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Classification in its simplest form

 Given training data labeled for two or more classes

 Determine a surface that separates those classes

 Use that surface to predict the class membership of new data



Classification examples in category-level recognition

 Image classification: Predict if labels are relevant or not for a given image
 For example: Person = yes, TV = yes, car = no, ...



Classification examples in category-level recognition

 Category localization: predict object bounding boxes  
 Classify each possible bounding box as containing the category or not
 Report most confidently classified boxes



Classification examples in category-level recognition

 Semantic segmentation: classify pixels to object categories
 As many classifications as pixels
 Each one based on region around the pixel



Classification

 Goal is to predict for data the corresponding class label

 Data points x, e.g. image but could be anything 
► Formatted as vectors, or other

 Class labels y, two or more possible discrete values
► In binary case:  “positive” and “negative” class

 Classifier: function f(x) that assigns a class to x 
► Possibly gives probabilities over the classes
► Partitions the input space into regions associated with classes 
► Shape of these regions depends on the family of classifiers used

 Training data: pairs (x,y) of inputs x with known class label y

 Learning a classifier: determine function f(x) from some family of functions 
based on the available training data



Generative classification: principle

 Model the class conditional distribution over data x for each class y:
► Data of the class can be sampled (generated) from this distribution 

 Estimate the a-priori probability that a class will appear

 Infer the probability over classes using Bayes' rule of conditional probability

 Distribution on x is obtained by marginalizing the class label y

p ( y∣x)=
p ( y) p(x∣y)

p (x)

p(x)=∑y
p( y) p(x∣y)

p(x∣y)

p( y)



Generative classification methods

 Generative probabilistic methods use Bayes’ rule for prediction
► Problem is reformulated as one of density estimation

 Adding new classes to the model is easy:
► Existing class conditional models stay as they are
► Estimate p(x|new class) from training examples of new class
► Re-estimate class prior probabilities

p ( y∣x)=
p ( y) p(x∣y)

p (x)
p (x)=∑y

p ( y) p (x∣y)



Generative classification: practice

 In order to apply Bayes' rule, we need to estimate two distributions.

 A-priori class distribution
► In some cases the class prior probabilities are known in advance.
► If the frequencies in the training data set are representative for the true 

class probabilities, then estimate the prior by these frequencies.

 Class conditional data distributions
► Select a class of density models

 Parametric model, e.g. Gaussian, Bernoulli, …
 Semi-parametric models: mixtures of Gaussian, Bernoulli, ...
 Non-parametric models: histograms, nearest-neighbor method, …
 Or more structured models taking problem knowledge into account

► Estimate the parameters of the model using the data in the training set 
associated with that class



Estimation of the class conditional model

 Given a set of n samples from a certain class, and a family of distributions

 How do we quantify the fit of a certain model to the data, and how do we 
find the best model defined in this sense?

 Maximum a-posteriori (MAP) estimation: use Bayes' rule again as follows:
► Assume a prior distribution over the parameters of the model
► Then the posterior likelihood of the model given the data is 

► Find the most likely model given the observed data

 Maximum likelihood parameter estimation: assume prior over parameters is 
uniform (for bounded parameter spaces), or “near uniform” so that its effect 
is negligible for the posterior on the parameters.
► In this case the MAP estimator is given by 
► For i.id. samples: 

p(θ)

X={x1, ... , xn} P={pθ(x);θ∈Θ}

p(θ∣X)=p(X∣θ) p(θ)/ p(X )

θ̂=argmaxθ p(θ∣X )=argmax θ{ln p(θ)+ ln p(X∣θ)}

θ̂=argmaxθ∏i=1

n
p(x i∣θ)=argmaxθ∑i=1

n
ln p(xi∣θ)

θ̂=argmaxθ p(X∣θ)



Density estimation for class-conditional models

 Any type of data distribution may be used, preferably one that is modeling 
the data well, so that we can hope for accurate classification results.

 If we do not have a clear understanding of the data generating process, we 
can use a generic approach,

► Gaussian distribution, or other reasonable parametric model
 Estimation often in closed form or relatively simple process

► Mixtures of parametric models
 Estimation using EM algorithm, not more complicated than single 

parametric model

► Non-parametric models can adapt to any data distribution given enough 
data for estimation. Examples: (multi-dimensional) histograms, and 
nearest neighbors.
 Estimation often trivial, given a single smoothing parameter. 



