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ConvNets are everywhere for 2D images
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[Krizhevsky et al., 2012, Farabet et al., 2013, Ren et al., 2015, Gordo et al., 2016]
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Convolutional Neural Networks (CNNs)

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5
6@28x28
S2: f. maps
6@14x14

INPUT
32x32

Full connection Gaussian connections
Convolutions Subsampling Convolutions St i Full ion

[LeCun et al., 1989]
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How to generalize ConvNets to graph-structured data?

» RGB over regular grid of pixels
» XYZ(+RGB) over irregular graph of vertices
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Applications
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Problem: Shape correspondence

5/31



Problem: Shape correspondence




Representations for 3D shape data

Point cloud

Level set

Bronstein et al. 2016
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Extrinsic vs. Intrinsic representations

L s

Extrinsic Intrinsic

Figure from [Boscaini et al., 2016]
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Extrinsic representation: Voxel grids

» Occupancy grids on input and/or output
» Quantize space rather than shape, lots of empty space
» 3D convolutions over grid, limited scalability

» Sparse convolutions over input [Graham et al., 2018]
» Octtrees on input and/or output [Tatarchenko et al., 2017]

Octree Octree Octree
— level 1 level 2 level 3

323 643 1283
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Extrinsic representation: Point clouds

» Avoid quantization, ignore (most) structure
» PointNet [Qi et al., 2017]

» Local per-point processing (1x1 convolution)
» Global max-pooling for global shape properties
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Extrinsic representation: Point clouds

» Avoid quantization, ignore (most) structure
» PointNet [Qi et al., 2017]
» Local per-point processing (1x1 convolution)
» Global max-pooling for global shape properties
» Kd-Networks [Klokov and Lempitsky, 2017]

» Propagate features across Kd-Tree over point cloud
» Share parameters over branches with same split direction
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Intrinsic representation: Geodesics over 3D mesh data

» Local geodesic polar coordinates
[Masci et al., 2015, Boscaini et al., 2016]

u(x,y) = (p(x,y),0(x,y))

L

10 /31



Intrinsic representation: Geodesics over 3D mesh data

» Local geodesic polar coordinates
[Masci et al., 2015, Boscaini et al., 2016]

u(x,y) = (p(x,y),0(x,y))

» Extract patch from mesh by “flattening” and interpolation

L

10 /31



Intrinsic representation: Geodesics over 3D mesh data

» Local geodesic polar coordinates
[Masci et al., 2015, Boscaini et al., 2016]

u(x,y) = (p(x,y),0(x,y))
» Extract patch from mesh by “flattening” and interpolation
> Apply filter to local patch, max-pool over patch orientation

L

10 /31



Intrinsic representation: Geodesics over 3D mesh data

» Local geodesic polar coordinates
[Masci et al., 2015, Boscaini et al., 2016]

u(x,y) = (p(x,y),0(x,y))

» Extract patch from mesh by “flattening” and interpolation
> Apply filter to local patch, max-pool over patch orientation
» Trained filters, hand-crafted patch function

L
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MoNet: Trainable patch function [Monti et al., 2017]

» Trainable Gaussian assignment to bin k of the patch

u(x,y) = (p(x,y),0(x,y)) (1)
wie(u) = exp((u — ) " (0 — k) ()

» Trained filters, trained patch function,
hand-crafted features for patch function

Polar coordinates p, 0
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FeaStNet: Feature-Steered Graph Convolutions

» Generic graph-convolutional network architecture
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FeaStNet: Feature-Steered Graph Convolutions

» Generic graph-convolutional network architecture
» No hand-crafted features to design graph-convolution

» Validation: 3D shape correspondence and part labeling

WAL

Template Texture transfer on test shapes
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A brief recap of ConvNets
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A brief recap of ConvNets
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Reformulation of standard CNNs

M
yi=b+ Z WinX;(m, i)

m=1
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Graph convolutional approach in FeaStNet

» Varying number of neighbors, no intrinsic ordering
» No one-to-one mapping between neighbors and weights
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Graph convolutional approach in FeaStNet

» Varying number of neighbors, no intrinsic ordering
» No one-to-one mapping between neighbors and weights
» Weighted assignment of neighbors to weights
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Graph convolutional approach in FeaStNet

» Varying number of neighbors, no intrinsic ordering

» No one-to-one mapping between neighbors and weights
» Weighted assignment of neighbors to weights

