
Generative and discriminative classification

Machine Learning and Object Recognition 2017-2018

Jakob Verbeek

Classification in its simplest form

 Given training data labeled for two or more classes

Classification in its simplest form

 Given training data labeled for two or more classes

 Determine a surface that separates those classes

Classification in its simplest form

 Given training data labeled for two or more classes

 Determine a surface that separates those classes

 Use that surface to predict the class membership of new data

Classification examples in category-level recognition

 Image classification: Predict if labels are relevant or not for a given image
 For example: Person = yes, TV = yes, car = no, ...

Classification examples in category-level recognition

 Category localization: predict object bounding boxes
 Classify each possible bounding box as containing the category or not
 Report most confidently classified boxes

Classification examples in category-level recognition

 Semantic segmentation: classify pixels to object categories
 As many classifications as pixels
 Each one based on region around the pixel

Classification

 Goal is to predict for data the corresponding class label

 Data points x, e.g. image but could be anything
► Formatted as vectors, or other

 Class labels y, two or more possible discrete values
► In binary case: “positive” and “negative” class

 Classifier: function f(x) that assigns a class to x
► Possibly gives probabilities over the classes
► Partitions the input space into regions associated with classes
► Shape of these regions depends on the family of classifiers used

 Training data: pairs (x,y) of inputs x with known class label y

 Learning a classifier: determine function f(x) from some family of functions
based on the available training data

Generative classification: principle

 Model the class conditional distribution over data x for each class y:
► Data of the class can be sampled (generated) from this distribution

 Estimate the a-priori probability that a class will appear

 Infer the probability over classes using Bayes' rule of conditional probability

 Distribution on x is obtained by marginalizing the class label y

p (y∣x)=
p (y) p(x∣y)

p (x)

p(x)=∑y
p(y) p(x∣y)

p(x∣y)

p(y)

Generative classification methods

 Generative probabilistic methods use Bayes’ rule for prediction
► Problem is reformulated as one of density estimation

 Adding new classes to the model is easy:
► Existing class conditional models stay as they are
► Estimate p(x|new class) from training examples of new class
► Re-estimate class prior probabilities

p (y∣x)=
p (y) p(x∣y)

p (x)
p (x)=∑y

p (y) p (x∣y)

Generative classification: practice

 In order to apply Bayes' rule, we need to estimate two distributions.

 A-priori class distribution
► In some cases the class prior probabilities are known in advance.
► If the frequencies in the training data set are representative for the true

class probabilities, then estimate the prior by these frequencies.

 Class conditional data distributions
► Select a class of density models

 Parametric model, e.g. Gaussian, Bernoulli, …
 Semi-parametric models: mixtures of Gaussian, Bernoulli, ...
 Non-parametric models: histograms, nearest-neighbor method, …
 Or more structured models taking problem knowledge into account

► Estimate the parameters of the model using the data in the training set
associated with that class

Estimation of the class conditional model

 Given a set of n samples from a certain class, and a family of distributions

 How do we quantify the fit of a certain model to the data, and how do we
find the best model defined in this sense?

 Maximum a-posteriori (MAP) estimation: use Bayes' rule again as follows:
► Assume a prior distribution over the parameters of the model
► Then the posterior likelihood of the model given the data is

► Find the most likely model given the observed data

 Maximum likelihood parameter estimation: assume prior over parameters is
uniform (for bounded parameter spaces), or “near uniform” so that its effect
is negligible for the posterior on the parameters.
► In this case the MAP estimator is given by
► For i.id. samples:

p(θ)

X={x1, ... , xn} P={pθ(x);θ∈Θ}

p(θ∣X)=p(X∣θ) p(θ)/ p(X)

θ̂=argmaxθ p(θ∣X)=argmax θ{ln p(θ)+ ln p(X∣θ)}

θ̂=argmaxθ∏i=1

n
p(x i∣θ)=argmaxθ∑i=1

n
ln p(xi∣θ)

θ̂=argmaxθ p(X∣θ)

Density estimation for class-conditional models

 Any type of data distribution may be used, preferably one that is modeling
the data well, so that we can hope for accurate classification results.

