ICCV'03], [Csurka et al., ECCV'04]

ϕ(xi)=[0,. .. ,0,1,0, ... ,0]

h=∑i
ϕ(xi)



Application of FV for bag-of-words image-representation

 Bag of word (BoW) representation
► Map every descriptor to a cluster / visual word index 

 Model visual word indices with i.i.d. multinomial 

► Likelihood of N i.i.d. indices:

► Fisher vector given by gradient
 i.e. BoW histogram + constant

p(wi=k )=
expαk

∑k '
expαk '

=πk

∂ ln p(w1: N )

∂αk
=∑i=1

N ∂ ln p(w i)

∂αk
=hk−N πk

wi∈{1, ... , K }

p(w1 : N)=∏i=1

N
p(wi)
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Fisher vector GMM representation: Motivation 

• Suppose we want to refine a given visual vocabulary to obtain a 
richer image representation

• Bag-of-word histogram stores # patches assigned to each word
– Need more words to refine the representation
– But this directly increases the computational cost
– And leads to many empty bins: redundancy

0
0

2

0

0
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Fisher vector GMM representation: Motivation

• Feature vector quantization is computationally expensive 
• To extract visual word histogram for a new image

– Compute distance of each local descriptor to each k-means center 
– run-time O(NKD) : linear in

• N: nr. of feature vectors ~ 104 per image
• K: nr. of clusters ~ 103 for recognition
• D: nr. of dimensions ~ 102 (SIFT)

• So in total in the order of 109 multiplications 

per image to obtain a histogram of size 1000

• Can this be done more efficiently ?!
– Yes, extract more than just a visual word histogram from a given 

clustering



         20 

           3

5

 8

10

Fisher vector representation in a nutshell

• Instead, the Fisher Vector for GMM also records the mean and 
variance of the points per dimension in each cell

– More information for same # visual words 
– Does not increase computational time significantly 
– Leads to high-dimensional feature vectors

 Even when the counts are the same,

 the position and variance of the points in the cell can vary



Application of FV for Gaussian mixture model of local features

 Gaussian mixture models for local image descriptors
[Perronnin & Dance, CVPR 2007]

► State-of-the-art feature pooling for image/video classification/retrieval

 Offline: Train k-component GMM on collection of local features

 Each mixture component corresponds to a visual word
► Parameters of each component: mean, variance, mixing weight
► We use diagonal covariance matrix for simplicity

 Coordinates assumed independent, per Gaussian

p(x)=∑k=1

K
πk N (x ;μk ,σk)



Application of FV for Gaussian mixture model of local features

 Gaussian mixture models for local image descriptors
[Perronnin & Dance, CVPR 2007]

► State-of-the-art feature pooling for image/video classification/retrieval

 Representation: gradient of log-likelihood 
► For the means and variances we have:

► Soft-assignments given by component posteriors

F−1/2
∇μk

ln p(x1 :N)=
1

√πk
∑n=1

N
p(k∣xn)

(xn−μk)
σk

F−1/2
∇σ k

ln p(x1 :N)=
1

√2πk

∑n=1

N

p(k∣xn){(xn−μk)
2

σk
2 −1}

p(k∣xn)=
πk N (xn;μk ,σk)

p(xn)



Application of FV for Gaussian mixture model of local features

 Fisher vector components give the difference between the data mean 
predicted by the model and observed in the data, and similar for variance.

 For the gradient w.r.t. the mean

► where

 Similar for the gradient w.r.t. the variance

► where

F−1/2
∇μk

ln p(x1 :N)=
1

√πk
∑n=1

N
p(k∣xn)

(xn−μk)
σk

=
nk

σk √πk
(μ̂k−μk )

F−1/2
∇σ k

ln p(x1 :N)=
1

√2πk

∑n=1

N

p(k∣xn){(xn−μk)
2

σk
2 −1}= nk

σk
2
√2πk

(σ̂k
2
−σk

2 )

nk=∑n=1

N
p(k∣xn) μ̂k=nk

−1∑n=1

N
p(k∣xn)xn

σ̂k
2
=nk

−1∑n=1

N
p(k∣xn)(xn−μk)

2



Image representation using Fisher kernels

 Data representation

 In total K(1+2D) dimensional representation, since for each visual 
word / Gaussian we have
► Mixing weight (1 scalar)
► Mean (D dimensions)
► Variances (D dimensions, since single variance per dimension)

 Gradient with respect to mixing weights often dropped in practice 
since it adds little discriminative information for classification.
► Results in 2KD dimensional image descriptor

G(X ,Θ)=F−1/2( ∂ L
∂α1

, ... ,
∂ L
∂αK

, ∇μ1
L, ... ,∇μK

L , ∇σ 1
L, ... , ∇σK

L )
T



Illustration of gradient w.r.t. means of Gaussians



BoW and FV from a function approximation viewpoint

 Let us consider uni-dimensional descriptors: vocabulary 
quantizes real line

 For both BoW and FV the representation of an image is 
obtained by sum-pooling the representations of descriptors.
► Ensemble of descriptors sampled in an image
► Representation of single descriptor

