Bag-of-features
for category classification

Cordelia Schmid



Category recognition

* Image classification: assigning a class label to the image

Car: present

Cow: present
Bike: not present
Horse: not present




Category recognition

* Image classification: assigning a class label to the image

Car: present

Cow: present
Bike: not present
Horse: not present

* Object localization: define the location and the category

Location

Category




Difficulties: within object variations
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::> Within-object variations




Difficulties: within-class variations




Category recognition

* Image classification: assigning a class label to the image

Car: present

Cow: present
Bike: not present
Horse: not present

e Supervised scenario: given a set of training images



Image classification

 Given
Positive training images containing an object class

o Classify

A test image as to whether it contains the object class or not




Bag-of-features for image classification

« Origin: texture recognition

» Texture is characterized by the repetition of basic elements or
textons

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Texture recognition
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Bag-of-features for image classification
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[Csurka et al. WS’2004], [Nowak et al. ECCV’06], [Zhang et al. [JCV’07]



Bag-of-features for image classification
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Step 1: feature extraction

e Scale-invariant image regions + SIFT
— Affine invariant regions give “to0” much invariance

— Rotation invariance for many realistic collections “too” much
Invariance

* Dense descriptors
— Improve results in the context of categories (for most categories)
— Interest points do not necessarily capture “all” features

* Color-based descriptors



Dense features
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- Multi-scale dense grid: extraction of small overlapping patches at multiple scales
- Computation of the SIFT descriptor for each grid cells
- Exp.: Horizontal/vertical step size 3-6 pixel, scaling factor of 1.2 per level




Bag-of-features for image classification

Extract regions

Step 1
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Step 2: Quantization
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Step 2:Quantization

Clustering



Step 2: Quantization

|| Visual vocabulary

Clustering




Examples for visual words

Airplanes |3

Motorbikes | %

Faces

Wild Cats

Leaves

People

Bikes




Step 2: Quantization

e Cluster descriptors
— K-means
— Gaussian mixture model

« Assign each visual word to a cluster
— Hard or soft assignment

« Build frequency histogram



Hard or soft assignment

 K-means - hard assignment
— Assign to the closest cluster center
— Count number of descriptors assigned to a center

e Gaussian mixture model - soft assignment
— Estimate distance to all centers
— Sum over number of descriptors

 Represent image by a frequency histogram



Image representation

frequency
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« each image is represented by a vector, typically 1000-4000 dimension,
normalization with L2 norm

» fine grained — represent model instances
 coarse grained — represent object categories



Bag-of-features for image classification

Extract regions

Step 1
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Step 3: Classification

* Learn a decision rule (classifier) assigning bag-of-
features representations of images to different classes
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Training data

Vectors are histograms, one from each training image
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Nearest Neighbor Classifier

« For each test data point : assign label of nearest
training data point

« K-nearest neighbors: labels of the k nearest points,
vote to classify

« Works well provided there is lots of data and the
distance function is good



Linear classifiers

 Find linear function (hyperplane) to separate positive and
negative examples

@
° X; positive: X.-W+b>0
® o X; negative: X,-W+b<0
@
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5 Which hyperplane is best?

Support Vector Machine (SVM)



Kernels for bags of features

N
Hellinger kernel  K(h,,h,) = Z\/hl(i)hz(i)
=1
N
Histogram intersection kernel 1 (h,,h,) = Zmin(hl(i), h,(1))
i=1
Generalized Gaussian kernel K(h,,h,)= exp(—% D(hl,hz)zj

D can be Euclidean distance, y? distance etc.

(h,()—h,())
P (o) = ; (i) + (1)



Multi-class SVMs

Mutli-class formulations exist, but they are not widely used
In practice. It is more common to obtain multi-class SVMs
by combining two-class SVMs in various ways.

One versus all:
— Training: learn an SVM for each class versus the others

— Testing: apply each SVM to test example and assign to it the
class of the SVM that returns the highest decision value

One versus one:
— Training: learn an SVM for each pair of classes

— Testing: each learned SVM “votes” for a class to assign to the test
example



Why does SVM learning work?

® Learns foreground and background visual words

0~
i >~ foreground words — high weight
,E, \

:;: > background words — low weight



lllustration

Localization according to visual word probability

Correct — Ilmage: 35 Correct — Ilmage: 37

50 100 150 200 50 100 150 200

Correct — Image: 38 Correct — Image: 39

200

O foreground word more probable

O background word more probable



Bag-of-features for image classification

« Excellent results in the presence of background clutter
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Examples for misclassified images

E R .