 If we do not have a clear understanding of the data generating process, we
can use a generic approach,

► Gaussian distribution, or other reasonable parametric model
 Estimation often in closed form or relatively simple process

► Mixtures of parametric models
 Estimation using EM algorithm, not more complicated than single

parametric model

► Non-parametric models can adapt to any data distribution given enough
data for estimation. Examples: (multi-dimensional) histograms, and
nearest neighbors.
 Estimation often trivial, given a single smoothing parameter.

Example of generative classification

 Three-class example in 2D with parametric model
– Single Gaussian model per class, uniform class prior
– Exercise 1: how is this model related to the Gaussian mixture model we

looked at before for clustering ?
– Exercise 2: characterize surface of equal class probability when the

covariance matrices are the same for all classes

p (y∣x)=
p (y) p(x∣y)

p (x)p(x∣y)

Histogram density estimation

 Suppose we have N data points use a histogram with C cells
 Consider maximum likelihood estimator

 Take into account constraint that density should integrate to one

 Maximum likelihood estimator

 Some observations:
► Discontinuous density estimate
► Cell size determines smoothness
► Number of cells scales exponentially

with the dimension of the data

θ̂=argmaxθ∑i=1

n
ln pθ(xi)=argmaxθ∑c=1

C
nc ln θc

∑k=1

C

v kθk=1

θi=
ni

vi N

The Naive Bayes model

 Histogram estimation, and other methods, scale poorly with data dimension
► Fine division of each dimension: many empty bins
► Rough division of each dimension: poor density model
► Even for one cut per dimension: 2D cells, eg. a million cells in 20 dims.

 The number of parameters can be made linear in the data dimension by
assuming independence between the dimensions

 For example, for histogram model: we estimate a histogram per dimension
► Only D x C parameters to estimate, instead of CD: Factorization

 Independence assumption can be unrealistic for high dimensional data
► Classification performance may still be good using derived p(y|x)
► Assuming only partial independence relaxes this problem

 Principle can be applied to estimation with any type of density estimate

p(x)=∏d=1

D
p(xd)

Example of a naïve Bayes model

 Hand-written digit classification
– Input: binary 28x28 scanned digit images

– Desired output: class label of image

 Generative model over 28 x 28 pixel images: 2784 possible images
– Independent Bernoulli model for each class
– Probability per pixel per class
– Maximum likelihood estimator given by

average pixel values per class

 Classify using Bayes’ rule, yields linear classifier p (y∣x)=
p (y) p(x∣y)

p (x)

p (x∣y=c)=∏d
p (xd∣y=c)

p (xd=1∣y=c)=θcd

k-nearest-neighbor density estimation: principle

 Instead of having fixed cells as in histogram method
► Center cell on the test sample for which we evaluate the density
► Fix number of samples in the cell, find the corresponding cell size

 Probability to find a point in a sphere A centered on x
0
 with volume v is

 Assume density is approximately constant in the region

 Alternatively: estimate P from the fraction of training data in A:
– Total N data points, k in the sphere A

 Combine the above to obtain estimate
► Same per-cell density estimate as in histogram estimator

 Note: density estimates not guaranteed to integrate to one!

P(x∈A)=∫A
p(x)dx

P(x∈A)=∫A
p(x)dx≈∫A

p(x0)dx=p(x0)v A

P(x∈A)≈
k
N

p(x0)≈
k

NvA

k-nearest-neighbor density estimation: practice

 Procedure in practice:
► Choose k
► For given x, find k-th neighbor to compute the volume with k samples
► Estimate density with

 Volume of a sphere with radius r in d dimensions is

 What effect does k have?
► Data sampled from mixture

of Gaussians plotted in green
► Larger k, larger region,

smoother estimate
► Similar effect as cell size for

histogram estimation

p(x)≈
k

Nv

v (r , d)=
2rdπd /2

Γ(d /2+ 1)