Example of generative classification

 Three-class example in 2D with parametric model
– Single Gaussian model per class, uniform class prior
– Exercise 1: how is this model related to the Gaussian mixture model we 

looked at before for clustering ? 
– Exercise 2: characterize surface of equal class probability when the 

covariance matrices are the same for all classes

p ( y∣x)=
p ( y) p(x∣y)

p (x)p(x∣y)



Histogram density estimation

 Suppose we have N data points use a histogram with C cells
 Consider maximum likelihood estimator

 Take into account constraint that density should integrate to one

 Maximum likelihood estimator 

 Some observations:
► Discontinuous density estimate
► Cell size determines smoothness
► Number of cells scales exponentially 

with the dimension of the data

θ̂=argmaxθ∑i=1

n
ln pθ(xi)=argmaxθ∑c=1

C
nc ln θc

∑k=1

C

v kθk=1

θi=
ni

vi N



The Naive Bayes model

 Histogram estimation, and other methods, scale poorly with data dimension
► Fine division of each dimension: many empty bins
► Rough division of each dimension: poor density model
► Even for one cut per dimension: 2D cells, eg. a million cells in 20 dims.

 The number of parameters can be made linear in the data dimension by 
assuming independence between the dimensions 

 For example, for histogram model: we estimate a histogram per dimension
► Only D x C parameters to estimate, instead of CD: Factorization 

 Independence assumption can be unrealistic for high dimensional data
► Classification performance may still be good using derived p(y|x)
► Assuming only partial independence relaxes this problem

 Principle can be applied to estimation with any type of density estimate

p(x )=∏d=1

D
p(xd)



Example of a naïve Bayes model

 Hand-written digit classification
– Input: binary 28x28 scanned digit images

– Desired output: class label of image

 Generative model over 28 x 28 pixel images: 2784 possible images
– Independent Bernoulli model for each class
– Probability per pixel per class
– Maximum likelihood estimator given by 

average pixel values per class

 Classify using Bayes’ rule, yields linear classifier p ( y∣x)=
p ( y) p(x∣y)

p (x)

p (x∣y=c)=∏d
p (xd∣y=c)

p (xd=1∣y=c)=θcd



k-nearest-neighbor density estimation: principle

 Instead of having fixed cells as in histogram method
► Center cell on the test sample for which we evaluate the density
► Fix number of samples in the cell, find the corresponding cell size

 Probability to find a point in a sphere A centered on x
0
 with volume v is

 Assume density is approximately constant in the region

 Alternatively: estimate P from the fraction of training data in A:
– Total N data points, k in the sphere A

 Combine the above to obtain estimate
► Same per-cell density estimate as in histogram estimator

 Note: density estimates not guaranteed to integrate to one!

P(x∈A )=∫A
p( x)dx

P(x∈A )=∫A
p(x)dx≈∫A

p(x0)dx=p(x0)v A

P(x∈A )≈
k
N

p(x0)≈
k

NvA



k-nearest-neighbor density estimation: practice

 Procedure in practice: 
► Choose  k 
► For given x, find k-th neighbor to compute the volume with k samples
► Estimate density with 

 Volume of a sphere with radius r in d dimensions is 

 What effect does k have?
► Data sampled from mixture 

of Gaussians plotted in green
► Larger k, larger region, 

smoother estimate
► Similar effect as cell size for

histogram estimation

p( x)≈
k

Nv

v (r , d)=
2rdπd /2

Γ(d /2+ 1)



K-nearest-neighbors for classification 

 Use Bayes' rule with kNN density estimation for p(x|y)

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates

► Estimate class prior probabilities 

► Calculate class posterior distribution as fraction of k neighbors in class c

p(x∣y=c)=
k c

N c v

p( y=c)=
N c

N

p( y=c∣x)=
p( y=c) p(x∣y=c)

p(x)

=
1

p (x)

k c

Nv

=
k c

k

p(x)=
k

N v



Smoothing effects for large values of k: data set

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c

N c v

p(x)=
k

N v



Smoothing effects for large values of k, k=1

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c

N c v

p(x)=
k

N v



Smoothing effects for large values of k, k=5

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c

N c v

p(x)=
k

N v



Smoothing effects for large values of k, k=10

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c

N c v

p(x)=
k

N v



Smoothing effects for large values of k, k=100

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c

N c v

p(x)=
k

N v



Summary generative classification methods

 (Semi-) Parametric models, e.g. p(x|y) is Gaussian, or mixture of …
► Pros: no need to store training data, just the class conditional models
► Cons: may fit the data poorly, and might therefore lead to poor 

classification result 

 Non-parametric models: 
► Pros: 

 flexibility, no assumptions distribution shape, learning is trivial
 KNN can be used for anything that comes with a distance.

