
Introduction to Neural Networks

Jakob Verbeek

2017-2018

Biological motivation

 Neuron is basic computational unit of the brain
► about 10^11 neurons in human brain

 Simplified neuron model as linear threshold unit (McCulloch & Pitts, 1943)
► Firing rate of electrical spikes modeled as continuous output quantity
► Connection strength modeled by multiplicative weight
► Cell activation given by sum of inputs
► Output is non linear function of activation

 Basic component in neural circuits for complex tasks

1957: Rosenblatt's Perceptron

 Binary classification based on sign of generalized linear function
► Weight vector w learned using special purpose machines
► Fixed associative units in first layer, sign activation prevents learning

wT ϕ (x)

sign (wT ϕ(x))

ϕ i(x)=sign (vT x)

20x20 pixel sensor

Random wiring of associative units

Multi-Layer Perceptron (MLP)

 Instead of using a generalized linear function, learn the features as well

 Each unit in MLP computes
► Linear function of features in previous layer
► Followed by scalar non-linearity

 Do not use the “step” non-linear activation function of original perceptron

z j=h(∑i
xiwij

(1)
)

z=h(W (1) x)

yk=σ(∑ j
z jw jk

(2)
)

y=σ(W (2) z)

Multi-Layer Perceptron (MLP)

 Linear activation function leads to composition of linear functions
► Remains a linear model, layers just induce a certain factorization

 Two-layer MLP can uniformly approximate any continuous function on a
compact input domain to arbitrary accuracy provided the network has a
sufficiently large number of hidden units
► Holds for many non-linearities, but not for polynomials

Feed-forward neural networks

 MLP Architecture can be generalized
► More than two layers of computation
► Skip-connections from previous layers

 Feed-forward nets are restricted to directed acyclic graphs of connections
► Ensures that output can be computed from the input in a single feed-

forward pass from the input to the output

 Important issues in practice
► Designing network architecture

 Nr nodes, layers, non-linearities, etc
► Learning the network parameters

 Non-convex optimization
► Sufficient training data

 Data augmentation, synthesis

Activation functions

Sigmoid

tanh

ReLU

Maxout

Leaky ReLU1 /(1+e−x)

max (0, x)

max (α x , x)

max (w1
T x ,w2

T x)

Sigmoid

- Squashes reals to range [0,1]
- Tanh outputs centered at zero: [-1, 1]
- Smooth step function
- Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

1. Saturated neurons “kill” the gradients,
need activations to be exactly in right
regime to obtain non-constant output

2. exp() is a bit compute expensive

Tanh h(x)=2σ(x)−1

ReLU
(Rectified Linear Unit)

Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)
- Most commonly used today

Activation Functions

[Nair & Hinton, 2010]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

- Does not saturate: will not “die”
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)

Leaky ReLU

Activation Functions

[Mass et al., 2013] [He et al., 2015]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

• Does not saturate: will not “die”
• Computationally efficient
- Maxout networks can implement
ReLU networks and vice-versa
- More parameters per node

Maxout

Activation Functions

[Goodfellow et al., 2013]

max (w1
T x ,w2

T x)

Training feed-forward neural network

 Non-convex optimization problem in general
► Typically number of weights is very large (millions in vision applications)
► Seems that many different local minima exist with similar quality

 Regularization
► L2 regularization: sum of squares of weights
► “Drop-out”: deactivate random subset of weights in each iteration

 Similar to using many networks with less weights (shared among them)

 Training using simple gradient descend techniques
► Stochastic gradient descend for large datasets (large N)
► Estimate gradient of loss terms by averaging over a relatively small

number of samples

1
N
∑i=1

N
L(f (x i) , y i ;W)+λΩ(W)

Training the network: forward propagation

 Forward propagation from input nodes to output nodes
► Accumulate inputs via weighted sum into activation
► Apply non-linear activation function f to compute output

 Use Pre(j) to denote all nodes feeding into j

a j=∑i∈Pre (j)
wij x i

x j=f (a j)

Training the network: backward propagation

 Node activation and output

 Partial derivative of loss w.r.t. activation

 Partial derivative w.r.t. learnable weights

 Gradient of weight matrix between two
layers given by outer-product of x and g

g j=
∂ L
∂a j

∂L
∂wij

=
∂ L
∂ a j

∂a j
∂w ij

=g j xi

a j=∑i∈Pre (j)
wij x i

x j=f (a j)

x i
w ij

Training the network: backward propagation

 Back-propagation layer-by-layer of gradient from loss to internal nodes
► Application of chain-rule of derivatives