K-nearest-neighbors for classification

 Use Bayes' rule with kNN density estimation for p(x|y)

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates

► Estimate class prior probabilities

► Calculate class posterior distribution as fraction of k neighbors in class c

p(x∣y=c)=
k c

N c v

p(y=c)=
N c

N

p(y=c∣x)=
p(y=c) p(x∣y=c)

p(x)

=
1

p (x)

k c

Nv

=
k c

k

p(x)=
k

N v

Smoothing effects for large values of k: data set

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c

N c v

p(x)=
k

N v

Smoothing effects for large values of k, k=1

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c

N c v

p(x)=
k

N v

Smoothing effects for large values of k, k=5

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c

N c v

p(x)=
k

N v

Smoothing effects for large values of k, k=10

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c

N c v

p(x)=
k

N v

Smoothing effects for large values of k, k=100

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c

N c v

p(x)=
k

N v

Summary generative classification methods

 (Semi-) Parametric models, e.g. p(x|y) is Gaussian, or mixture of …
► Pros: no need to store training data, just the class conditional models
► Cons: may fit the data poorly, and might therefore lead to poor

classification result

 Non-parametric models:
► Pros:

 flexibility, no assumptions distribution shape, learning is trivial
 KNN can be used for anything that comes with a distance.

► Cons of histograms:
• Only practical in low dimensional data (<5 or so), application in high

dimensional data leads to exponentially many and mostly empty cells
• Naïve Bayes modeling in higher dimensional cases

– Cons of k-nearest neighbors
• Need to store all training data (memory cost)
• Computing nearest neighbors (computational cost)

Discriminative classification methods

 Generative classification models
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

 In discriminative classification methods we directly estimate class probability
given input: p(y|x)
► Choose class of decision functions in feature space
► Estimate function that maximizes performance on the training set
► Classify a new pattern on the basis of this decision rule.

Binary linear classifier

 Decision function is linear in the features:

 Classification based on the sign of f(x)

 Orientation is determined by w
 Offset from origin is determined by b

 Decision surface is (d-1) dimensional

hyper-plane orthogonal to w, given by

w

f(x)=0
f (x)=wT x+ b=b+∑i=1

d
w i xi

f (x)=wT x+ b=0

Common loss functions for classification

 Assign class label using

 Quantify model accuracy using “loss function”

 The zero-one loss counts the number of misclassifications

► Corresponds directly to number of errors
► Discontinuity at zero, constant elsewhere w.r.t. f
► Not useful to derive gradient signal to improve model f

L(y i , f (x i))=[y i f (xi)<0]

y=sign (f (x))

Common loss functions for classification

 Hinge and logistic loss provide continuous and convex upper
bounds on zero-one loss, which allow for continuous optimization
► Hinge loss:
► Logistic loss:

 Both penalize f if it gives the wrong sign with large magnitude

L(y i , f (x i))=max (0,1− y i f (xi))
L(y i , f (x i))=log2 (1+e−yi f (xi))

Dealing with more than two classes

 First idea: construction from multiple binary classifiers

 Learn binary “base” classifiers independently

 One vs rest approach:
► 1 vs (2 & 3)
► 2 vs (1 & 3)
► 3 vs (1 & 2)

 Problem: Region claimed by several classes

Dealing with more than two classes

 First idea: construction from multiple binary classifiers

 Learn binary “base” classifiers independently

 One vs one approach:
► 1 vs 2
► 1 vs 3
► 2 vs 3

 Problem: conflicts in some regions

Dealing with more than two classes

 Instead: define a separate linear score function for each class

 Assign sample to the class of the function with maximum value

 Exercise 1: give the expression for points

where two classes have equal score

 Exercise 2: show that the set of points

assigned to a class is convex
► For any two points in the set, the points on connecting line are too

f k (x)=wk
T x+ bk

y=arg maxk f k (x)

