FeaStNet: Feature-Steered Graph
Convolutions for 3D Shape Analysis

Nitika Verma, Edmond Boyer, Jakob Verbeek
INRIA, Grenoble, France

Computer Vision and Pattern Recognition, 2018

ConvNets are everywhere for 2D images

Classification

. .
3 [
$Y | ‘\gi‘ -
P e i ?

Retrieval Segmentation
[Krizhevsky et al., 2012, Farabet et al., 2013, Ren et al., 2015, Gordo et al., 2016]

1/31

Convolutional Neural Networks (CNNs)

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5
6@28x28
S2: f. maps
6@14x14

INPUT
32x32

Full connection Gaussian connections
Convolutions Subsampling Convolutions St i Full ion

[LeCun et al., 1989]

2/31

How to generalize ConvNets to graph-structured data?

» RGB over regular grid of pixels
» XYZ(+RGB) over irregular graph of vertices

3/31

Applications

"‘F%HW
ﬂ% A

f

3D shape data

“country
USA
-exxieﬂ"?i"”' -
[l ‘university
educated at

kov

Vaganova Academy
Vilcek prize

knowledge graphs social network analysis

Mikhail Baryshni

cballet_dancer

a%%

431

Problem: Shape correspondence

5/31

Problem: Shape correspondence

Representations for 3D shape data

Point cloud

Level set

Bronstein et al. 2016
6 /31

Extrinsic vs. Intrinsic representations

L s

Extrinsic Intrinsic

Figure from [Boscaini et al., 2016]

7/31

Extrinsic representation: Voxel grids

» Occupancy grids on input and/or output
» Quantize space rather than shape, lots of empty space
» 3D convolutions over grid, limited scalability

» Sparse convolutions over input [Graham et al., 2018]
» Octtrees on input and/or output [Tatarchenko et al., 2017]

Octree Octree Octree
— level 1 level 2 level 3

323 643 1283

8 /31

Extrinsic representation: Point clouds

» Avoid quantization, ignore (most) structure
» PointNet [Qi et al., 2017]

» Local per-point processing (1x1 convolution)
» Global max-pooling for global shape properties

9/31

Extrinsic representation: Point clouds

» Avoid quantization, ignore (most) structure
» PointNet [Qi et al., 2017]
» Local per-point processing (1x1 convolution)
» Global max-pooling for global shape properties
» Kd-Networks [Klokov and Lempitsky, 2017]

» Propagate features across Kd-Tree over point cloud
» Share parameters over branches with same split direction

9/31

Intrinsic representation: Geodesics over 3D mesh data

» Local geodesic polar coordinates
[Masci et al., 2015, Boscaini et al., 2016]

u(x,y) = (p(x,y),0(x,y))

L

10 /31

Intrinsic representation: Geodesics over 3D mesh data

» Local geodesic polar coordinates
[Masci et al., 2015, Boscaini et al., 2016]

u(x,y) = (p(x,y),0(x,y))

» Extract patch from mesh by “flattening” and interpolation

L

10 /31

Intrinsic representation: Geodesics over 3D mesh data

» Local geodesic polar coordinates
[Masci et al., 2015, Boscaini et al., 2016]

u(x,y) = (p(x,y),0(x,y))
» Extract patch from mesh by “flattening” and interpolation
> Apply filter to local patch, max-pool over patch orientation

L

10 /31

Intrinsic representation: Geodesics over 3D mesh data

» Local geodesic polar coordinates
[Masci et al., 2015, Boscaini et al., 2016]

u(x,y) = (p(x,y),0(x,y))

» Extract patch from mesh by “flattening” and interpolation
> Apply filter to local patch, max-pool over patch orientation
» Trained filters, hand-crafted patch function

L

10 /31

MoNet: Trainable patch function [Monti et al., 2017]

» Trainable Gaussian assignment to bin k of the patch

u(x,y) = (p(x,y),0(x,y)) (1)
wie(u) = exp((u —) " (0 — k) ()

» Trained filters, trained patch function,
hand-crafted features for patch function