Cars- misclassified into uildings, phones, phones



Bag of visual words summary

e Advantages:
— largely unaffected by position and orientation of object in image
— fixed length vector irrespective of number of detections

— very successful in classifying images according to the objects they
contain

 Disadvantages:
— no explicit use of configuration of visual word positions
— poor at localizing objects within an image
— no explicit image understanding



Evaluation of image classification (object localization)

« PASCAL VOC [05-12] datasets

« PASCAL VOC 2007

— Training and test dataset available

— Used to report state-of-the-art results

— Collected January 2007 from Flickr

— 500 000 images downloaded and random subset selected
— 20 classes manually annotated

— Class labels per image + bounding boxes

— 5011 training images, 4952 test images

— Exhaustive annotation with the 20 classes

« Evaluation measure: average precision



PASCAL 2007 dataset

Aeroplane Bicycle Bird Bottle




PASCAL 2007 dataset

Motorbike

Dining Table

TV /Monitor

B it 5




ImageNet: large-scale image classification dataset

IMAGENET has 14M images from 22k classes

Standard Subsets
— ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC)

e 1000 classes and 1.4M images
— ImageNet10K dataset

e 10184 classes and ~ 9 M images
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Evaluation

= Average Precision [TREC] averages precision over
the entire range of recall

Curve interpolated to reduce influence of “outliers”

A good score requires
both high recall and high

precision

Application-independent

precision

" Penalizes methods giving
high precision but low

4 recall

0 0.2 0.4 0.8 0.8 1
recall
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Results for PASCAL 2007

Winner of PASCAL 2007 [Marszalek et al.] : MAP 59.4
— Combining several channels with non-linear SVM and Gaussian kernel

Multiple kernel learning [yang et al. 2009] : MAP 62.2
— Combination of several features, Group-based MKL approach

Object localization & classification [Harzallah et al.’09] : MAP 63.5
— Use detection results to improve classification

Adding objectness boxes [Sanchez at al.’12] : mAP 66.3

Convolutional Neural Networks [Oquab et al.’14] : MAP 77.7



Spatial pyramid matching

Add spatial information to the bag-of-features

Perform matching in 2D image space

[Lazebnik, Schmid & Ponce, CVPR 2006]



Related work

Similar approaches:
Subblock description [Szummer & Picard, 1997]
SIFT [Lowe, 1999]
GIST [Torralba et al., 2003]

SIFT Gist
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Szummer & Picard (1997) Lowe (1999, 2004) Torralba et al. (2003)



Spatial pyramid representation

level O

Locally orderless
representation at
several levels of
spatial resolution



Spatial pyramid representation

level O
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Spatial pyramid representation

Locally orderless
representation at
several levels of
spatial resolution

Y S —

T

L L b |m||u||h el

level 1 level 2

level O



Scene dataset [Labzenik et al.'06]

Forest Mountain Open country Highway Inside city Street
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4385 images

15 categories




Scene classification

bedroom

tall bluldmg . inside city* street
hlghway coast” open country*
Jn.-:nllntain' ST rest' - suburb o -
L Single-level Pyramid
0(1x1) 72.2+0.6
1(2x2) 77.9+0.6 79.0 0.5
2(4x4) 79.4%0.3 81.1 +0.3
3(8x8) 77.2+0.4 80.7 +0.3




Category classification — CalTech101

L Single-level Pyramid

0(1x1) 41.2+1.2

1(2x2) | 55.9+0.9 57.0 +0.8

2(4x4) | 63.6+0.9 64.6 0.8

3(8x8) | 60.3+0.9 64.6 +0.7




CalTechl01

Easiest and hardest classes

5

cougar bod (27.6%) " beaver i 5%

crocodile (25.0%) o ant (25.0%

e Sources of difficulty:
— Lack of texture

— Camouflage
— Thin, articulated limbs
— Highly deformable shape



Evaluation BoF — spatial

Image classification results on PASCAL'07 train/val set

(SH, Lap, MSD) x (SIFT,SIFTC) AP
spatial layout

1 0.53

2X2 0.52

3x1 0.52

1,2x2,3x1 0.54

Spatial layout not dominant for PASCAL'07 dataset

Combination improves average results, i.e., it Is appropriate for
some classes



Evaluation BoF - spatial

Image classification results on PASCAL'07 train/val set
for individual categories

1 3x1
Sheep 0.339 0.256
Bird 0.539 0.484
DiningTable 0.455 0.502
Train 0.724 0.745