Logistic discriminant for two classes

 Map linear score function to class probabilities with sigmoid function

► For binary classification problem, we have by definition

► Exercise: show that

p(y=+ 1∣x)=σ(wT x+ b)

p(y=−1∣x)=1−p (y=+ 1∣x)

p(y∣x)=σ(y (wT x+b))

σ(z)=
1

1+ exp(−z)

Logistic discriminant for two classes

 Map linear score function to class probabilities with sigmoid function
 The class boundary is obtained for p(y|x)=1/2, thus by setting linear

function in exponent to zero

w

p(y|x)=1/2

f(x)=-5

f(x)=+5

Multi-class logistic discriminant

 Map score function of each class to class probabilities with “soft-max” function
► Absorb bias into w and x

► The class probability estimates are non-negative, and sum to one.

 Probabilities invariant for additive constants, only score differences matter
► Relative probability exponential function of difference in score functions

 Any given pair of classes are equally likely

on a hyperplane in the feature space

p(y=c∣x)=
exp(f c (x))

∑k=1

K
exp(f k(x))

f k (x)=wk
T x

p(y=c∣x)
p (y=k∣x)

=
exp(f c (x))

exp (f k (x))
=exp(f c(x)−f k (x))

Maximum likelihood parameter estimation

 Maximize the log-likelihood of predicting the correct class label for training data
► Assume independent predictions, so sum log-likelihood of all training data

 Derivative of log-likelihood has intuitive interpretation

 No closed-form solution, but log-likelihood is concave in parameters
► No local optima, use general purpose convex optimization method
► For example: gradient descent, started from w=0

 w is linear combination of data points
 Sign of coefficients depends on class labels

Expected value of each
feature, weighting

points by p(y|x), should
equal empirical

expectation.

Indicator function
1 if y

n
=k, else 0

L=∑n=1

N
log p (yn∣xn)

∂L
∂wk

=∑n=1

N
([yn=k]− p(y=k∣xn)) xn=∑n=1

N
αn xn

Maximum a-posteriori (MAP) parameter estimation

 Exercise: show that for separable data the w's found by maximum likelihood
estimation have infinite norm

 Let us assume a zero-mean Gaussian prior distribution on w
► We expect weight vectors with a small norm

 Find w that maximizes posterior likelihood

 Can be rewritten as following “penalized” maximum likelihood estimator:

► With lambda non-negative

 Penalty for “large” w, limits the norm of w in case of separable data

ŵ=argmaxw∑n=1

N
ln p (yn∣xn ,w)+ ln p(w)

ŵ=argmaxw∑n=1

N
ln p(yn∣xn ,w)−λ∥w∥2

2

Support Vector Machines

 Find linear function to separate positive and negative examples
 Which function best separates the samples ?

► Function inducing the largest margin

y i=+1 : wT x i+b>0

y i=−1 : wT xi+b<0

Support vector machines

 Without loss of generality, let function value at the margin be +/- 1
► Can change bias to obtain same absolute function value on each side
► Can scale w to get +1 and -1 on each side, without changing decisions

 Now constrain w so that all points fall on correct side of the margin:

 The “support vectors” are the data points

that define the margin, i.e. having

 Quantify the size of the margin

in terms of w

Margin
Support vectors

y i(w
T x i+b)≥1

wT x i+b=y i

f(x)=+1

f(x)=0

f(x)=-1

Support vector machines

 Let's consider a support vector x from the positive class
 Let z be its projection on the decision plane

► Since w is normal vector to the decision plane, we have
► and since z is on the decision plane

 Solve for alpha

 Margin is twice distance from x to z

MarginSupport vectors

f (x)=wT x+ b=1

z=x−αw

f (z)=wT
(x−αw)+b=0

∥x−z∥2=∥x−(x−αw)∥2

∥αw∥2=α∥w∥2

∥w∥2

∥w∥2
2=

1
∥w∥2

wT
(x−αw)+b=0

wT x+b−αwT w=0
αwT w=1

α=
1

∥w∥2
2

Support vector machines

 To find the maximum-margin separating hyperplane, we
► Maximize the margin, while ensuring correct classification
► Minimize the norm of w, s.t.