 Accumulate gradients from downstream nodes
► Post(i) denotes all nodes that i feeds into
► Weights propagate gradient back

 Multiply with derivative of local activation function

gi=
∂ x i
∂ai

∂ L
∂ xi

=f ' (ai)∑ j∈Post (i)
wij g j

gi=
∂ L
∂ai

a j=∑i∈Pre (j)
wij x i

x j=f (a j)

∂ L
∂ x i

=∑ j∈Post (i)

∂ L
∂ a j

∂a j
∂ x i

=∑ j∈Post (i)
g jwij

Training the network: forward and backward propagation

 Special case for Rectified Linear Unit (ReLU) activations

 Sub-gradient is step function

 Sum gradients from downstream nodes

► Set to zero if in ReLU zero-regime
► Compute sum only for active units

 Gradient on incoming weights is “killed” by inactive units
► Generates tendency for those units to remain inactive

f (a)=max (0,a)

f ' (a)={0 ifa≤0
1 otherwise

gi={
0 if ai≤0

∑ j∈Post (i)
w ij g j otherwise

∂ L
∂w ij

=
∂ L
∂a j

∂a j
∂wij

=g j x i

airplane
automobile
bird
cat
deer

dog
frog
horse
ship
truck

Input example : an image Output example: class label

Convolutional Neural Networks

How to represent the image at the network input?

Convolutional neural networks

 A convolutional neural network is a feedforward network where
► Hidden units are organizes into images or “response maps”
► Linear mapping from layer to layer is replaced by convolution

Convolutional neural networks

 Local connections: motivation from findings in early vision
► Simple cells detect local features
► Complex cells pool simple cells in retinotopic region

 Convolutions: motivated by translation invariance
► Same processing should be useful in different image regions

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
 activation functions

32

32

3

28

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

28

6

CONV,
 ReLU
e.g. 6

5x5x3
 filters

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

3

CONV,
 ReLU
e.g. 6

5x5x3
 filters 28

28

6

CONV,
 ReLU
e.g. 10
 5x5x6
 filters

CONV,
 ReLU

….

10

24

24

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

The convolution operation

The convolution operation

Local connectivity

Locally connected layer
without weight sharing

Convolutional layer
used in CNN

Fully connected layer
as used in MLP

Convolutional neural networks

 Hidden units form another “image” or “response map”
► Followed by point-wise non-linearity as in MLP

 Both input and output of the convolution can have multiple channels
► E.g. three channels for an RGB input image

 Sharing of weights across spatial positions decouples the number of
parameters from input and representation size
► Enables training of models for large input images

32

3

Convolution Layer

32x32x3 image

width

height

32

depth

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
 computing dot products”

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
 computing dot products”

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Filters always extend the full
 depth of the input volume

32

32

3

32x32x3 image
 5x5x3 filter

1 hidden unit:
dot product between 5x5x3=75 input
patch and weight vector + bias

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

wT x+b

32

32

3

32x32x3 image
 5x5x3 filter

activation maps

1

28

28

convolve (slide) over all
 spatial locations

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

32

32

3

32x32x3 image
 5x5x3 filter

activation maps

1

28

28

convolve (slide) over all
 spatial locations

consider a second, green filter

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016

32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Convolution with 1x1 filters makes perfect sense

64

56

56
1x1 CONV
with 32 filters

32

56

56

(each filter has size
1x1x64, and performs a
 64-dimensional dot
product)

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Stride

N

F

F

N

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

(Zero)-Padding

0 0 0 0 0 0

0

0

0

0

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Zero-Padding: common to the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

In general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
 (F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2
F = 7 => zero pad with 3

Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params
=> 76*10 = 760

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Effect = invariance to small translations of the input

Pooling

- Makes representation smaller and computationally less expensive
- Operates over each activation map independently

Pooling

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

max/ average

Common settings:

F = 2, S = 2
F = 3, S = 2

Summary

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Receptive fields

 “Receptive field” is area in original image impacting a certain unit
► Later layers can capture more complex patterns over larger areas

 Receptive field size grows linearly over convolutional layers
► If we use a convolutional filter of size w x w, then each layer the receptive

field increases by (w-1)

