
Overview

• Video classification 
– Bag of spatio-temporal features 

• Action localization 
– Spatio-temporal human localization



State of the art for video classification

• Low-level video descriptors 
– Space-time interest points [Laptev, IJCV’05]
– Dense trajectories [Wang and Schmid, ICCV’13] 
– Video-level CNN features 

• Aggregation schemes 
– Bag-of-features [Csurka et al., ECCV workshop’04]
– Fisher vector [Perronnin et al., ECCV’10] 

• Classification
– Support vector machine (SVM) 



Space-time interest points (STIP)

 Space-time corner detector
[Laptev, IJCV 2005]



STIP descriptors 


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Action classification

• Bag of space-time features + SVM [Schuldt’04, Niebles’06, Zhang’07] 

Collection of space-time patches

Histogram of visual words

SVM
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HOG & HOF
patch 
descriptors



Visual words: k-means clustering

• Group similar STIP descriptors together with k-means

c1

c2

c3

c4

…
Clustering 



Action classification

Test episodes from movies “The Graduate”, “It’s a Wonderful Life”, 
“Indiana Jones and the Last Crusade”



State of the art for video description 

• Dense trajectories [Wang et al., IJCV’13] and Fisher vector 
encoding [Perronnin et al. ECCV’10]

• Orderless representation



Dense trajectories [Wang et al., IJCV’13]

• Dense sampling at several scales
• Feature tracking based on optical flow for several scales
• Length 15 frames, to avoid drift 



Example for dense trajectories



Descriptors for dense trajectory

• Histogram of gradients (HOG: 2x2x3x8)
• Histogram of optical flow (HOF: 2x2x3x9)



Descriptors for dense trajectory

• Motion-boundary histogram (MBHx + MBHy: 2x2x3x8)
– spatial derivatives are calculated separately for optical flow in x 

and y, quantized into a histogram
– captures relative dynamics of different regions
– suppresses constant motions



 Advantages:

- Captures the intrinsic dynamic structures in videos

- MBH is robust to certain camera motion

Dense trajectories

 Disadvantages:

- Generates irrelevant trajectories in background due to camera motion

- Motion descriptors are modified by camera motion, e.g., HOF, MBH



- Improve dense trajectories by explicit camera motion estimation

- Detect humans to remove outlier matches for homography estimation

Improved dense trajectories

- Stabilize optical flow to eliminate camera motion

[Wang and Schmid. Action recognition with improved trajectories. ICCV’13]



Camera motion estimation
 Find the correspondences between two consecutive frames:

- Extract and match SURF features (robust to motion blur)

- Use optical flow, remove uninformative points 

 Combine SURF (green) and optical flow (red) results in a 
more balanced distribution

 Use RANSAC to estimate a homography from all feature matches

Inlier matches of the homography



Remove inconsistent matches due to humans
 Human motion is not constrained by camera motion, thus 
generates outlier matches

 Apply a human detector in each frame, and track the human 
bounding box forward and backward to join detections

 Remove feature matches inside the human bounding box 
during homography estimation

Inlier matches and warped flow, without or with HD



Remove background trajectories 
 Remove trajectories by thresholding the maximal magnitude 

of stabilized motion vectors

 Our method works well under various camera motions, such as pan, 
zoom, tilt

Removed trajectories (white) and foreground ones (green)

Successful examples Failure cases

 Failure due to severe motion blur; the homography is not  correctly 
estimated due to unreliable feature matches



Experimental setting

 Normalization for each descriptor, then PCA to reduce its    
dimension by a factor of two
 Use Fisher vector to encode each descriptor separately, set 
the number of Gaussians to K=256
 Use Power+L2 normalization for FV, and linear SVM with 
one-against-rest for multi-class classification

Datasets

 Hollywood2: 12 classes from 69 movies, report mAP

 HMDB51: 51 classes, report accuracy on three splits

 UCF101: 101 classes, report accuracy on three splits 

 Motion stabilized trajectories and features (HOG, HOF, MBH) 



Datasets 

Hollywood dataset [Marszalek et al.’09]

answer phone get out of car fight person

Hollywood2: 12 classes from 69 movies, report mAP



Datasets 

HMDB 51 dataset [Kuehne et al.’11]

push-up cartwheel sword-exercice

HMDB51: 51 classes, report accuracy on three splits



Datasets 

UCF 101 dataset [Soomro et al.’12]

haircut archery ice-dancing

UCF101: 101 classes, report accuracy on three splits 



Evaluation of the intermediate steps

 ITF = "improved trajectory feature”

HOG HOF MBH HOF+MBH Combined
DTF 38.4% 39.5% 49.1% 49.8% 52.2%
ITF 40.2% 48.9% 52.1% 54.7% 57.2%

 Baseline: DTF = "dense trajectory feature"

Results on HMDB51 using Fisher vector

 HOF improves significantly and MBH somewhat 
 Almost no impact on HOG

 HOF and MBH are complementary, as they represent  zero and first order 
motion information



Impact of feature encoding on improved trajectories

 IDT significantly improvement over DT

Compare DTF and ITF with and without human detection
using HOG+HOF+MBH and Fisher encoding

Datasets Fisher vector
DTF ITF wo 

human
ITF w 
human

Hollywood2 63.6% 66.1% 66.8%
HMDB51 55.9% 59.3% 60.1%
UCF101 83.5% 85.7% 86.0%

 Human detection always helps. For Hollywood2 and HMDB51, the 
difference is more significant, as there are more humans present.