Polar coordinates p, 0

11/31

FeaStNet: Feature-Steered Graph Convolutions

» Generic graph-convolutional network architecture

12 /31

FeaStNet: Feature-Steered Graph Convolutions

» Generic graph-convolutional network architecture

» No hand-crafted features to design graph-convolution

12 /31

FeaStNet: Feature-Steered Graph Convolutions

» Generic graph-convolutional network architecture
» No hand-crafted features to design graph-convolution

» Validation: 3D shape correspondence and part labeling

WAL

Template Texture transfer on test shapes

12 /31

A brief recap of ConvNets

13 /31

A brief recap of ConvNets

‘x

A

AN

13 /31

A brief recap of ConvNets

x

h

*

13 /31

A brief recap of ConvNets

DAMM

13 /31

A brief recap of ConvNets

0

ARG

13 /31

Reformulation of standard CNNs

M
yi=b+ Z WinX;(m, i)

m=1

7

14 /31

Reformulation of standard CNNs

M
yi=b+ Z WinXj(m, i)

m=1

14 /31

Reformulation of standard CNNs

M
yi=b+ Z WinXj(m, i)

m=1

14 /31

Reformulation of standard CNNs

M
yi=b+ Z WinXj(m. iy

m=1

14 /31

Reformulation of standard CNNs

M
yi=b+ Z WinXj(m. i)

m=1

14 /31

Reformulation of standard CNNs

M
yi=b+ Z Wi Xj(m,i)

m=1

14 /31

Graph convolutional approach in FeaStNet

» Varying number of neighbors, no intrinsic ordering
» No one-to-one mapping between neighbors and weights

15 /31

Graph convolutional approach in FeaStNet

» Varying number of neighbors, no intrinsic ordering
» No one-to-one mapping between neighbors and weights

15 /31

Graph convolutional approach in FeaStNet

» Varying number of neighbors, no intrinsic ordering
» No one-to-one mapping between neighbors and weights

15 /31

Graph convolutional approach in FeaStNet

» Varying number of neighbors, no intrinsic ordering
» No one-to-one mapping between neighbors and weights

q (X,x)

15 /31

Graph convolutional approach in FeaStNet

» Varying number of neighbors, no intrinsic ordering
» No one-to-one mapping between neighbors and weights
» Weighted assignment of neighbors to weights

M
V= bt Y Wa S g
| ’|m:1 JEN;

Graph convolutional approach in FeaStNet

» Varying number of neighbors, no intrinsic ordering

» No one-to-one mapping between neighbors and weights
» Weighted assignment of neighbors to weights

1 U p
YI:b‘meZ::leZq:{jo

JEN;

» Using ring-1 neighbors in practice, but can be different

Feature-Steered assignment function

» Use features of previous layer to map neighbors to filters
» Can use arbitrary subnet, simplest case: 1-layer + softmax

16 / 31

Feature-Steered assignment function

» Use features of previous layer to map neighbors to filters
» Can use arbitrary subnet, simplest case: 1-layer + softmax

q¥ o exp (u;x,- + v,;qrxj- + Cm) (3)

M .
Sgh=1 4)
m=1

16 / 31

Feature-Steered assignment function

» Use features of previous layer to map neighbors to filters
» Can use arbitrary subnet, simplest case: 1-layer + softmax

q¥ o exp (u,Tnx,- + V,;l;Xj + Cm) (3)
Z qp =1 (4)

» Total sum of weights independent of neighborhood size

I‘quu_l

m=1jeN;

16 / 31

Feature-Steered assignment function

v

Use features of previous layer to map neighbors to filters
Can use arbitrary subnet, simplest case: 1-layer + softmax

v

dh o o (u]

Z qm = (4)

Total sum of weights independent of neighborhood size

i Tk

m=1jeN;

X+ Vo Xj + cm> (3)

v

I

v

Setting u,m = —vp, in makes assignment translation invariant
in feature space

g7 o exp (u;(xj —Xi)+ cm>

16 / 31

Analysis: nr. parameters and computational cost

» Number of parameters:

17 /31

Analysis: nr. parameters and computational cost

» Number of parameters:

» For each weight matrix W,,, add vectors for assignment
function up, vi,. Collect in new matrix [Wp,umVin]-

17 /31

Analysis: nr. parameters and computational cost

» Number of parameters:

» For each weight matrix W,,, add vectors for assignment
function up, vi,. Collect in new matrix [Wp,umVin]-
» Similar to two more output channels: from E to E + 2.