► Cons of histograms:
• Only practical in low dimensional data (<5 or so), application in high 

dimensional data leads to exponentially many and mostly empty cells
• Naïve Bayes modeling in higher dimensional cases

– Cons of k-nearest neighbors
• Need to store all training data (memory cost)
• Computing nearest neighbors (computational cost)



Discriminative classification methods

 Generative classification models
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

 In discriminative classification methods we directly estimate class probability 
given input: p(y|x) 
► Choose class of decision functions in feature space
► Estimate function that maximizes performance on the training set 
► Classify a new pattern on the basis of this decision rule.



Binary linear classifier

 Decision function is linear in the features:

 Classification based on the sign of f(x)

 Orientation is determined by w 
 Offset from origin is determined by b

 Decision surface is (d-1) dimensional 

hyper-plane orthogonal to w, given by

w

f(x)=0
f ( x)=wT x+ b=b+∑i=1

d
w i xi

f ( x)=wT x+ b=0



Common loss functions for classification

 Assign class label using

 Quantify model accuracy using “loss function”

 The zero-one loss counts the number of misclassifications

► Corresponds directly to number of errors
► Discontinuity at zero, constant elsewhere w.r.t. f
► Not useful to derive gradient signal to improve model f 

L( y i , f (x i))=[ y i f (xi)<0]

y=sign (f (x))



Common loss functions for classification

 Hinge and logistic loss provide continuous and convex upper 
bounds on zero-one loss, which allow for continuous optimization
► Hinge loss:
► Logistic loss:

 Both penalize f if it gives the wrong sign with large magnitude

L( y i , f (x i))=max (0,1− y i f (xi))
L( y i , f (x i))=log2 (1+e−yi f ( xi))



Dealing with more than two classes

 First idea: construction from multiple binary classifiers

 Learn binary “base” classifiers independently

 One vs rest approach: 
► 1 vs (2 & 3)
► 2 vs (1 & 3)
► 3 vs (1 & 2)

 Problem: Region claimed by several classes



Dealing with more than two classes

 First idea: construction from multiple binary classifiers

 Learn binary “base” classifiers independently

 One vs one approach: 
► 1 vs 2 
► 1 vs 3
► 2 vs 3

 Problem: conflicts in some regions



Dealing with more than two classes

 Instead: define a separate linear score function for each class

 Assign sample to the class of the function with maximum value 

 Exercise 1: give the expression for points

where two classes have equal score

 Exercise 2: show that the set of points 

assigned to a class is convex
► For any two points in the set, the points on connecting line are too

f k (x)=wk
T x+ bk

y=arg maxk f k (x)



Logistic discriminant for two classes

 Map linear score function to class probabilities with sigmoid function

► For binary classification problem, we have by definition

► Exercise: show that 

p( y=+ 1∣x)=σ(wT x+ b)

p( y=−1∣x)=1−p ( y=+ 1∣x)

p( y∣x)=σ( y (wT x+b))

σ(z)=
1

1+ exp(−z)



Logistic discriminant for two classes

 Map linear score function to class probabilities with sigmoid function
 The class boundary is obtained for p(y|x)=1/2, thus by setting linear 

function in exponent to zero

w

p(y|x)=1/2

f(x)=-5

f(x)=+5



Multi-class logistic discriminant

 Map score function of each class to class probabilities with “soft-max” function
► Absorb bias into w and x

► The class probability estimates are non-negative, and sum to one.

 Probabilities invariant for additive constants, only score differences matter
► Relative probability exponential function of difference in score functions

 Any given pair of classes are equally likely 

on a hyperplane in the feature space

p( y=c∣x)=
exp( f c (x))

∑k=1

K
exp( f k( x))

f k (x)=wk
T x

p( y=c∣x)
p ( y=k∣x)

=
exp( f c (x))

exp ( f k (x))
=exp( f c( x)−f k (x ))



Maximum likelihood parameter estimation

 Maximize the log-likelihood of predicting the correct class label for training data
► Assume independent predictions, so sum log-likelihood of all training data

 Derivative of log-likelihood has intuitive interpretation

 No closed-form solution, but log-likelihood is concave in parameters
► No local optima, use general purpose convex optimization method
► For example: gradient descent, started from w=0

 w is linear combination of data points
 Sign of coefficients depends on class labels

Expected value of each 
feature, weighting 

points by p(y|x), should 
equal empirical 

expectation.