Results are category dependent!
=» Combination helps somewhat




Discussion

e Summary

— Spatial pyramid representation: appearance of local image
patches + coarse global position information

— Substantial improvement over bag of features
— Depends on the similarity of image layout

 Recent extensions
— Flexible, object-centered grid
e Shape masks [Marszalek’12] => additional annotations
— Weakly supervised localization of objects
e [Russakovsky et al.’12, Oquab’14, Cinbis’16]



Recent extensions

Improved aggregation schemes, such as the Fisher vector,

Perronnin et al., ECCV’10
— More discriminative descriptor, power normalization, linear SVM

ImageNet classification with deep convolutional neural
networks, Krizhevsky, Sutskever, Hinton, NIPS 2012



Fisher vector

e Use a Gaussian Mixture Model as vocabulary
e Statistical measure of the descriptors of the image w.r.t the GMM
e Derivative of likelihood w.r.t. GMM parameters

o | GMM parameters:
ot w; weight
i mean

0; co-variance (diagonal)

Translated cluster —
large derivative on [4; for this
component

[Perronnin & Dance 07]



Fisher vector Image representation

 Mixture of Gaussian/ k-means stores nbr of
points per cell

 Fisher vector adds 1st & 2nd order moments

More precise description of regions
assigned to cluster

Fewer clusters needed for same accuracy

Per cluster store;: mean and variance of
data in cell

Representation 2D times larger, at same
computational cost

High dimensional, robust representation

\t/s




Fisher vector image representation

X = {x,t = 1...T} istheset of Tiid. D-dim local descriptors (e.g.
SIFT) extracted from an imagqe:

uy(x) = Zf‘ | wiii(x) is a Gaussian Mixture Model (GMM)

with parameters A = {w;, 11, 2;,¢ = 1... N} trained on a large set of
local descriptors: a visual vocabulary

FV formulas:
L Tt — s
X —
G = ( )
- 1 T (2t — H )
T TVIw; o2
Y#(7) = soft-assignment of patch 2+ to Gaussian i

Fisher Vector = concatenation of per-Gaussian gradient vectors



Relation to BOF

FV formulas: Soft BOV formula:
T 1 T ;
¥ 1 o T — 1 7> 1 7e()
{ _1'L_ — ~ II ': ! '||L=]_ Ii 4
J;r.i TU,T; ) ( 7, ) T
/] . .0
X 1 ~ | (2t — pg)®
Yoi = B Efr,#_] r[-'i'|i o B ]

Like the (original) BOV the FV is an average of local statistics.

The FV extends the BOV and includes higher-order statistics (up to 2™ order)

Results on VOC 2007:BOV =43.6% —»FV=577% > VFV=621%



Large-scale image classification

* Image classification: assigning a class label to the image

Car: present

Cow: present
Bike: not present
Horse: not present

 What makes it large-scale?
— number of images
— number of classes
— dimensionality of descriptor

IMAGENET bhas 14M images from 22k classes



Current state of the art — image classification

*Deep convolutional neural networks

«Convolutional networks [LeCun’98 ...]

*AlexNet [Krizhevsky’12]

*VVGGNet [Simonyan’14]

*Google Inception [Szegedy’15]

*ResNet [He’'16]



Deep convolutional neural networks

e Convolutional neural network — one layer

convolution Wy
+ non-linearity o

KX
%

:
~
W,

\\
o

W



Deep convolutional neural networks

e Convolutional neural network — one layer

feature pooling ~x Convolutions:

e [earn convolutional filters
Translation invariant
Several filters at each layer
From simple to complex filters
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Deep convolutional neural networks

e Convolutional neural network — one layer

| Mp11(21) L
S Menla) Non-linearity:

e Sigmoid
e Rectified linear unit (ReLU)
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Deep convolutional neural networks

e Convolutional neural network — one layer

Spatial feature pooling:

e Average or maximum

e Invariance to small
transformations

e Larger receptive fields




Deep convolutional neural networks

First 5 layers: convolutional layer, last 2: full connected
Large model (7 hidden layers, 650k units, 60M parameters)
Requires large training set (ImageNet)

GPU implementation (50x speed up over CPU)
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Krizhevsky, Sutskever, Hinton, ImageNet classification
with deep convolutional neural networks, NIPS’12



Deep convolutional neural networks

e State of the art result on ImageNet challenge
— 1000 categories and 1.2 million images
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Visualization of the convolution filters

Zeiler and Fergus, Visualizing and Understanding
Convolutional Networks, ECCV’14



Visualization of the convolution filters

Top nine activations