17 /31

Analysis: nr. parameters and computational cost

» Number of parameters:

» For each weight matrix W,,, add vectors for assignment
function up, vi,. Collect in new matrix [Wp,umVin]-
» Similar to two more output channels: from E to E + 2.

» Computational cost:

17 /31

Analysis: nr. parameters and computational cost

» Number of parameters:

» For each weight matrix W,,, add vectors for assignment
function up, vi,. Collect in new matrix [Wp,umVin]-
» Similar to two more output channels: from E to E + 2.

» Computational cost:

» As in CNN: Compute one big matrix-matrix product between
activations in previous layer (vertices x input dims) and weight

matrices (input dims X output dims X nr. of filters). Cost:
O(NMED).

17 /31

Analysis: nr. parameters and computational cost

» Number of parameters:
» For each weight matrix W,,, add vectors for assignment
function up, vi,. Collect in new matrix [Wp,umVin]-
» Similar to two more output channels: from E to E + 2.

» Computational cost:

» As in CNN: Compute one big matrix-matrix product between
activations in previous layer (vertices x input dims) and weight
matrices (input dims X output dims X nr. of filters). Cost:
O(NMED).

» Aggregate projections of each neighbor on each filter, instead
of a single one: O(NMEK)

17 /31

Analysis: nr. parameters and computational cost

» Number of parameters:

» For each weight matrix W,,, add vectors for assignment
function up, vi,. Collect in new matrix [Wp,umVin]-
» Similar to two more output channels: from E to E + 2.

» Computational cost:

» As in CNN: Compute one big matrix-matrix product between
activations in previous layer (vertices x input dims) and weight
matrices (input dims X output dims X nr. of filters). Cost:
O(NMED).

» Aggregate projections of each neighbor on each filter, instead
of a single one: O(NMEK)

» Computational cost increased from O(NMED) to
O(NME(D + K))

17 /31

Recovering standard CNNs

» Graph over the pixels in the image

18 /31

Recovering standard CNNs

» Graph over the pixels in the image

» Edges: connect every pixel to ones needed by filter,
e.g. eight-connected neighborhood for 3x3 filters

18 /31

Recovering standard CNNs

» Graph over the pixels in the image

» Edges: connect every pixel to ones needed by filter,
e.g. eight-connected neighborhood for 3x3 filters

» Number of weight matrices M given by filter size,
e.g. M =9 for 3x3 filters

18 /31

Recovering standard CNNs

» Graph over the pixels in the image

» Edges: connect every pixel to ones needed by filter,
e.g. eight-connected neighborhood for 3x3 filters

» Number of weight matrices M given by filter size,
e.g. M =9 for 3x3 filters

» Binary assignments of neighbors to weight matrices,
i.e. gm € {0,1}, based on position of i w.r.t. j

18 / 31

Recovering standard CNNs

» Graph over the pixels in the image

» Edges: connect every pixel to ones needed by filter,
e.g. eight-connected neighborhood for 3x3 filters

» Number of weight matrices M given by filter size,
e.g. M =9 for 3x3 filters

» Binary assignments of neighbors to weight matrices,
i.e. gm € {0,1}, based on position of i w.r.t. j

» Can be implemented by translation invariant linear-softmax
assignment function

18 / 31

Experimental evaluation — Shape correspondence

Query X Reference YV

19 /31

Experimental evaluation — Shape correspondence

» FAUST human shape dataset
» 100 meshes with 6,890 vertices each
» 10 shapes in 10 different poses: 80 train, 20 test