Indicator function
1 if y

n
=k, else 0

L=∑n=1

N
log p ( yn∣xn)

∂L
∂wk

=∑n=1

N
([ yn=k ]− p( y=k∣xn)) xn=∑n=1

N
αn xn



Maximum a-posteriori (MAP) parameter estimation

 Exercise: show that for separable data the w's found by maximum likelihood 
estimation have infinite norm

 Let us assume a zero-mean Gaussian prior distribution on w
► We expect weight vectors with a small norm

 Find w that maximizes posterior likelihood

 Can be rewritten as following “penalized” maximum likelihood estimator:

► With lambda non-negative

 Penalty for “large” w, limits the norm of w in case of separable data

ŵ=argmaxw∑n=1

N
ln p ( yn∣xn ,w)+ ln p(w)

ŵ=argmaxw∑n=1

N
ln p( yn∣xn ,w)−λ∥w∥2

2



Support Vector Machines

 Find linear function to separate positive and negative examples
 Which function best separates the samples ?

► Function inducing the largest margin

y i=+1 : wT x i+b>0

y i=−1 : wT xi+b<0



Support vector machines

 Without loss of generality, let function value at the margin be +/- 1 
► Can change bias to obtain same absolute function value on each side
► Can scale w to get +1 and -1 on each side, without changing decisions

 Now constrain w so that all points fall on correct side of the margin:

 The “support vectors” are the data points 

that define the margin, i.e. having

 Quantify the size of the margin

in terms of w

Margin
Support vectors

y i(w
T x i+b)≥1

wT x i+b=y i

f(x)=+1

f(x)=0

f(x)=-1



Support vector machines

 Let's consider a support vector x from the positive class
 Let z be its projection on the decision plane

► Since w is normal vector to the decision plane, we have
► and since z is on the decision plane

 Solve for alpha

 Margin is twice distance from x to z

MarginSupport vectors

f ( x)=wT x+ b=1

z=x−αw

f (z)=wT
(x−αw)+b=0

∥x−z∥2=∥x−(x−αw)∥2

∥αw∥2=α∥w∥2

∥w∥2

∥w∥2
2=

1
∥w∥2

wT
(x−αw)+b=0

wT x+b−αwT w=0
αwT w=1

α=
1

∥w∥2
2



Support vector machines

 To find the maximum-margin separating hyperplane, we 
► Maximize the margin, while ensuring correct classification
► Minimize the norm of w, s.t.

 Solve using quadratic program
► Linear inequality constraints over w and b

Margin
Support vectors

∀ i : y i(w
T x i+b)≥1

f(x)=+1

f(x)=0

f(x)=-1

argminw ,b
1
2

wT w

subject to y i(w
T xi+b)≥1



Support vector machines: inseperable classes

 For non-separable classes we incorporate hinge-loss 

 Recall: convex and piece-wise linear upper bound on zero/one loss.
► Zero if point on the correct side of the margin
► Otherwise given by absolute difference from score at margin

L( y i , f (x i))=max (0,1− y i f (xi))



Support vector machines: inseperable classes

 Minimize penalized loss function

► Quadratic function, plus piece-wise linear functions.

 Transformation into a quadratic program
► Define “slack variables” that measure the loss for each data point
► Should be non-negative, and at least as large as the loss

minw ,b λ
1
2

wT w + ∑i
max (0,1− yi(w

T xi+b))

minw ,b , {ξi}
λ

1
2

wT w + ∑i
ξi

subject to∀i : ξi≥0  and ξi≥1− yi(w
T x i+b)



SVM solution properties

 Optimal w is a linear combination of data points 

 Alpha weights are zero for all points on the correct side of the margin

 Points on the margin, or on the wrong side, have non-zero weight
► Called support vectors

 Classification function thus has form

 Relies only on inner products between the test point x and training data 
with non-zero associated alpha's

 Solving the optimization problem alsoonly  requires to access the data in 
terms of inner products between pairs of training points

w=∑n=1

N
αn yn xn

f ( x)=wT x+ b=∑n=1

N
αn yn xn

T x+ b



Relation SVM and logistic regression

 A classification error occurs when sign of the function does not match the 
sign of the class label: the zero-one loss

 Consider error minimized when training classifier:
– Hinge loss:
– Logistic  loss:

z= yi f (xi)≤0

ξi=max (0,1− y i f (x i))=max (0,1−z)
−log p ( yi∣xi)=−logσ( yi f (x i))=log(1+ exp(−z))