1 U p
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» Using ring-1 neighbors in practice, but can be different




Feature-Steered assignment function

» Use features of previous layer to map neighbors to filters
» Can use arbitrary subnet, simplest case: 1-layer + softmax
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Feature-Steered assignment function

» Use features of previous layer to map neighbors to filters
» Can use arbitrary subnet, simplest case: 1-layer + softmax
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Feature-Steered assignment function

» Use features of previous layer to map neighbors to filters
» Can use arbitrary subnet, simplest case: 1-layer + softmax

q¥ o exp (u,Tnx,- + V,;l;Xj + Cm) (3)
Z qp =1 (4)

» Total sum of weights independent of neighborhood size

I‘quu_l

m=1jeN;

16 / 31



Feature-Steered assignment function

v

Use features of previous layer to map neighbors to filters
Can use arbitrary subnet, simplest case: 1-layer + softmax

v

dh o o (u]

Z qm = (4)

Total sum of weights independent of neighborhood size

i Tk

m=1jeN;

X+ Vo Xj + cm> (3)

v

I

v

Setting u,m = —vp, in makes assignment translation invariant
in feature space

g7 o exp (u;(xj —Xi)+ cm>
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Analysis: nr. parameters and computational cost

» Number of parameters:
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» For each weight matrix W,,, add vectors for assignment
function up, vi,. Collect in new matrix [Wp,umVin]-
» Similar to two more output channels: from E to E + 2.

» Computational cost:

» As in CNN: Compute one big matrix-matrix product between
activations in previous layer (vertices x input dims) and weight
matrices (input dims X output dims X nr. of filters). Cost:
O(NMED).

» Aggregate projections of each neighbor on each filter, instead
of a single one: O(NMEK)

» Computational cost increased from O(NMED) to
O(NME(D + K))
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Recovering standard CNNs

» Graph over the pixels in the image
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Recovering standard CNNs

» Graph over the pixels in the image

» Edges: connect every pixel to ones needed by filter,
e.g. eight-connected neighborhood for 3x3 filters

» Number of weight matrices M given by filter size,
e.g. M =9 for 3x3 filters

» Binary assignments of neighbors to weight matrices,
i.e. gm € {0,1}, based on position of i w.r.t. j

» Can be implemented by translation invariant linear-softmax
assignment function
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Experimental evaluation — Shape correspondence

Query X Reference YV

19 /31



Experimental evaluation — Shape correspondence

» FAUST human shape dataset
» 100 meshes with 6,890 vertices each
» 10 shapes in 10 different poses: 80 train, 20 test

—

Query X Reference YV

19 /31



Experimental evaluation — Shape correspondence

» FAUST human shape dataset
» 100 meshes with 6,890 vertices each
» 10 shapes in 10 different poses: 80 train, 20 test
» Vertex descriptors
» SHOT: Signature of Histograms of Orientations [Tombari et al., 2010]
» XYZ: raw vertex coordinates

e

—

Query X Reference YV

19 /31



Experimental evaluation — Shape correspondence

» FAUST human shape dataset
» 100 meshes with 6,890 vertices each
» 10 shapes in 10 different poses: 80 train, 20 test
» Vertex descriptors
» SHOT: Signature of Histograms of Orientations [Tombari et al., 2010]
» XYZ: raw vertex coordinates
» Correspondence as dense labeling problem
> Like semantic segmentation, but with 6,890 classes
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Shape correspondence: Architectures

> Single-scale architecture
» Lin16 4+ Conv32 + Conv64 + Conv128 + Lin256 + Lin6890
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Shape correspondence: Architectures

> Single-scale architecture
» Lin16 4+ Conv32 + Conv64 + Conv128 + Lin256 + Lin6890

» Multi-scale architecture

» Graph sub-sampling [Dhillon et al., 2007]
» Max pooling, zero-pad up-sampling

Nx3 Nx8 Nx16 N x 256
D, N/2x 16 N/2 x 32
H H - D H ‘ oo ;\‘
Il Pool
NI2x 8 Ni2x 8 {1 Upsample
D - D 3 D == Concat

\\W Lin (Conv 1x1)7/
N/4x16 N/4x32 N4x16
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Results single-scale architecture

» Metric: Percentage of correct (exact) correspondences

Trans.-inv.  yes no
XYZ 86% 28%
SHOT 63% 58%
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Results single-scale architecture

» Metric: Percentage of correct (exact) correspondences

Trans.-inv.  yes no
XYZ 86% 28%
SHOT 63% 58%
» Translation invariance helps, in particular for XYZ coordinates
» Learning from XYZ better than hand-crafted SHOT