—

Query X Reference YV

19 /31

Experimental evaluation — Shape correspondence

» FAUST human shape dataset
» 100 meshes with 6,890 vertices each
» 10 shapes in 10 different poses: 80 train, 20 test
» Vertex descriptors
» SHOT: Signature of Histograms of Orientations [Tombari et al., 2010]
» XYZ: raw vertex coordinates

e

—

Query X Reference YV

19 /31

Experimental evaluation — Shape correspondence

» FAUST human shape dataset
» 100 meshes with 6,890 vertices each
» 10 shapes in 10 different poses: 80 train, 20 test
» Vertex descriptors
» SHOT: Signature of Histograms of Orientations [Tombari et al., 2010]
» XYZ: raw vertex coordinates
» Correspondence as dense labeling problem
> Like semantic segmentation, but with 6,890 classes

@ <

-

Query X Reference YV

19 /31

Shape correspondence: Architectures

> Single-scale architecture
» Lin16 4+ Conv32 + Conv64 + Conv128 + Lin256 + Lin6890

20 / 31

Shape correspondence: Architectures

> Single-scale architecture
» Lin16 4+ Conv32 + Conv64 + Conv128 + Lin256 + Lin6890

» Multi-scale architecture

» Graph sub-sampling [Dhillon et al., 2007]
» Max pooling, zero-pad up-sampling

Nx3 Nx8 Nx16 N x 256
D, N/2x 16 N/2 x 32
H H - D H ‘ oo ;\‘
Il Pool
NI2x 8 Ni2x 8 {1 Upsample
D - D 3 D == Concat

\\W Lin (Conv 1x1)7/
N/4x16 N/4x32 N4x16

20 / 31

Results single-scale architecture

» Metric: Percentage of correct (exact) correspondences

Trans.-inv. yes no
XYZ 86% 28%
SHOT 63% 58%

21 /31

Results single-scale architecture

» Metric: Percentage of correct (exact) correspondences

Trans.-inv. yes no
XYZ 86% 28%
SHOT 63% 58%
» Translation invariance helps, in particular for XYZ coordinates
» Learning from XYZ better than hand-crafted SHOT

21 /31

Results single-scale architecture

» Metric: Percentage of correct (exact) correspondences

Trans.-inv. yes no
XYZ 86% 28%
SHOT 63% 58%
» Translation invariance helps, in particular for XYZ coordinates
» Learning from XYZ better than hand-crafted SHOT

» Impact nr. of weight matrices, using XYZ

90

9
85 —
80
oy /
g)
575 /
3 /
<C /
/
00
/
65/
L
60 ‘ ‘ ‘ ‘
2 4 8 16 32 64

M (Number of weight matrices)

21 /31

Geodesic errors: SHOT vs. XYZ

» Geodesic distance between predicted and true correspondence

> Single-scale architecture in both cases

15cm

| 10cm

22 /31

Comparison to state of the art

» Metric: Percentage of correct (exact) correspondences

Method Input Accuracy
Logistic Regr., w/o refinement SHOT 39.9%
GCNN [Masci et al., 2015], w/o refinement SHOT 42.3%
PointNet [Qi et al., 2017], w/o refinement SHOT 49.7%
ACNN [Boscaini et al., 2016], w/ refinement SHOT 62.4%
GCNN [Masci et al., 2015], w/ refinement SHOT 65.4%
MoNet [Monti et al., 2017], w/o refinement SHOT 73.8%
MoNet [Monti et al., 2017], w/ refinement SHOT 88.2%
FeaStNet, w/o refinement XYZ 88.1%

23 /31

Comparison to state of the art

» Metric: Percentage of correct (exact) correspondences

Method Input Accuracy
Logistic Regr., w/o refinement SHOT 39.9%
GCNN [Masci et al., 2015], w/o refinement SHOT 42.3%
PointNet [Qi et al., 2017], w/o refinement SHOT 49.7%
ACNN [Boscaini et al., 2016], w/ refinement SHOT 62.4%
GCNN [Masci et al., 2015], w/ refinement SHOT 65.4%
MoNet [Monti et al., 2017], w/o refinement SHOT 73.8%
MoNet [Monti et al., 2017], w/ refinement SHOT 88.2%
FeaStNet, w/o refinement XYZ 88.1%
FeaStNet, w/ refinement XYZ 92.2%