 Solve using quadratic program
► Linear inequality constraints over w and b

Margin
Support vectors

∀ i : y i(w
T x i+b)≥1

f(x)=+1

f(x)=0

f(x)=-1

argminw ,b
1
2

wT w

subject to y i(w
T xi+b)≥1

Support vector machines: inseperable classes

 For non-separable classes we incorporate hinge-loss

 Recall: convex and piece-wise linear upper bound on zero/one loss.
► Zero if point on the correct side of the margin
► Otherwise given by absolute difference from score at margin

L(y i , f (x i))=max (0,1− y i f (xi))

Support vector machines: inseperable classes

 Minimize penalized loss function

► Quadratic function, plus piece-wise linear functions.

 Transformation into a quadratic program
► Define “slack variables” that measure the loss for each data point
► Should be non-negative, and at least as large as the loss

minw ,b λ
1
2

wT w + ∑i
max (0,1− yi(w

T xi+b))

minw ,b , {ξi}
λ

1
2

wT w + ∑i
ξi

subject to∀i : ξi≥0 and ξi≥1− yi(w
T x i+b)

SVM solution properties

 Optimal w is a linear combination of data points

 Alpha weights are zero for all points on the correct side of the margin

 Points on the margin, or on the wrong side, have non-zero weight
► Called support vectors

 Classification function thus has form

 Relies only on inner products between the test point x and training data
with non-zero associated alpha's

 Solving the optimization problem alsoonly requires to access the data in
terms of inner products between pairs of training points

w=∑n=1

N
αn yn xn

f (x)=wT x+ b=∑n=1

N
αn yn xn

T x+ b

Relation SVM and logistic regression

 A classification error occurs when sign of the function does not match the
sign of the class label: the zero-one loss

 Consider error minimized when training classifier:
– Hinge loss:
– Logistic loss:

z= yi f (xi)≤0

ξi=max (0,1− y i f (x i))=max (0,1−z)
−log p (yi∣xi)=−logσ(yi f (x i))=log(1+ exp(−z))

 Both lead to efficient optimization
► Hinge-loss is piece-wise linear:

quadratic programming
► Logistic loss is smooth : smooth

convex optimization methods

 L2 penalty for SVM motivated by
margin between the classes

 Found in MAP estimation with
Gaussian prior for logistic
discriminant

Loss

z

Summary of discriminative linear classification

 Two most widely used linear classifiers in practice
► Logistic discriminant (supports more than 2 classes directly)
► Support vector machines (multi-class extensions possible)

 For both, in the case of binary classification
► Criterion that is minimized is a convex bound on zero-one loss
► Optimal weight vector w is a linear combination of the data

 We only need the inner-products between data points to calculate the train
and use linear classifiers

► The “kernel” function k(,) computes the inner products

w=∑n=1

N
αn xn

f (x)=wT x+ b

=∑n=1

N
αn xn

T x+ b

=∑n=1

N
αn k (xn , x)+ b

• 1 dimensional data that is linearly separable

• But what if the data is not linearly seperable?

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear Classification

Slide credit: Andrew Moore

Φ: x → φ(x)

Kernels for non-linear classification

 General idea: map the original input space to some higher-dimensional
feature space where the training set is separable

 Exercise: find features that can linearly separate data in/out a ball in n-
dimensional Euclidean space, centered at arbitrary point

Slide credit: Andrew Moore

Nonlinear classification with kernels

 The kernel trick: instead of explicitly computing the feature transformation
φ(x), define a kernel function k(,) such that

 k(xi , xj) = φ(xi) · φ(xj)

 Conversely, any positive definite kernel computes an inner product in some
feature space, possibly with large or infinite number of dimensions