» Impact nr. of weight matrices, using XYZ
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Geodesic errors: SHOT vs. XYZ

» Geodesic distance between predicted and true correspondence

> Single-scale architecture in both cases

15cm

| 10cm
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Comparison to state of the art

» Metric: Percentage of correct (exact) correspondences

Method Input Accuracy
Logistic Regr., w/o refinement SHOT 39.9%
GCNN [Masci et al., 2015], w/o refinement SHOT 42.3%
PointNet [Qi et al., 2017], w/o refinement SHOT 49.7%
ACNN [Boscaini et al., 2016], w/ refinement SHOT 62.4%
GCNN [Masci et al., 2015], w/ refinement SHOT 65.4%
MoNet [Monti et al., 2017], w/o refinement SHOT 73.8%
MoNet [Monti et al., 2017], w/ refinement SHOT 88.2%
FeaStNet, w/o refinement XYZ 88.1%
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» Metric: Percentage of correct (exact) correspondences

Method Input Accuracy

Logistic Regr., w/o refinement SHOT 39.9%
GCNN [Masci et al., 2015], w/o refinement SHOT 42.3%
PointNet [Qi et al., 2017], w/o refinement SHOT 49.7%
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MoNet [Monti et al., 2017], w/ refinement SHOT 88.2%

FeaStNet, w/o refinement XYZ 88.1%
FeaStNet, w/ refinement XYZ 92.2%
FeaStNet, multi scale, w/o refinement XYz 98.6%
FeaStNet, multi scale, w/ refinement XYz 98.7%
FeaStNet, multi scale, w/o refinement SHOT 90.9%

» New state of the art result, with both XYZ and SHOT
> Relative reduction of 89% in error rate w.r.t. Monti et al.
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Geodesic errors

> Metric: Percentage of correspondences within tolerance

» Dashed curves: without refinement
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» Without refinement: very few, relatively big errors

» With refinement: very few, very small errors
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Shape correspondence: Geodesic errors
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Shape correspondence: Geodesic errors

Single-scale Multi-scale
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Shape correspondence: Noise robustness

» Gaussian noise on vertex coordinates,
proportional to average distance to neighbors
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Shape correspondence: Noise robustness

» Gaussian noise on vertex coordinates,
proportional to average distance to neighbors

» Robust model when training with noisy shapes
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50|l —— Trained w/o noise
—e— Trained w/ noise

Accuracy
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r : T r | |
0 005 01 015 02 025 03
Standard deviation of Gaussian noise
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Feature activations

> Left: 4 features on same shape

» Right: same feature on 4 shapes

(ELENIS]
MRS

Layer 1 (Lin16)

Layer 5 (Lin256)
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ShapeNet Part labeling benchmark

» 16,881 hand-designed shapes from 16 object categories
» Labeled with 50 parts across all categories
» Metric: Mean intersection-over-union (mloU)
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ShapeNet Part labeling benchmark

» 16,881 hand-designed shapes from 16 object categories
Labeled with 50 parts across all categories

Metric: Mean intersection-over-union (mloU)

Nearest neighbor graph on point cloud, using k=16
Single-scale architecture, with global max-pooling

vV v vV VY

Descriptors: XYZ coordinates
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Part labeling: Quantitative results

» Performance similar to methods designed for point-cloud data

overall aero car  chair guitar knife lamp laptop motor pistol table

plane bike
Number of shapes 16,881 2690 898 3758 787 392 1547 451 202 283 5271
PointNet [Qi et al., 2017] 83.7 834 749 896 915 859 808 953 65.2 812 806
KdNet [Klokov and Lempitsky, 2017]  82.3 80.1 703 88.6 902 872 810 949 57.4 781 803
FeaStNet 81.5 793 717 875 900 80.1 787 947 62.4 783 79.6
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Part labeling examples

> Test shapes with accurate labeling,

and one with worst labeling in category.

. n%;‘f
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Conclusion

» Graph-convolutional architecture based on local filtering

» Learned features drive the graph convolutions
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v

Graph-convolutional architecture based on local filtering

v

Learned features drive the graph convolutions

v

State-of-the-art 3D shape correspondence from raw XYZ

v

Comparable to previous work on point cloud labeling

v

Perspectives
» Application to raw/real scanned 3D meshes
> Integrate global correspondence refinement
» Generalize across meshes/templates: local correspondences
» Modeling meshes in motion: (shape + pose) x time
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