 Receptive field size increases exponentially over layers with striding
► Regardless whether they do pooling or convolution

Fully connected layers

 Convolutional and pooling layers typically followed by several “fully
connected” (FC) layers, i.e. a standard MLP
► FC layer connects all units in previous layer to all units in next layer
► Assembles all local information into global vectorial representation

 FC layers followed by softmax for classification

 First FC layer that connects response map to vector has many parameters
► Conv layer of size 16x16x256 with following FC layer with 4096 units leads

to a connection with 256 million parameters !
► Large 16x16 filter without padding gives 1x1 sized output map

Convolutional neural network architectures

 LeNet by LeCun et al 1998

 Surprisingly little difference between todays architectures and those of late
eighties and nineties
► Convolutional layers, same
► Nonlinearities: ReLU dominant now, tanh before
► Subsampling: more strided convolution now than max/average pooling

Handwritten digit recognition network. LeCun, Bottou, Bengio, Haffner, Proceedings IEEE, 1998

Convolutional neural network architectures

Figure: Kaiming He Fisher Vectors

Convolutional neural network architectures

 Recent success with deeper networks
► 19 layers in Simonyan & Zisserman, ICLR 2015
► Hundreds of layers in residual networks, He et al. ECCV 2016

 More filters per layer: hundreds to thousands instead of tens

 More parameters: tens or hundreds of millions

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge

Other factors that matter

 More training data
► 1.2 millions of 1000 classes in ImageNet challenge
► 200 million faces in Schroff et al, CVPR 2015

 GPU-based implementations
► Massively parallel computation of convolutions
► Krizhevsky & Hinton, 2012: six days of training on two GPUs
► Rapid progress in GPU compute performance

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge

Understanding convolutional neural network activations

 Patches generating highest response for a selection of convolutional filters,
► Showing 9 patches per filter
► Zeiler and Fergus, ECCV 2014

 Layer 1: simple edges and color detectors

 Layer 2: corners, center-surround, ...

Understanding convolutional neural network activations

 Layer 3: various object parts

Understanding convolutional neural network activations

 Layer 4+5: selective units for entire objects or large parts of them

Convolutional neural networks for other tasks

 Object category localization

 Semantic segmentation

Application to semantic segmentation

 Assign each pixel to an object or background category
► Consider running CNN on small image patch to determine its category
► Train by optimizing per-pixel classification loss

 Similar to SPP-net: want to avoid wasteful computation of convolutional filters
► Compute convolutional layers once per image
► Here all local image patches are at the same scale
► Many more local regions: dense, at every pixel

Long et al., CVPR 2015

Application to semantic segmentation

 Interpret fully connected layers as 1x1 sized convolutions
► Function of features in previous layer, but only at own position
► Still same function is applied across all positions

 Five sub-sampling layers reduce the resolution of output map by factor 32

Application to semantic segmentation

 Idea 1: up-sampling via bi-linear interpolation
► Gives blurry predictions

 Idea 2: weighted sum of response maps at different resolutions
► Upsampling of the later and coarser layer
► Concatenate fine layers and upsampled coarser ones for prediction
► Train all layers in integrated manner

Long et al., CVPR 2015

Upsampling of coarse activation maps

 Simplest form: use bilinear interpolation or nearest neighbor interpolation
► Note that these can be seen as upsampling by zero-padding,

followed by convolution with specific filters, no channel interactions

 Idea can be generalized by learning the convolutional filter
► No need to hand-pick the interpolation scheme
► Can include channel interactions, if those turn out be useful

 Resolution-increasing counterpart of strided convolution
► Average and max pooling can be written in terms of convolutions
► See: “Convolutional Neural Fabrics”, Saxena & Verbeek, NIPS 2016.

Application to semantic segmentation

 Results obtained at different resolutions
► Detail better preserved at finer resolutions

	Slide 1
	Slide 2
	Slide 3
	Slide 10
	Slide 11
	Slide 13
	Slide 15
	Slide 16
	Computes f(x) = max(0,x)
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	The convolution operation
	Slide 31
	Slide 32
	Slide 33
	Convolution Layer
	Slide 35
	Slide 36
	Slide 37
	consider a second, green filter
	Slide 39
	Slide 40
	(btw, 1x1 convolution layers make perfect sense)
	Stride
	Slide 43
	Zero-Padding
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Examples time:
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 68
	Slide 69
	Slide 70
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