 Both lead to efficient optimization
► Hinge-loss is piece-wise linear: 

quadratic programming
► Logistic loss is smooth : smooth 

convex optimization methods

 L2 penalty for SVM motivated by 
margin between the classes

 Found in MAP estimation with 
Gaussian prior for logistic 
discriminant

Loss

z



Summary of discriminative linear classification

 Two most widely used linear classifiers in practice
► Logistic discriminant (supports more than 2 classes directly)
► Support vector machines (multi-class extensions possible) 

 For both, in the case of binary classification 
► Criterion that is minimized is a convex bound on zero-one loss
► Optimal weight vector w is a linear combination of the data 

 We only need the inner-products between data points to calculate the train 
and use linear classifiers

► The “kernel” function k( , ) computes the inner products 

w=∑n=1

N
αn xn

f ( x)=wT x+ b

=∑n=1

N
αn xn

T x+ b

=∑n=1

N
αn k (xn , x)+ b



• 1 dimensional data that is linearly separable 

• But what if the data is not linearly seperable? 

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear Classification

Slide credit: Andrew Moore



Φ:  x → φ(x)

Kernels for non-linear classification

 General idea: map the original input space to some higher-dimensional 
feature space where the training set is separable

 Exercise: find features that can linearly separate data in/out a ball in n-
dimensional Euclidean space, centered at arbitrary point 

Slide credit: Andrew Moore



Nonlinear classification with kernels

 The kernel trick: instead of explicitly computing the feature transformation 
φ(x), define a kernel function k( , ) such that

       k(xi , xj) = φ(xi ) · φ(xj)

 Conversely, any positive definite kernel computes an inner product in some 
feature space, possibly with large or infinite number of dimensions

► Mercer's Condition: The square N x N matrix with kernel evaluations for 
any arbitrary N data points should always be a positive definite matrix

K=[k ij]i , j=1
N

k ij=ϕ(xi)
T
ϕ(x j)

α≠0
αT K α>0



Nonlinear classification with kernels

 This gives a nonlinear decision boundary in the original space

 Generalized linear function
► Non-linear in original space, linear in new features 

 Optimal w is linear combination of training data
► Linear in space of kernel evaluations
► Data represented as finite dimensional vector of kernel evaluations with 

all training data

f ( x) = b+ wT
ϕ( x)

= b+∑i
αiϕ( xi)

T ϕ( x)

= b+∑i
αi k (xi , x)

ψ(x)=(
ϕ(x)Tϕ(x1)

ϕ(x)Tϕ(x2)

...
ϕ(x)Tϕ(xN )

)=(
k (x , x1)

k (x , x2)

...
k (x , xN )

)

ϕ(x)=(
ϕ1(x)
ϕ2(x)
⋮
)



Kernels for non-linear classification

 What is the kernel function that corresponds to this feature mapping ?

Φ:  x → φ(x)

ϕ(x)=(
x1

2

x2
2

√2 x1 x2
)

k ( x , y)=ϕ( x)T ϕ( y )=?

=x1
2 y1

2
+ x2

2 y2
2
+ 2x1 x2 y1 y2

=(x1 y1+ x2 y2)
2

=(xT y )
2



Kernels for non-linear classification

 Suppose we also want to keep the original features to be able to still 
implement linear functions

Φ:  x → φ(x)

ϕ(x )=(
1
√2 x1

√2 x2

x1
2

x2
2

√2 x1 x2

)
k ( x , y)=ϕ( x)T ϕ( y )=?

=1+ 2xT y+ (xT y )
2

=(xT y+ 1)
2



Kernels for non-linear classification

 What happens if we use the same kernel for higher dimensional data
► Which feature vector            corresponds to it ?

► First term, encodes an additional 1 in each feature vector
► Second term, encodes scaling of the original features by sqrt(2)
► Let's consider the third term

► In total we have 1 + 2D + D(D-1)/2 features ! 
► But the kernel is computed as efficiently as dot-product in original space

( xT y )
2
=( x1 y1+ ...+ xD yD)

2

k ( x , y)=( xT y+ 1 )
2
=1+ 2xT y+ (xT y )

2

=∑d=1

D
( xd yd)

2
+ 2∑d=1

D

∑i=d+ 1

D
( xd yd)(xi yi)

=∑d=1

D
xd

2 yd
2
+ 2∑d=1

D

∑i=d+ 1

D
( xd xi)( yd yi)

ϕ(x )=(1 ,√2 x1 ,√2 x2, ... ,√2 xD , x1
2 , x2

2 , ... , xD
2 ,√2 x1 x2 , ... ,√2 x1 xD , ... ,√2 xD−1 xD )