23 /31

Comparison to state of the art

» Metric: Percentage of correct (exact) correspondences

Method Input Accuracy
Logistic Regr., w/o refinement SHOT 39.9%
GCNN [Masci et al., 2015], w/o refinement SHOT 42.3%
PointNet [Qi et al., 2017], w/o refinement SHOT 49.7%
ACNN [Boscaini et al., 2016], w/ refinement SHOT 62.4%
GCNN [Masci et al., 2015], w/ refinement SHOT 65.4%
MoNet [Monti et al., 2017], w/o refinement SHOT 73.8%
MoNet [Monti et al., 2017], w/ refinement SHOT 88.2%
FeaStNet, w/o refinement XYZ 88.1%
FeaStNet, w/ refinement XYZ 92.2%
FeaStNet, multi scale, w/o refinement XYz 98.6%
FeaStNet, multi scale, w/ refinement XYz 98.7%

23 /31

Comparison to state of the art

» Metric: Percentage of correct (exact) correspondences

Method Input Accuracy
Logistic Regr., w/o refinement SHOT 39.9%
GCNN [Masci et al., 2015], w/o refinement SHOT 42.3%
PointNet [Qi et al., 2017], w/o refinement SHOT 49.7%
ACNN [Boscaini et al., 2016], w/ refinement SHOT 62.4%
GCNN [Masci et al., 2015], w/ refinement SHOT 65.4%
MoNet [Monti et al., 2017], w/o refinement SHOT 73.8%
MoNet [Monti et al., 2017], w/ refinement SHOT 88.2%
FeaStNet, w/o refinement XYZ 88.1%
FeaStNet, w/ refinement XYZ 92.2%
FeaStNet, multi scale, w/o refinement XYz 98.6%
FeaStNet, multi scale, w/ refinement XYz 98.7%
FeaStNet, multi scale, w/o refinement SHOT 90.9%

23 /31

Comparison to state of the art

» Metric: Percentage of correct (exact) correspondences

Method Input Accuracy

Logistic Regr., w/o refinement SHOT 39.9%
GCNN [Masci et al., 2015], w/o refinement SHOT 42.3%
PointNet [Qi et al., 2017], w/o refinement SHOT 49.7%
ACNN [Boscaini et al., 2016], w/ refinement SHOT 62.4%
GCNN [Masci et al., 2015], w/ refinement SHOT 65.4%
MoNet [Monti et al., 2017], w/o refinement SHOT 73.8%
MoNet [Monti et al., 2017], w/ refinement SHOT 88.2%

FeaStNet, w/o refinement XYZ 88.1%
FeaStNet, w/ refinement XYZ 92.2%
FeaStNet, multi scale, w/o refinement XYz 98.6%
FeaStNet, multi scale, w/ refinement XYz 98.7%
FeaStNet, multi scale, w/o refinement SHOT 90.9%

» New state of the art result, with both XYZ and SHOT

23 /31

Comparison to state of the art

» Metric: Percentage of correct (exact) correspondences

Method Input Accuracy

Logistic Regr., w/o refinement SHOT 39.9%
GCNN [Masci et al., 2015], w/o refinement SHOT 42.3%
PointNet [Qi et al., 2017], w/o refinement SHOT 49.7%
ACNN [Boscaini et al., 2016], w/ refinement SHOT 62.4%
GCNN [Masci et al., 2015], w/ refinement SHOT 65.4%
MoNet [Monti et al., 2017], w/o refinement SHOT 73.8%
MoNet [Monti et al., 2017], w/ refinement SHOT 88.2%

FeaStNet, w/o refinement XYZ 88.1%
FeaStNet, w/ refinement XYZ 92.2%
FeaStNet, multi scale, w/o refinement XYz 98.6%
FeaStNet, multi scale, w/ refinement XYz 98.7%
FeaStNet, multi scale, w/o refinement SHOT 90.9%

» New state of the art result, with both XYZ and SHOT
> Relative reduction of 89% in error rate w.r.t. Monti et al.