► Mercer's Condition: The square N x N matrix with kernel evaluations for
any arbitrary N data points should always be a positive definite matrix

K=[k ij]i , j=1
N

k ij=ϕ(xi)
T
ϕ(x j)

α≠0
αT K α>0

Nonlinear classification with kernels

 This gives a nonlinear decision boundary in the original space

 Generalized linear function
► Non-linear in original space, linear in new features

 Optimal w is linear combination of training data
► Linear in space of kernel evaluations
► Data represented as finite dimensional vector of kernel evaluations with

all training data

f (x) = b+ wT
ϕ(x)

= b+∑i
αiϕ(xi)

T ϕ(x)

= b+∑i
αi k (xi , x)

ψ(x)=(
ϕ(x)Tϕ(x1)

ϕ(x)Tϕ(x2)

...
ϕ(x)Tϕ(xN)

)=(
k (x , x1)

k (x , x2)

...
k (x , xN)

)

ϕ(x)=(
ϕ1(x)
ϕ2(x)
⋮
)

Kernels for non-linear classification

 What is the kernel function that corresponds to this feature mapping ?

Φ: x → φ(x)

ϕ(x)=(
x1

2

x2
2

√2 x1 x2
)

k (x , y)=ϕ(x)T ϕ(y)=?

=x1
2 y1

2
+ x2

2 y2
2
+ 2x1 x2 y1 y2

=(x1 y1+ x2 y2)
2

=(xT y)
2

Kernels for non-linear classification

 Suppose we also want to keep the original features to be able to still
implement linear functions

Φ: x → φ(x)

ϕ(x)=(
1
√2 x1

√2 x2

x1
2

x2
2

√2 x1 x2

)
k (x , y)=ϕ(x)T ϕ(y)=?

=1+ 2xT y+ (xT y)
2

=(xT y+ 1)
2

Kernels for non-linear classification

 What happens if we use the same kernel for higher dimensional data
► Which feature vector corresponds to it ?

► First term, encodes an additional 1 in each feature vector
► Second term, encodes scaling of the original features by sqrt(2)
► Let's consider the third term

► In total we have 1 + 2D + D(D-1)/2 features !
► But the kernel is computed as efficiently as dot-product in original space

(xT y)
2
=(x1 y1+ ...+ xD yD)

2

k (x , y)=(xT y+ 1)
2
=1+ 2xT y+ (xT y)

2

=∑d=1

D
(xd yd)

2
+ 2∑d=1

D

∑i=d+ 1

D
(xd yd)(xi yi)

=∑d=1

D
xd

2 yd
2
+ 2∑d=1

D

∑i=d+ 1

D
(xd xi)(yd yi)

ϕ(x)=(1 ,√2 x1 ,√2 x2, ... ,√2 xD , x1
2 , x2

2 , ... , xD
2 ,√2 x1 x2 , ... ,√2 x1 xD , ... ,√2 xD−1 xD)

T

Original features Squares Products of two distinct elements

ϕ(x)

Common kernels for bag-of-word histograms

 Hellinger kernel:

 Histogram intersection kernel:

► Exercise: find the feature transformation, when h(d) is a bounded
integer

 Generalized Gaussian kernel:

► d can be Euclidean distance, χ2 distance, Earth Mover’s Distance, etc.
See also:
J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid,
Local features and kernels for classification of texture and object categories: a
comprehensive study. Int. Journal of Computer Vision, 2007

k (h1 ,h2)=∑d
min(h1(d) ,h2(d))

k (h1 , h2)=exp(− 1
A

d (h1 , h2))

k (h1 ,h2)=∑d √h1(i)×√h2(i)

Logistic discriminant with kernels

 Let us assume a given kernel, and weight vectors
► Express the score functions using the kernel

 Where

► Express the L2 penalty on the weight vectors using the kernel

► Where

 MAP estimation of the alpha's and b's amounts to maximize

f c(x j)=bc+∑i=1

n
αic 〈ϕ(xi) ,ϕ(x j)〉=bc+∑i=1

n
αic k (xi , x j)=bc+α c

T k j

w c=∑i=1

n
αicϕ(xi)