T

Original features Squares Products of two distinct elements

ϕ(x )



Common kernels for bag-of-word histograms

 Hellinger kernel:

 Histogram intersection kernel:

► Exercise: find the feature transformation, when h(d) is a bounded 
integer

 Generalized Gaussian kernel:

► d can be Euclidean distance, χ2 distance, Earth Mover’s Distance, etc.
See also:
J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid,
Local features and kernels for classification of texture and object categories: a 
comprehensive study. Int. Journal of Computer Vision, 2007

k (h1 ,h2)=∑d
min(h1(d ) ,h2(d ))

k (h1 , h2)=exp(− 1
A

d (h1 , h2))

k (h1 ,h2)=∑d √h1(i)×√h2(i)



Logistic discriminant with kernels

 Let us assume a given kernel, and weight vectors 
► Express the score functions using  the kernel

 Where 

► Express the L2 penalty on the weight vectors using the kernel

► Where 

 MAP estimation of the alpha's and b's amounts to maximize

f c(x j)=bc+∑i=1

n
αic 〈ϕ(xi) ,ϕ(x j)〉=bc+∑i=1

n
αic k (xi , x j)=bc+α c

T k j

w c=∑i=1

n
αicϕ(xi)

〈w c , wc 〉=∑i=1

n

∑ j=1

n
αicα jc k (xi , x j)=αc

T K αc

E({αc}, {bc})=∑i=1

n
ln p( yi∣xi)−λ

1
2
∑c=1

C
αc

T K αc

α c=(α1c , ... ,αnc )
T

[K ]ij=k (xi , x j)

k j=(k (x j , x1) , ... , k (x j , xn))
T



Logistic discriminant with kernels

 Recall that and 

 Plug this into the objective function

 Consider the partial derivative of this function with respect to the b's, 
and the gradient with respect to the alpha vectors

 The same as the linear case, except that in the gradient the feature 
vector x is replaced with a column of the kernel matrix

p( yi∣xi)=
exp ( f y i

(x i))

∑c
exp f c(xi)

∂E
∂bc

=∑i=1

n

([ y i=c ]−p(c∣xi))

∇α c
E=∑i=1

n

([ yi=c]−p (c∣xi))k i−λ K αc

E({αc}, {bc})=∑i=1

n

( f yi
(xi)−ln∑c

exp f y i
(xi))−λ

1
2
∑c
αc

T K αc

f c(xi)=bc+α c
T k i



Support vector machines with kernels

 Minimize quadratic program

 Let us again define the classification function in terms of kernel 
evaluations

 Then we obtain a quadratic program in b, alpha, and the slack 
variables 

minw , b , {ξi}
λ

1
2

wT w + ∑i
ξi

subject to∀i : ξi≥0  and ξi≥1− yi f (xi)

f (xi)=b+αT k i

minα ,b ,{ξi}
λ

1
2
αT K α + ∑i

ξi

subject to∀i : ξi≥0  and ξi≥1− yi (b+α
T ki )



Summary linear classification & kernels

 Linear classifiers learned by minimizing convex cost functions
– Logistic discriminant: smooth, gradient-based optimization methods
– Support vector machines: piecewise linear, quadratic programming
– Both require only computing inner product between data points

 Non-linear classification can be done with linear classifiers over new 
features that are non-linear functions of the original features
► Kernel functions efficiently compute inner products in (very) high-

dimensional spaces, can even be infinite dimensional in some cases.

 Using kernel functions non-linear classification has drawbacks
– Requires storing support vectors, may cost lots of memory in practice
– Computing kernel between data points may be computationally 

expensive (at least more expensive than linear classifier)

 The “kernel trick” applies to other linear data analysis techniques
– Principle component analysis, k-means clustering, regression, ...



Reading material

 A good book that covers all machine learning aspects of the course is 
► Pattern recognition & machine learning

Chris Bishop, Springer, 2006
 For clustering with k-means & mixture of Gaussians read

► Section 2.3.9
► Chapter 9, except 9.3.4 
► Optionally, Section 1.6 on information theory

 For classification read
► Section 2.5, except 2.5.1 
► Section 4.1.1 & 4.1.2
► Section 4.2.1 & 4.2.2
► Section 4.3.2 & 4.3.4
► Section 6.2
► Section 7.1 start + 7.1.1 & 7.1.2

 Much more on kernels in “Advanced Learning Models” course in MSIAM
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