 One-of-k encoding for BoW
 For FV concatenate per-visual word gradients of form

 Linear function of sum-pooled descriptor encodings is a sum 
of linear functions of individual descriptor encodings:

Φ(X )=∑i=1

N
ϕ(xi)

X={x1, ... , xN }

ϕ(xi)=[0,. .. ,0,1,0, ... ,0]

ϕ(xi)=(... , p(k∣xi)[1 (xi−μk)
σk

(xi−μk)
2−σk

2

σk
2 ] , ...)

wT
Φ(X )=∑i=1

N
wT

ϕ(xi)



From a function approximation viewpoint

 Consider the score of a single descriptor for BoW
► If assigned to k-th visual word then 
► Thus: constant score for all descriptors assigned to a visual word

wT
ϕ(x i)=wk

Each cell corresponds to a visual word



From a function approximation viewpoint

 Consider the same for FV, and assume soft-assignment is “hard”
► Thus: assume for one value of k we have 
► If assigned to the k-th visual word:

 Note that        is no longer a scalar but a vector
► Thus: score is a second-order polynomial of the descriptor x, for 

descriptors assigned to a given visual word.

wT ϕ(x i)=wk
T [1 (xi−μk)

σk

(xi−μk)
2
−σk

2

σk
2 ]

p(k∣xi)≈1

wk



From a function approximation viewpoint

 Consider that we want to approximate a true classification function 
(green) based on either BoW (blue) or FV (red) representation
► Weights for BoW and FV representation fitted by least squares to 

optimally match the target function

 Better approximation with FV 
► Local second order approximation, instead of local zero-order
► Smooth transition from one visual word to the next



Fisher vectors: classification performance VOC'07

• Fisher vector representation yields better performance for a 
given number of Gaussians / visual words than Bag-of-words.

• For a fixed dimensionality Fisher vectors perform better, and are 
more efficient to compute



Normalization of the Fisher vector

 Inverse Fisher information matrix F
► Renders FV invariant for re-parametrization
► Linear projection, analytical approximation for MoG gives diagonal matrix

[Jaakkola, Haussler, NIPS 1999], [Sanchez, Perronnin, Mensink, 
Verbeek IJCV'13]

 Power-normalization, applied independently per dimension
► Renders Fisher vector less sparse

[Perronnin, Sanchez, Mensink, ECCV'10]
► Corrects for poor independence assumption on local descriptors

[Cinbis, Verbeek, Schmid, PAMI'15]

 L2-normalization
► Makes representation invariant to number of local features
► Among other Lp norms the most effective with linear classifier

[Sanchez, Perronnin, Mensink, Verbeek IJCV'13]

F=E[g (x)g(x)
T
]

f (x)=F−1/2 g(x)

f (x )← sign(f (x))|f (x)|
ρ

0<ρ<1

f (x)←
f (x)

√ f (x)
T f (x)



Effect of power and L2 normalization in practice

 Classification results on the PASCAL VOC 2007 benchmark dataset.

 Regular dense sampling of local SIFT descriptors in the image
► PCA projected to 64 dimensions to de-correlate and compress

 Using mixture of 256 Gaussians over the SIFT descriptors
► FV dimensionality: 2*64*256 = 32 * 1024

Power 
Nomalization

L2 
normalization

Performance 
(mAP)

Improvement 
over baseline

No No 51.5 0

Yes No 59.8 8.3

No Yes 57.3 5.8

Yes Yes 61.8 10.3



PCA dimension reduction of local descriptors

 We use diagonal covariance model

 Dimensions might be correlated

 Apply PCA projection to
► De-correlate features
► Reduce dimension of final FV

 FV with 256 Gaussians over local 

SIFT descriptors of dimension 128

Results on PASCAL VOC’07:



Bag-of-words vs. Fisher vector representation

 Both representations based on a visual vocabulary obtained by 
means of clustering local descriptors

 Bag-of-words image representation
► Off-line: fit k-means clustering to local descriptors
► Representation: histogram of visual word counts, K dimensions

 Fisher vector image representation
► Off-line: fit GMM model to local descriptors 
► Representation: gradient of log-likelihood, 2KD dimensions



Summary of Fisher vector image representation

 Computational cost similar:
► Both compare N descriptors to K clusters (visual words)

 Memory usage: 
► Fisher vector has size 2KD for K clusters and D dim. descriptors
► Bag-of-word has size K for K clusters

 For a given dimension of the representation
► FV needs less clusters, and is faster to compute
► FV gives better performance since it is a smoother function of 

the local descriptors

 A recent overview article on Fisher Vector representation
► Image Classification with the Fisher Vector: Theory and Practice

Sanchez, Perronnin, Mensink, Verbeek 
International Journal of Computer Vision, 2013
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