〈w c , wc 〉=∑i=1

n

∑ j=1

n
αicα jc k (xi , x j)=αc

T K αc

E({αc}, {bc})=∑i=1

n
ln p(yi∣xi)−λ

1
2
∑c=1

C
αc

T K αc

α c=(α1c , ... ,αnc)
T

[K]ij=k (xi , x j)

k j=(k (x j , x1) , ... , k (x j , xn))
T

Logistic discriminant with kernels

 Recall that and

 Plug this into the objective function

 Consider the partial derivative of this function with respect to the b's,
and the gradient with respect to the alpha vectors

 The same as the linear case, except that in the gradient the feature
vector x is replaced with a column of the kernel matrix

p(yi∣xi)=
exp (f y i

(x i))

∑c
exp f c(xi)

∂E
∂bc

=∑i=1

n

([y i=c]−p(c∣xi))

∇α c
E=∑i=1

n

([yi=c]−p (c∣xi))k i−λ K αc

E({αc}, {bc})=∑i=1

n

(f yi
(xi)−ln∑c

exp f y i
(xi))−λ

1
2
∑c
αc

T K αc

f c(xi)=bc+α c
T k i

Support vector machines with kernels

 Minimize quadratic program

 Let us again define the classification function in terms of kernel
evaluations

 Then we obtain a quadratic program in b, alpha, and the slack
variables

minw , b , {ξi}
λ

1
2

wT w + ∑i
ξi

subject to∀i : ξi≥0 and ξi≥1− yi f (xi)

f (xi)=b+αT k i

minα ,b ,{ξi}
λ

1
2
αT K α + ∑i

ξi

subject to∀i : ξi≥0 and ξi≥1− yi (b+α
T ki)

Summary linear classification & kernels

 Linear classifiers learned by minimizing convex cost functions
– Logistic discriminant: smooth, gradient-based optimization methods
– Support vector machines: piecewise linear, quadratic programming
– Both require only computing inner product between data points

 Non-linear classification can be done with linear classifiers over new
features that are non-linear functions of the original features
► Kernel functions efficiently compute inner products in (very) high-

dimensional spaces, can even be infinite dimensional in some cases.

 Using kernel functions non-linear classification has drawbacks
– Requires storing support vectors, may cost lots of memory in practice
– Computing kernel between data points may be computationally

expensive (at least more expensive than linear classifier)

 The “kernel trick” applies to other linear data analysis techniques
– Principle component analysis, k-means clustering, regression, ...

Reading material

 A good book that covers all machine learning aspects of the course is
► Pattern recognition & machine learning

Chris Bishop, Springer, 2006
 For clustering with k-means & mixture of Gaussians read

► Section 2.3.9
► Chapter 9, except 9.3.4
► Optionally, Section 1.6 on information theory

 For classification read
► Section 2.5, except 2.5.1
► Section 4.1.1 & 4.1.2
► Section 4.2.1 & 4.2.2
► Section 4.3.2 & 4.3.4
► Section 6.2
► Section 7.1 start + 7.1.1 & 7.1.2

 Much more on kernels in “Advanced Learning Models” course in MSIAM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Classification
	Discriminative vs generative methods
	Slide 10
	Generative classification methods
	Slide 12
	Slide 13
	Slide 14
	Histogram methods
	The ‘curse of dimensionality’
	Example of a naïve Bayes model
	Slide 18
	Slide 19
	k-nearest-neighbor classification rule
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Summary generative classification methods
	Slide 27
	Linear classifiers
	Slide 29
	Slide 30
	Dealing with more than two classes
	Slide 32
	Slide 33
	Logistic discriminant for two classes
	Slide 35
	Multi-class logistic discriminant
	Parameter estimation for logistic discriminant
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Summary Linear discriminant analysis
	Nonlinear SVMs
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