23 /31

Geodesic errors

> Metric: Percentage of correspondences within tolerance

» Dashed curves: without refinement

Geodesic error (cm)

0 2 4 6 8 10
1 LA R L R R E R R Nl
O ” B FEECTLLE,
g 09 |
g
[
<
g
2 0.8 |
¢
8 —— GCNN
< 07 — ACNN ||
MoNet
— FeaStNet
0.6 | | | .
0 1 2 3 4 5

Geodesic error (% diameter) 10-2

24 /31

Geodesic errors

» Metric: Percentage of correspondences within tolerance

» Dashed curves: without refinement

Geodesic error (cm)

0 2 4 6 8 10

A R R R R R AR

0
g 0.9 |
=}
[
=]
g
2 0.8 N
¢
3 —— GCNN
< 07 — ACNN ||
MoNet
— FeaStNet
0.6 | | | T
0 1 2 3 4 5

Geodesic error (% diameter) 10-2

» Without refinement: very few, relatively big errors

24 /31

Geodesic errors

» Metric: Percentage of correspondences within tolerance

» Dashed curves: without refinement

Geodesic error (cm)

0 2 4 6 8 10

A R R R R R AR

0
g 0.9 |
=}
[
=]
g
2 0.8 N
¢
3 —— GCNN
< 07 — ACNN ||
MoNet
— FeaStNet
0.6 | | | T
0 1 2 3 4 5

Geodesic error (% diameter) 10-2

» Without refinement: very few, relatively big errors

» With refinement: very few, very small errors

24 /31

Shape correspondence: Geodesic errors

15cm

Ocm

Single-scale Multi-scale + refinement

25 /31

Shape correspondence: Geodesic errors

15cm

Lty Ocm

Single-scale Multi-scale + refinement

25 /31

Shape correspondence: Geodesic errors

15em

Ocm

Single-scale Multi-scale + refinement

25 /31

Shape correspondence: Geodesic errors

15cm

Ocm

Single-scale Multi-scale 4+ refinement

25 /31

Shape correspondence: Geodesic errors

Single-scale Multi-scale

+ refinement

25 /31

Shape correspondence: Noise robustness

» Gaussian noise on vertex coordinates,
proportional to average distance to neighbors

26 / 31

Shape correspondence: Noise robustness

» Gaussian noise on vertex coordinates,
proportional to average distance to neighbors

Accuracy
~
=}

—e— Trained w/o noise
—e— Trained w/ noise
r : T - r | |
0 005 01 015 02 025 03
Standard deviation of Gaussian noise

26 / 31

Shape correspondence: Noise robustness

» Gaussian noise on vertex coordinates,
proportional to average distance to neighbors

» Robust model when training with noisy shapes

100
90
80
70

60

50|l —— Trained w/o noise
—e— Trained w/ noise

Accuracy

40

r : T r | |
0 005 01 015 02 025 03
Standard deviation of Gaussian noise

26 / 31

Feature activations

> Left: 4 features on same shape

» Right: same feature on 4 shapes

(ELENIS]
MRS

Layer 1 (Lin16)

Layer 5 (Lin256)

27 /31

ShapeNet Part labeling benchmark

» 16,881 hand-designed shapes from 16 object categories
» Labeled with 50 parts across all categories
» Metric: Mean intersection-over-union (mloU)

28 / 31

ShapeNet Part labeling benchmark

» 16,881 hand-designed shapes from 16 object categories
» Labeled with 50 parts across all categories

» Metric: Mean intersection-over-union (mloU)

> Nearest neighbor graph on point cloud, using k=16

28 / 31

ShapeNet Part labeling benchmark

» 16,881 hand-designed shapes from 16 object categories
Labeled with 50 parts across all categories

Metric: Mean intersection-over-union (mloU)

Nearest neighbor graph on point cloud, using k=16

vV v VY

Single-scale architecture, with global max-pooling

28 / 31

ShapeNet Part labeling benchmark

» 16,881 hand-designed shapes from 16 object categories
Labeled with 50 parts across all categories

Metric: Mean intersection-over-union (mloU)

Nearest neighbor graph on point cloud, using k=16
Single-scale architecture, with global max-pooling

vV v vV VY

Descriptors: XYZ coordinates

28 / 31

Part labeling: Quantitative results

» Performance similar to methods designed for point-cloud data

overall aero car chair guitar knife lamp laptop motor pistol table

plane bike
Number of shapes 16,881 2690 898 3758 787 392 1547 451 202 283 5271
PointNet [Qi et al., 2017] 83.7 834 749 896 915 859 808 953 65.2 812 806
KdNet [Klokov and Lempitsky, 2017] 82.3 80.1 703 88.6 902 872 810 949 57.4 781 803
FeaStNet 81.5 793 717 875 900 80.1 787 947 62.4 783 79.6

20 /31

Part labeling examples

> Test shapes with accurate labeling,

and one with worst labeling in category.