 Source code: http://lear.inrialpes.fr/~wang/improved_trajectories



TrecVid MED 2011

• 15 categories

Attempt a board trick Feed an animal Landing a fish

Wedding ceremony Working on a 
wood project 

Birthday party 

…



TrecVid MED 2011

• 15 categories
• ~100 positive video clips per event category, 9600 negative 

video clips
• Testing on 32000 videos clips, i.e., 1000 hours
• Videos come from publicly available, user-generated 

content on various Internet sites

• Descriptors: MBH, SIFT, audio, text & speech recognition



Quantitative results on TrecVid MED’11

Performance of all channels (mAP)
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Quantitative results on TrecVid MED’11

Performance of all channels (mAP)



Quantitative results on TrecVid MED’11

Performance of all channels (mAP)



Experimental results

• Example results

Highest ranked results for the event «horse riding competition» 

rank 1 rank 2 rank 3



Experimental results

• Example results

Highest ranked results for the event «tuning a musical instrument»

rank 1 rank 2 rank 3



Recent CNN methods

Two-Stream Convolutional Networks 
for Action Recognition in Videos
[Simonyan and Zisserman NIPS14]

Learning Spatiotemporal Features with 
3D Convolutional Networks
[Tran et al. ICCV15]

Action recognition with trajectory pooled 
convolutional descriptors
[Wang et al. CVPR15]



Recent CNN methods

Two-Stream Convolutional Networks 
for Action Recognition in Videos
[Simonyan and Zisserman NIPS14]

Student presentation 



Recent CNN methods

Learning Spatiotemporal Features with 3D Convolutional Networks [Tran et al. ICCV15]





Recent CNN methods

Action recognition with trajectory pooled 
convolutional descriptors
[Wang et al. CVPR15]



Overview

• Video classification 
– Bag of spatio-temporal features 

• Action localization 
– Spatio-temporal human localization 



Spatio-temporal action localization



Temporal action localization
• Temporal sliding window

– Robust video repres. for action recognition, Oneata et al., IJCV’15
– Automatic annotation of actions in video, Duchenne et al., ICCV’09
– Temporal localization of actions with actoms, Gaidon et al., PAMI’13

• Shot detection
– ADSC Submission at Thumos Challenge 2015

detection



State of the art 
• Spatio-temporal action localization

– Space-time sliding window 
• Spatio-temporal features selection with a cascade, Laptev & 

Perez, ICCV’07



State of the art 
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State of the art 
• Spatio-temporal action localization

– Space-time sliding window 
• Spatio-temporal features selection, Laptev & Perez, ICCV’07

– Human tubes or generic tube + tube classification
• Human focused action localization in video, Kläser et al., SGA’10
• Action localization by tubelets from motion, Jain et al, CVPR’14
• Finding action tubes, Gkioxari and Malik, CVPR’15 



Learning to track for spatio-temporal action 
localization

[Learning to track for spatio-temporal action localization,    
P. Weinzaepfel, Z. Harchaoui, C. Schmid, ICCV 2015]

frame-level object proposals and CNN action classifier 
[Gkioxari and Malik, CVPR 2015]

tracking best candidates
Instant & class level tracking

scoring with 
CNN + IDT

temporal detection 
sliding window



Frame-level candidates
• For each frame

– Compute object proposals: EdgeBoxes [Zitnick et al. 2014]



Frame-level candidates
• For each frame

– Compute object proposals: EdgeBoxes [Zitnick et al. 2014]
– Extraction of salient boxes based on edgeness



Frame-level candidates
• For each frame

– Compute object proposals (EdgeBoxes [Zitnick et al. 2014])
– Extract CNN features (training similar to R-CNN [Girshicket al. 2014])
– Score each object proposal

[Gkioxari and Malik’15, Simonyan and Zisserman’14]



Extracting action tubes - tracking

47

• Tracking an action detection (select highest scoring proposal)
– Learn an instance-level detector 

mining negatives in the same frame
– For each frame:

• Perform a sliding-window and select the best box according to 
the class-level detector and the instance-level detector

• Update instance-level detector



Extracting action tubes

• Start with the highest scored action detection in the video
• Track forward and the backward
• Once tracking is done, delete detections with high overlap
• Restart from the highest scored remaining  action detection

• Class-level → robustness to drastic change in poses (Diving, 
Swinging)

• Instance-level → models specific appearance



Rescoring and temporal sliding window
• To capture the dynamics

► Dense trajectories [Wang et Schmid, ICCV’13]

• Temporal sliding window

detection



Datasets (spatial localization)
UCF-Sports

[Rodriguez et al. 2008]
J-HMDB 

[Jhuang et al. 2013]

Number of videos 150 928
Number of classes 10 21

Average length 63 frames 34 frames



Datasets

51

• UCF-101 [Soomro et al. 2012]

►Spatio-temporal localization for a subset of the dataset
►3207 videos, 24 classes
►Average length: 176 frames



Experimental results

Detectors in the 
tracker

mAP

UCF-Sports J-HMDB
(split 1)

instance-level
+ class-level

95.1% 65.0%

instance-level 77.5% 61.1%

class-level 91.0% 60.6%

Comparison to the state of the art 

Gkioxari & Malik, 15 75.8% 53.3%

Impact of the tracker



mAP 0.2 0.3
Ours 46.7 37.8

Quantitative evaluation on UCF-101



Spatio-temporal action localization



Two-stream R-CNN [Peng et al. ECCV’16]



Evaluation of proposals 



Frame stacking evaluation



Comparison to the state of the art