. n%;‘f

30 /31

Conclusion

» Graph-convolutional architecture based on local filtering

» Learned features drive the graph convolutions

31/31

Conclusion

v

Graph-convolutional architecture based on local filtering

v

Learned features drive the graph convolutions

v

State-of-the-art 3D shape correspondence from raw XYZ

v

Comparable to previous work on point cloud labeling

31/31

Conclusion

v

Graph-convolutional architecture based on local filtering

v

Learned features drive the graph convolutions

v

State-of-the-art 3D shape correspondence from raw XYZ

v

Comparable to previous work on point cloud labeling

v

Perspectives
» Application to raw/real scanned 3D meshes
> Integrate global correspondence refinement
» Generalize across meshes/templates: local correspondences
» Modeling meshes in motion: (shape + pose) x time

31/31

FeaStNet: Feature-Steered Graph
Convolutions for 3D Shape Analysis

Nitika Verma, Edmond Boyer, Jakob Verbeek
INRIA, Grenoble, France

Computer Vision and Pattern Recognition, 2018

References |

[Boscaini et al., 2016] Boscaini, D., Masci, J., Rodola, E., and Bronstein, M. (2016).
Learning shape correspondence with anisotropic convolutional neural networks.
In NIPS.

[Dhillon et al., 2007] Dhillon, I., Guan, Y., and Kulis, B. (2007).
Weighted graph cuts without eigenvectors: A multilevel approach.
PAMI, 29(11).

[Farabet et al., 2013] Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2013).
Learning hierarchical features for scene labeling.
PAMI, 35(8):1915-1929

[Gordo et al., 2016] Gordo, A., Almazan, J., Revaud, J., and Larlus, D. (2016).
Deep image retrieval: Learning global representations for image search.
In ECCV.

[Graham et al., 2018] Graham, B., Engelcke, M., and van der Maaten, L. (2018).
3d semantic segmentation with submanifold sparse convolutional networks.
In CVPR.

[Klokov and Lempitsky, 2017] Klokov, R. and Lempitsky, V. (2017).
Escape from cells: Deep kd-networks for the recognition of 3D point cloud models.
In ICCV.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, |., and Hinton, G. (2012).
Imagenet classification with deep convolutional neural networks.
In NIPS.

[LeCun et al., 1989] LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., and Jackel, L.
(1989).
Handwritten digit recognition with a back-propagation network.
In NIPS.

References |l

[Masci et al., 2015] Masci, J., Boscaini, D., Bronstein, M., and Vandergheynst, P. (2015).
Geodesic convolutional neural networks on Riemannian manifolds.
In ICCV Workshops.

[Monti et al., 2017] Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., and Bronstein, M. (2017).
Geometric deep learning on graphs and manifolds using mixture model CNNs.
In CVPR.

[Qi et al.,, 2017] Qi, C., Su, H., Mo, K., and Guibas, L. (2017).
Pointnet: Deep learning on point sets for 3D classification and segmentation.
In CVPR.
[Ren et al., 2015] Ren, S., He, K., Girshick, R., and Sun, J. (2015).
Faster R-CNN: towards real-time object detection with region proposal networks.
In NIPS.
[Tatarchenko et al., 2017] Tatarchenko, M., Dosovitskiy, A., and Brox, T. (2017).
Octree generating networks: Efficient convolutional architectures for high-resolution 3D outputs.
In ICCV.
[Tombari et al., 2010] Tombari, F., Salti, S., and Stefano, L. D. (2010).

Unique signatures of histograms for local surface description.
In ECCV.

